
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE                              CIS 2008 

Multivariable Generalized Predictive Scheme for Gas 
Turbine Control in Combined Cycle Power Plant 

 

L.X.Niu and X.J.Liu  
Department of Automation 

North China Electric Power University 
Beijing, China, 102206 

e-mail liuxj@ncepu.edu.cn 
 

Abstract—The major dynamics of the gas turbine in combined 
cycle power plant(CCPP) include nonlinearities behavior, time 
delays, and uncertainties. Traditional control strategy could not 
offer satisfactory result. Using the linearization modeling 
technique, this paper deals with the velocity and power control by 
multivariable generalized predictive control method. 
Comparisons of generalized predictive control with conventional 
PID approaches were made under different load condition. 
Simulation results show the effectiveness of the proposed method. 
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I.  INTRODUCTION 
During the past several years, the ever-growing demand for 

electric power has given rise to increasing interest in combined 
cycle power generation plants(CCPG) because of their high 
efficiencies and relatively low investment costs. In CCPG, the 
gas turbine is the complex system with highly nonlinearity, 
uncertainty and coupling effect. Though well-known control 
strategies, usually PID controllers, have been developed for 
these plants, it is important to develop more advanced control 
strategies to reduce the operational costs further.  

MPC[1] is essentially an optimal control technique. Several 
proposals for predictive control of power plant have been made 
in the literature. The application of a decentralized predictive 
control scheme was proposed in [2] based on a state space 
implementation of GPC for a combined-cycle power plant, in 
which a two-level decentralized Kalman filter was used to 
locally estimate the states of each of the subprocess. In another 
related work [3], a comparison of control performance obtained 
with a linear state space model-based GPC and dynamic 
performance predictive controller applied in a gas turbine 
power plant simulation was presented. A nonlinear long-range 
predictive controller based on neural networks is developed in 
[4] to control the main steam temperature and pressure, and the 
reheated steam temperature at several operating levels. Plant 
non-linearity was accounted for without resorting to on-line 
parameter-estimation as in self-tuning control. A nonlinear 
generalized predictive controller based on neuro-fuzzy network 
is proposed in [5], which is applied to control the superheated 
steam temperature of a 200MW power plant. 

This paper proposes a multivariable generalized predictive 
control of a CCPG. Linearization is incorporated to cope with 
the plant nonlinearity. Also, constraints on the amplitude and 

the slew rate of the manipulated variables are included. Power 
and velocity control of gas turbine in CCPG is presented to 
illustrate the implementation and the performance of the 
proposed method. The results suggest an improvement over 
conventional controller. 

II. PLANT DESCRIPTION 
Combined cycle is a power plant system in which two types 

of turbines, namely a gas turbine and a steam turbine, are used 
to generate electricity. Moreover the turbines are combined in 
one cycle, so that the energy in the form of a heat flow or a gas 
flow is transferred from one of the turbines to another. The 
most common type of combined cycle is where the exhaust 
gases from the gas turbine are used to provide the heat 
necessary to produce steam in a steam generator. The steam is 
then supplied to the steam turbine. Fig.1 shows the 
configuration of the gas turbine. 

 
Figure 1.  The configuration of the gas turbine. 

aT -environmental temperature ; aP -environmental pressure   

1P -compressor inlet pressure ; 2P -compressor outlet pressure  

yb -compressor  pressure ratio ; tG -turbine exhaust gas flux  
In gas turbine control, the object is to maintain the active 

power eN , velocity n and exhaust gas temperature 4T  within 
the permitted range, for economic and safety reasons. The 
manipulated variables are fuel flow fG  and compressor inlet 
guide vanes( α IGV). Thus, the gas turbine is a non-linear 
system with a strong interrelationship amongst the variables. 
For example, when the exhaust gas temperature needs to be 
increased, IGV closes its opening rate, resulting in the higher 
fuel/air ratio. This can result in a higher exhaust gas 
temperature and a lower turbine velocity. 



         

III. OBTAINING  THE  LOAD  DEPENDENT  LINEAR  MODEL 
Since the gas turbine is quite nonlinear, local linear models 

under different load condition is used to design the controller. 
The models, after linearization, could be expressed as: 

Under rated load condition[6]: 
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Under 60% load condition: 
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Under 30% load condition: 
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Fig.2 and Fig.3 show the modelling results. From Fig.2, 
while there is a step change in fuel flow fG  and α IGV, the 
turbine velocity fluctuates around the stable value within 
0.068% range. Notice that the reaching time increases with 
load condition leaving far from the rated point. 

 
(2-a )   rated load condition               (2-d )   rated load condition 

 
(2-b) 60% load condition                 (2-e) 60% load condition 

  
(2-c)30% load condition                  (2-f)30% load condition 

Figure 2.  The velocity response for a -10%  change in α (a, b and c) and for 

a -10% step change in fG  (d, e and f)under diffferent load condition 

 
(3-a )  rated load condition              (3-d )  rated load condition 

 
(3-b) 60% load condition                  (3-e) 60% load condition 

  
(3-c)     30% load condition                      (3-f) 30% load condition 

Figure 3.  The active power response for a -10% step change in α (a,b and c) 

and  for a -10% step change in fG  (d, e and f) under different load condition 

From Fig.3, with a step decrease in fuel flow fG , the 
turbine power decreases and finally reaches a lower value. 
Similarly, with a step decrease in α , the turbine power 
increases and finally  reach a higher value. This is because 
when IGV reduces its opening rate, the inlet air decreases, 
resulting the higher fuel/air ratio. This can give a higher 
exhaust gas temperature and thus a higher turbine output 
power. 

To verify the effectiveness of the model, we can calculate 
the ratio e fN G for different load condition. This is 1.51 for 
rated load condition, 1.505 for 60% load condition and 1.504 
for 30% load condition. From the real-time data, while the 
turbine is in full velocity with vacant load, 

0
ˆ 0.337f f fG G G= = ， thus the defined power/fuel ratio  

from the rated load to full velocity with vacant load condition is
： 
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In this way, the calculated ratio e fN G  under different load 
condition is quite near to that of β , demonstrating the 
effectiveness of the model. 

IV. DERIVATION OF MULTIVARIABLE GPC 
A CARIMA model for a MIMO process can be expressed 

as[7]: 
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The operator ∆  is defined as 11 z−∆ = − .The variables 
( )Y t , ( )U t and ( )e t  are the 1n × output vector, the 1m ×  

input vector and the 1n × noise vector at time t. The noise 
vector is supposed to be a white noise with zero mean. 

Consider the following Diophantine equation: 
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The prediction equation can now be written as: 
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The predictions can be expressed in condensed form as: 
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Consider the following finite horizon quadratic criterion: 
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If there is no constraints, the optimum can be expressed as: 
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where ( , , )R diag R R= " , ( , , )Q diag Q Q= " ,W is future 
setpoint or reference sequence for the output vector. R and Q 
are positive definite weighting matrices.  

Because of the receding control strategy, only ∆U is needed 
at instant t. Thus only the first m rows of 

1
123 123 123( )T T

N N NG R GQG R−+ , say K, have to be computed. 
This can be done beforehand for the non-adaptive case. The 
control law can then be expressed as ( )=∆ −U K W f . 

In the presence of constrains, the above analytical 
resolution is no longer available. The Quadratic Programming 
algorithm available in MATLAB SIMULINK Toolbox will be 
used for optimization. 

V. APPLICATION 
Under the rated load condition, the discretized model for a 

sampling time of 0.03 minutes is: 
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A left matrix fraction description can be obtained by 
making matrix 1( )z−A  equal to a diagonal matrix with 
diagonal elements equal to the least common multiple of the 
denominators of the corresponding row of the transfer 
function, resulting in: 
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For a prediction horizon N＝3, a control horizon M＝2 
and a control weight 0.08λ = , matrix 123NG  is: 
Under rated load condition 
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Under 60% load condition 
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Under 30% load condition 
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The evolution of the active power the gas turbine velocity 
obtained when the GPC is applied can be seen in Fig.4. 

Simulation was then made under conventional 
proportional integral (PI) controller, which is expressed as: 
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pK and iK  are optimized by a genetic algorithm. While  

11 2pK = , 12 0.12pK = , 21 3pK = , 22 2.5pK = , 11 0.52iK = ,

12 0.012iK = ， 21 1.58iK = , 22 2.21iK = , the output response 
is also shown in Fig.4. 

 
(4-a) Active power response under rated load condition 

 
(4-b) Active power response under 60% load condition 

 
(4-c) Active power response under 30% load condition 

 
(4-d) Gas turbine velocity response under rated load condition 

 
(4-e) Gas turbine velocity response under 60% load condition 

 
(4-f) Gas turbine velocity response under 30% load condition 

Figure 4.  Comparing results between PID(dotted line) and GPC(solid line) 

From Fig.4, under conventional PID controller, while the 
model is far away from normal operating condition, the 
overshoot become quite large, meantime the settling time is 
notably lengthened. Obviously, conventional PID control 
strategy can’t offer satisfactory results under diverse operating 
conditions. Under GPC, while the model is far away from 
normal operating condition, the overshoot become a little bit 
larger, meantime the settling time is slightly lengthened. 
Obviously, GPC strategy has preferable control effect under 
diverse operating conditions.  

In gas turbine control system, the fuel flow change rate 
should be lower than the real device accelerate rate to avoid 
damage. The increasing rate of IGV should be lower than that 
of the servo valve. In order to show the influence of constraints 
on the slew rate and the amplitude of the manipulated variable, 
consider the following realistic constraints: 
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(5-a) Active power response under rated load condition 

 
(5-b) Active power response under 60% load condition 

 
(5-c) Active power response under 60% load condition 

 
(5-d) Gas turbine velocity response under rated load condition 

 
(5-e) Gas turbine velocity response under 60% load condition 

 
(5-f) Gas turbine velocity response under 30% load condition 

Figure 5.  Comparing results with constraint handling 

 
(6-a) Control efforts of fG  under rated load condition 

 
(6-b) Control efforts of fG  under 60% load condition 



         

 
(6-c) Control efforts of fG  under 30% load condition 

 
(6-d) Control efforts of IGV under rated load condition 

 
(6-e) Control efforts of IGV under 60% load condition 

 
(6-f) Control efforts of IGV under 30% load condition 

 
 

The obtained results are shown in Fig.5. The control efforts 
are shown in Fig.6. The constraint optimal controller is 
compared with constraint limiting controller. The control signal 
for the constrained optimal controller seems to be better in 
anticipating the effect of the actuator limits. When ∆u exceeds 
the constraints, a new set of control signals is obtained, 
anticipating the control is going to exceed the limits. In 
contrast, the constraints limited controller reaches a nature 
saturation condition, offering a much lower performance. 

V.  CONCLUSION 

The modelling and control of a gas turbine in combined 
cycle power plant is presented in this paper. Multivariable 
generalized predictive scheme has been constituted for gas 
turbine control, after using the local linearization method. 
Comparison with the traditional PID controller is also made on 
the simulated power plant. The proposed method therefore 
provides a useful alternative for controlling this class of 
nonlinear gas turbine generation, which shows strong coupling 
effect and nonlinearity. 
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