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Abstract—In order to improve the performance of a support 
vector regression, a new method for modified kernel function is 
proposed. In this method the information of whole samples is 
included in kernel function by conformal mapping. So the Kernel 
function is data-dependent. With random initial parameter of 
kernel function, iterative modifying is not stopped until 
satisfactory effect. Comparing with the conventional model, the 
improved approach does not need selecting parameters of kernel 
function. Simulation results show that the improved approach 
has better learning ability and forecasting precision than 
traditional model. 

Keywords—support vector regression, data-dependent, 
kernel, iteration 

I.  INTRODUCTION 
In recent years, a new pattern classification algorithm, 

called Support Vector Machine(SVM) has proposed by 
Vapnik[1] is a powerful methodology for solving a wide variety 
of problems in nonlinear classification, function estimation, 
and density estimation. Unlike traditional neural network 
models which minimize the empirical training error, SVM 
implements the structural risk minimization principle which 
seeks to minimize the training error and a confidence interval 
term. This results in a good generalization error. Because of its 
good properties such as global optimal solution, good learning 
ability for small samples and so on, the SVM has received 
increasing attention in recent years[2-4]. Moreover it has been 
successfully applied to the support vector regression (SVR), 
especially for nonlinear time series[5-7]. 

The performance of SVM largely depends on the kernel. 
Smola[8] elucidated the relation between the SVM kernel 
method and the standard regularization theory. However, there 
are no theories concerning how to choose good kernel function 
in a data-dependent way. In paper [9], the authors propose a 
method of modifying a kernel to improve the performance of a 
Support Vector Machine classifier. It is based on the 
Riemannian geometrical structure induced by the kernel 
function. In order to increase the separability, the idea is to 
enlarge the spatial resolution around the separating boundary 
surface with a conformal mapping. In this method, a primary 
kernel is used to obtain support vectors. Then the kernel is 
modified conformally in a data dependent way by using the 
information of the support vectors. The Final classifier is 
trained by the modified kernel. Inspired by this idea, liang 

yanchun[10] apply the modified kernel to SVR and forecast 
financial time series. 

These methods have achieved better performance than the 
conventional SVM, but we need choose parameters of the 
modified kernel carefully. 

The goal of this paper is to propose a new method to train 
SVM, which modifies the kernel function repeatedly. Unlike 
traditional methods which select parameters of the kernel 
function carefully, the parameters of this algorithm are random. 
Simulation experiments show that the new method is obviously 
superior to the traditional SVM in the precision of prediction. 

The remainder of this paper is organized as follows. Section 
2 briefly introduces the learning of SVR. Section 3 provides a 
background to data-dependent Kernel. Our method to train 
SVR by iterative learning will be introduced in Section 4. 
Section 5 presents some computational results to show the 
effectiveness of our method. Section 6 concludes our works. 

II. SUPPORT VECTOR REGRESSION 
Let { , }, 1,2, ,i ix y i m=  be a given set of training data, 

where ( , ) n
i ix y R R∈ × . The output of the SVR is 

 ( ) , ( )f x w x bφ=< > + ,   (1) 

where w  is the weight vector, b  the bias and ( )xφ  the 
nonlinear mapping from the input space S to the high 
dimensional feature space F . ,< ⋅ ⋅ >  represent the inner 
product. 

The commonly used ε -insensitive loss function introduced 
by Vapnik is 

 
| ( ) | , | ( ) |

( )
0, | ( ) |

i i i i
i

i i

f x y f x y
L x

f x yε

ε ε
ε

− − − ≥
=  − <

. (2) 

In order to train w  and b , the following function is 
minimized 
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where C  is the regularized constant determining the trade-off 
between the empirical error and the regularization term. 

After the introduction of positive slack variables and 
Lagrange multipliers, (3) is equivalent to a standard quadratic 
programming (QP) problem which can be solved with QP. 
After (3) is optimized, (1) can be rewritten as 

 ( ) ( ) ( , )
i

i i i
x SV

f x k x x bα α
∈

′= − +∑ , (4) 

where iα  and iα ′  are the optimized solution of QP. ( , )k x x′  is 
the following kernel function 

 ( , ) ( ), ( )k x x x xφ φ′ ′=< > . (5) 

It should be pointed out that not all functions can be taken 
as kernel function in the SVR. It has been proved that the 
kernel function should satisfy the conditions of Mercer’s 
theorem. The kernel function plays an important role in the 
SVR. It has great effect on the predicting precision. In the next 
section the kernel function is modified by the conformal 
mapping, which makes the kernel function data-dependent. 

III. DATA-DEPENDENT KERNEL 
Before you begin to format your paper, first write and save 

the content as a separate text file. Keep your text and graphic 
files separate until after the text has been formatted and styled. 
Do not use hard tabs, and limit use of hard returns to only one 
return at the end of a paragraph. Do not add any kind of 
pagination anywhere in the paper. Do not number text heads-
the template will do that for you. 

In the traditional SVM and SVR, there are no theories 
concerning how to choose kernel function in a data-dependent 
way. While some time series, such as financial time series, 
weather data etc, are inherently noisy, non-stationary and 
deterministically chaotic. In order to improve the precision of 
forecasting, it is necessary to redefine the kernel function from 
the training data. In this section, a background to data-
dependent Kernel is provided. The kernel function is modified 
based on information geometry[9-12], in a data-dependent way. 

From the point of geometry, nonlinear mapping defines an 
embedding of input space S  into feature space F  as a curved 
sub-manifold. Generally, F  is a reproducing kernel Hilbert 
space(RKHS) which is a subspace of Hilbert space. So a 
Riemannian metric[9] can be induced in the input space, and the 
Riemannian metric can be expressed in the closed form in 
terms of the kernel 

 ( ) ( ), ( ) ( , ) |ij x x
i j i j

g x x x k x x
x x x x

φ φ ′=
∂ ∂ ∂ ∂ ′=< >=

′∂ ∂ ∂ ∂
. (6) 

The volume form in the feature space is defined as 

 (1) (2) ( )( ) ndV g x dx dx dx= , (7) 

where ( ) det | ( ) |i jg x g x= , (1) (2) ( ), , nx x x  are the whole 

elements of x , the factor ( )g x  represents how a local area is 
magnified in F  under the mapping ( )xφ [9]. 

After a conformal mapping is introduced to the kernel 
function, the new kernel function is defined as  

 ( , ) ( ) ( ) ( , )k x x c x c x k x x′ ′ ′= , (8) 

where ( )c x  is a positive conformal mapping function. It is 
easy to see that the new kernel function ( , )k x x′  satisfies the 
conditions of Mercer’s theorem. 

The conformal mapping is taken as[9] 

 2 2( ) exp( || || /(2 ))i i
i I

c x h x x τ
∈

= − −∑ , (9) 

where I  is the support vectors set[9].  

For the new kernel function ( , )k x x′ , the Riemannian 
metric can be expressed as 

 2( ) ( )( ) ( ) ( )ij ij
i j

c x c xg x c x g x
x x

∂ ∂= +
∂ ∂

. (10) 

One of the typical kernel functions is Gaussian RBF kernel
： 

 2 2( , ) exp( || || / 2 )k x x x x σ′ ′= − − . (11) 

In this case, we have 

 2( ) /ij ijg x δ σ= , (12) 

where 
1,
0,ij

i j
i j

δ
==  ≠

. 

In the region of a neighborhood of a support vector ix , we 
have 

 2 2 2 2 4( ) ( / ) exp( /(2 )) 1 /n n
ig x h nr rσ τ σ τ= − + , (13) 

where || ||ir x x= −  is the Euclidean distance between x  and 

ix . 



         

IV. ITERATIVE MODIFIED ALGORITHM 
After the text edit has been completed, the paper is ready 

for the template. Duplicate the template file by using the Save 
As command, and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 
created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 
the scroll down window on the left of the MS Word Formatting 
toolbar. 

In order to improve the performance of SVM classifier[9], 
the kernel function is modified such that the factor ( )g x  is 
enlarged around the support vectors. But in SVR, the kernel 
function is modified such that ( )g x  should be compressed 
nearby support vectors. 

In order to make sure the magnification is compressed. 

Let 

 2 2( ) exp( || || /(2 ))i i
i I

c x h x x τ
∈

= − −∑ , (14) 

 ( , ) ( ) ( ) ( , )s s
sk x x c x c x k x x′ ′ ′= , (15) 

  ( ) ( , ) |sij s x x
i j

g x k x x
x x ′=
∂ ∂ ′=

′∂ ∂
. (16) 

where s  is a positive integer and I  the whole training data. 
The summation in (14) runs over all the training data such that 
the training procedure can be simplified. 

In this paper the RBF kernel is adopted. For those point x  
which is nearby the training data ix , we have 
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It is easy to check the following conclusions: 

1. when min{ ,1}ih σ< , ( )sg x  is compressed nearby the 
training data ix  for 1,2,s = . 

2. when 1 ih e≤ < , ( )sg x  is compressed nearby the 
training data ix  for s M> . 

3. ( )sg x  is compressed for x  which is far away every 
training data ix . 

In summary, the training process of the new method is as 
followes. 

Step 1. Give random values for , , , ,C hσ ε τ  and error ; 

Step 2.  Let 0 ( , ) ( , )k x x k x x′ ′= , 0j = ; 

Step 3.  Training SVR by ( , )jk x x′ , computer the figure of 

merit 2 2( ( )) ( )i i i
i i

y f x y yδ = − −∑ ∑ ; 

Step 4.  If errorδ >  

Then  

1( , ) ( ) ( ) ( , )j jk x x c x c x k x x+ ′ ′ ′= 1j j= + , return Step 3 

Else 

        Exit. 

After the procedure finished, the modified kernel is 

 ( , ) ( ) ( ) ( , )s sk x x c x c x k x x′ ′ ′= , (18) 

where s  is the final iteration number. 

V. SIMULATION 
In this section, we do some simulations to evaluate the 

performance of this method. We have compared the iterative 
modified SVR and the traditional SVR on the same examples. 
There have the same training parameters in optimal problem 
(3). To assess the approximation results and the generalization 
ability, a figure of merit is defined as 

 2 2( ( )) ( )i i i
i i

y f x y yδ = − −∑ ∑ , (19) 

where {( , ) | 1, 2, }i ix y i m=  is the test set, /i
i

y y m=∑ . 

A. Approximation of One-dimensional Function 
For comparison we show the results with the iterative 

modified SVR and with the traditional SVR. The solid lines 
represent the original function and the dashed lines show the 
approximations. 

Fig.1 shows the results for the approximation of the 
function ( ) sin (sin 3 ) /3 2sin( / 2), [0,2 ]f x x x x x π= + − ∈ . 

Approximation results for three different values of h  and 
τ  are represented in table I, where the parameters of the 
traditional SVR and the testing error are 0.1σ = , 0.1ε = , 

0.05C =  and 0.895δ =  respectively. 

The figure of merit for each approximation is computed on 
a uniformly sampled test set of 126 points. The input x is 
constructed by the uniform distribution on interval [0, 2 ]π , The 
training and test data are composed of 63 points and 126 points 
respectively. 

Fig.2 shows the another approximation for the same 
function, where the parameters of the traditional SVR and the 
testing error are 0.1σ = , 0.1ε = , 0.1C =  and 0.7902δ =  
respectively. 

This shows the modified method possesses better 
performance of generalization than the traditional SVR. 



         

B. Approximation of Multi-dimensional Functions 
Table II shows the approximation results of the earthquake 

wave, which is regarded as time series. The training data set is 
3{( , ) | 1,2, ,50},i ix y R R i∈ × =  a historical lag with order 3. 

The figure of merit for each approximation is computed on a 
uniformly sampled test set of 50 points. Fig.3 illustrates part of 

original data, its approximation by the traditional SVR and 
modified SVR. From comparison we can see the modified 
method possesses better performance of generalization than the 
traditional SVR. 

TABLE I.  APPROXIMATION RESULTS AND PARAMETERS OF SINGLE VARIA BLE FUNCTION 

Parameters & testing 
error of the traditional 

SVR 

Parameters of the 
modified SVR 

testing error of the first 
modified SVR 

testing error of the 
second modified SVR 

testing error of the 10’s 
modified SVR 

0.1ih = , 1τ =  0.5719 0.1598 0.1014 

0.1ih = , 0.8τ =  0.6821 0.3491 0.1014 

0.1σ =  
0.1ε =  
0.05C =  

0.895δ =  0.08ih = , 0.8τ =  0.7841 0.6099 0.1439 

0.1σ = , 0.1ε =  
0.1C =  

0.7902δ =  
0.8ih = , 1τ =  0.1044 0.1038 0.1038 

   

 
a. The approximation result with the traditional SVR. 

 
b.  The approximation results with the first and second modified SVR. 

 



         

 
c.  The approximation result with the ten’s modified SVR. 

Figure 1.  Approximation results of one-dimensional function. 

 

 
Figure 2.  Approximation results with the traditional and first modified SVR. 

 

TABLE II.  APPROXIMATION RESULTS AND PARAMETERS OF MULTI-DIMENSIONAL FUNCTION  

Parameters of the 
traditional SVR 

Parameters of the 
modified SVR 

testing error of the 
traditional SVR 

testing error of the 
first modified SVR 

testing error of the 
second modified SVR 

0.04σ =  
0.01ε =  

2C =  
4ih = , 0.06τ =  0.9753 0.1931 0.1229 

 
 



         

 
Figure 3.  Approximation results of multi-dimensional function. 

 
 

VI. CONCLUSION 
In this paper we present an iterative modified kernel to 

improve the performance of SVR. It is based on the conformal 
mapping in information geometry, which results in data-
dependent kernel. The whole training data are used in the 
construction of the conformal mapping instead of support 
vectors. The idea is to compress the spatial resolution such that 
the performance of forecasting is improved. It is important that 
the kernel is modified by iteration and the parameters of the 
kernel could be set as random values. Simulation results show 
the effectiveness and generalization ability of this method. 
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