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Abstract—This study addressed the problem of active lo-
calization, which requires massive computation. To solve the
problem, we developed abstracted measurements that consist
of qualitative metrics estimated by a single camera. These are
contextual representations consisting of perceived landmarks and
their spatial relations, and they can be shared by humans and
robots. Next, we enhanced the Markov localization method to
support contextual representations with which a robot’s location
can be sufficiently estimated. In contrast to passive methodologies,
our approach actively uses the greedy technique to select a
robot’s action and improve localization results. The experiment
was carried out in an indoor environment, and results indicate
that the proposed active-semantic localization yields more efficient
localization.

Index Terms—Contextual map, Active-Semantic Localization,
Information Gain

I. INTRODUCTION

Humans do not necessarily require precise quantitative
information to perceive their current location or to move to
another location. Instead, they remember a few landmarks,
such as specific structures or distinct landmarks that delimit
the area [18]. Then, they restructure their knowledge based
on spatial context and apply this knowledge to the current
situation [1][13]. This semantic localization method enables
efficient high-level spatial recognition and localization and
does not require metrically exact location; instead, it uses
but many pieces of spatial information that are accumulated
through visual sensors.

In general, metric data gathered using a single camera are
inaccurate. Individual metric datasets are extremely unreliable
if a robot’s location is uncertain [2]. To cope with this problem
of unreliable data, we can use contextual information, and the
mutual association exploits the geometric relationship among
landmarks or objects. Landmarks and objects may be used
differently according to the situation, but here we will assume
that they are identical.

As discussed above, humans generate a mental ’contextual
map’ consisting of landmarks and their spatial relationships, as
shown in Fig. 1. Based on a specific structure or distinct land-
marks, humans restructure their knowledge based on spatial
contexts and then reapply the knowledge [1]. Even without
exact quantitative data, the accumulation of many fragments
of spatial context enables a sufficiently high level of space
recognition and localization.

Many robot localization methods have been developed over
the last decade based on grid-based maps [3], feature-based
maps [4], topological maps [5], or semantic maps [6], or
through adaptive selection of various types of maps [7].

Landmarks can be represented in terms of qualitative dis-
tance, bearing, and relationships on a topological map; these
data are then used to define and use a contextual map. In our
proposed representation, the spatial context includes observed
objects, robot-to-object distance (r-o; the distance between
the robot and a particular object), r-o bearing (the direction
from a robot to a particular object), and object-to-object (o-o)
relationships.

Thrun et al. conducted research on probabilistic localization
by applying the Bayes rule to robot localization [8]. A topolog-
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Fig. 1. Conceptual illustration of how a human recognizes a place with
contextual information.
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ical map is represented semantically using ontology and relies
on semantics to infer navigation [9][10]. Bailey et al. [2] noted
that most localization schemes are considered passive in the
sense that they did not use robot behaviors, e.g., turning to
find a landmark, to collect evidence for localization.

Some research has applied active localization. Fox et al.
applied a greedy technique to robot localization [11]. Recently,
Kümmerle et al. proposed a method for determining range-
laser sensor pan/tilt angles for use in orientating an action for
multi-level outdoor surface maps. To reduce computation, each
particle was applied to QT-clustering [12].

These approaches used range sensors to measure metric
data and focused on building accurate metric maps. However,
semantic maps require symbols that are associated with vi-
sual features using a single camera [13]. Our previous study
focused on metric distances from a robot to an observed
landmark, using a single camera to derive spatial contexts
and approximate quantitative metrics. Spatial contexts and
approximated quantitative metrics enable simple estimation of
robot location with comparisons among a few variances. The
image processing method has immense potential.

However, our previous approach was problematic in that
we could only use information about landmarks and their
spatial relationships. It is possible that continuous input will
not be available, which could result in potential robot kidnap-
ping problems. Therefore, we developed an active-semantic
localization to solve input problems and improve localization
efficiency through action selection.

We developed a method based on active-semantic localiza-
tion using spatial relationships among landmarks. To solve the
complication problem, we used measurements of landmarks
and their spatial relationships. Exploring an unknown environ-
ment during localization may only require the measurement of
a few spatial relationships. We conducted extensive localization
experiments in an indoor environment; the results indicate that
our active-semantic localization approach based on information
gathering is valid.

II. MONTE CARLO LOCALIZATION IN CONTEXTUAL MAP

A. Contextual Map

We used contextual representation and the Bayesian
model to represent spatial relationships between objects
(landmarks)[13]. Basically, most data are represented seman-
tically by means of ontology, which uses inference to ensure
that only sound and complete data are asserted and propagated.
Noisy sensor data such as false positives and true negatives can
be filtered using the relations and rules in logical reasoning.
Many cases of false-positive data involve illogical properties,
e.g., a misclassified object floating in the air by itself or
penetrating other objects or walls. These cases can be evaluated
logically using axiomatic rules. In addition, a robot can know
what will be seen from the next step, which enables robots to
predict and to pay attention to an a priori contextual map.

Object recognition is a fundamental factor in contextual
representation. In general, an object can be recognized visually
by measuring the similarity between its features and those

Previous state

x

2o
1o

3o

13

~

12

~
23

~

Current state

'x

2o
3o

'

23

~

'~,'~
22r

u

11
~,~r 22

~,~r 33
~,~r '~,'~

33r

Fig. 2. Metric relationships between a robot and objects in image sequences

of corresponding object models. Our method uses feature
transform features that are known to be invariant to image
scale and rotation [14][15].

Fig. 2 shows changes in metric relationships between a
robot and observed objects according to the transition in
robot location from x to x′. Parameters r̃, ω̃, and ζ̃ denote
estimated metric distance of an object relative to a robot, metric
bearing of an object relative to a robot, and bearings among
objects in the robot coordinates, respectively, measured by a
single camera. In general, metric data collected using a single
camera are inaccurate, and individual metric data quantities are
extremely unreliable if the robot location is uncertain. Thus, for
contextual representation, metric data are linked to symbols of
spatial relationships, according to given conditions. However,
mutual association exploits the geometric relationship between
objects (landmarks) [2].

Table I shows a contextual representation using symbols for
all spatial contexts of the objects in Fig. 2. Our robot localiza-
tion application finds the robot position using only these types
of contextual representations with qualitative metric data.

Here, the spatial context includes distance, bearing, and
relationships. The r-o distance context, denoted by sr, is the
level of distance of the object from a robot. Each distance
context is represented by one of a set of distance symbols:
sr = {nearby, near, far}. The r-o bearing context, denoted
by sω = { front, left front, left, left rear, rear, right rear,
right, right front}, is the bearing of the object relative to the
robot. The o-o relationship context, denoted by sζ = { left far,
left near, left nearby, right nearby, right near, right far}, is

TABLE I
CONTEXTUAL REPRESENTATION INCLUDING ALL OF SPATIAL CONTEXTS

OF OBJECT IN FIGURE 2.

state semantic representation
previous state nearby(o1, Robot), left front(o1, Robot),

right near(o1, o2), right far(o1, o3),
far(o2, Robot), front(o2, Robot),

left near(o2, o1), right near(o2, o3),
far(o3, Robot), right front(o3, Robot),

left far(o3, o1), left near(o3, o2)
current state near(o2, Robot), left front(o2,Robot),

right far(o2, o3)
nearby(o3, Robot), right front(o3, Robot)

left far(o3, o2)
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Fig. 3. Graphical model of Bayesian localization.

the relationship among objects.

B. Monte Carlo Localization

Fig. 3 is a graphical model of Bayesian localization. The
robot is given a map, and its goal is to determine its location
relative to this map given perceptions of the environment and
its own movements.

In Fig. 3, the robot’s location is denoted by x =
[v(i) e(i,j) ρ(i,j) θ(i,j)]T where v(i) and e(i,j) are the topo-
logical node and edge, respectively. ρ(i,j) and θ(i,j) denote
metric distance and bearing in edge e(i,j), respectively. The
object is denoted by o. This metric-topological framework
enables the localization to be bounded globally, the map size
to increase monotonically in dimensionality, and the location
to be calculated locally between two nodes. A set of semantics
for spatial contexts of an object, containing distance, bearing,
and relationship, is denoted by s = {sr, sω, sζ}. A set of
semantics for spatial contexts of the robot, containing distance
and bearing, is denoted by c = {cρ, cθ}. Features extracted
from the image are represented by z. The map is denoted by
m.

We developed a topological-semantic distance map that
consists of spatial contexts of both an object and the robot. In
this map, nodes are one component. In a general topological
map, nodes act as a standard and contain spatial object context
data. In addition, in our proposed contextual representation, a
robot’s spatial context can yield an approximate distance and
bearing from one assigned node to another. The approximate
qualitative distance can be described as the node-to-node (n-n)
distance context and the qualitative bearing as the node-to-node
(n-n) bearing context.

A probabilistic robot location represents beliefs through
conditional probability distribution. We can denote belief about
a state xt by Bel(xt); the posterior Bel(xt) can be obtained
analogously using the Bayesian rule and the Markov assump-
tion. In particular, we have:

Bel(xt)

= η · p(st, ot, zt|xt,m)
∫

p(xt|xt−1, ct, ut)Bel(xt−1)dxt−1

(1)

where the probability p(st, ot, zt|xt,m) is the contextual
measurement, the probability p(xt|xt−1, ct, ut) is the state
transition, and Bel(xt−1) is the belief at the time t − 1,
respectively.

∫
p(xt|xt−1, ct, ut)Bel(xt−1)dxt−1 is the predic-

tion model. The probabilistic localization model is divided into
two parts: the measurement model and the prediction model,
which correspond to two terms on the right-hand side of (1).
The measurement model uses the contextual representation and
is the main focus of this research. Context data are uncertain,
so they should be approximated with a stochastic distribution.
This section focuses on the measurement model and contexts
of objects. Here, we assume that sensors are uncertain; thus,
as fewer contexts are available, a lower distribution is approx-
imated. The reverse would also be true. We can calculate the
location posterior using the contextual representation described
in Section II. A.

The contextual measurement model is based on the joint
probability of robot location x, map m, spatial contexts of
object s, object o, and extracted feature z, From the graphical
model in Fig. 3, the joint probability can be written as:

p(st, ot, zt|xt,m) =
p(xt)p(ot|xt,m)p(st|xt, ot,m)p(zt|st, ot)

p(xt,m)
(2)

Here, we assume that probability p(xt) is the same as
p(xt,m) because robot position xt is located on map m.
Applying Bayes’ law to the contextual measurement model
from (2):

p(st, ot, zt|xt,m)

= p(ot|xt,m)p(st|xt, ot,m)p(zt)p(ot|zt)p(st|ot,zt)
p(ot)p(st|ot)

(3)

We assume that probability p(zt) has a uniform distribution.
Therefore, we can get the distribution from the measurement
model as:

p(st, ot, zt|xt,m)

= η · p(ot|zt)p(st|ot, zt)p(ot|xt,m)p(st|xt, ot,m)
(4)

where η is the normalization constant. p(ot|zt) is a term
related to object recognition; it is evaluated based on similarity
between extracted features of observed objects and features of
the corresponding object models.

We used a supervised approach to build object models.
Training data consisted of images, each of which contained
only one object. These images were captured at every known
reference distance. The object model consisted of features
for object recognition, the distance from a camera to the
corresponding object, and the height of the object in pixels.

p(st|ot, zt) is the likelihood of similarity in spatial context
between the estimated metric data for the observed object and
spatial contexts. It is evaluated based on similarity between
extracted features of observed objects and features of the
corresponding object models.

From the results of estimated metric distances and bearings,
an object’s spatial contexts can be computed as:
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p(st|ot, zt) = {p(sr
t |ot, zt), p(sω

t |ot, zt), p(sζ
t |ot, zt)} (5)

p(sr
t |ot, zt) = N(rs − r̃, σr

2) (6)

p(sω
t |ot, zt) = N(ωs − ω̃, σω

2) (7)

p(sζ
t |ot, zt) = N(ζs − ζ̃ , σζ

2) (8)

where N(μ, σ2) is normally distributed with mean μ and
variance σ2. rs, ωs, and ζs are trained at every known
reference for the spatial contexts of distance, bearing, and
relationship, respectively. The variances of σ2

r , σ2
ω, and σ2

ζ

are introduced to reflect the uncertainty of the vision sensor.
The further an object is from the robot or other objects,
the less accurate the metric distance and bearing will be.
More specifically, dividing the spatial context more finely will
improve localization performance.

Probability p(ot|xt,m) is the likelihood of similarity be-
tween observed objects in the current state and those in the
previous state, and can be formulated as:

p(ot|xt,m) = exp(−‖o − ox‖2) (9)

where o and ox represent the observed object in the current
and previous states, respectively. Probability p(st|xt, ot,m) is
the likelihood of the spatial context.

The likelihood of the spatial context can be computed as:

p(st|xt, ot,m)

=
∑N

a [fc(sra − sr
x)fc(sωa − sω

x )
∑N

b fc(sζab − sζ
x)]

(10)

where fc(sa, sx) = exp(−‖sa − sx‖2), and s and sx represent
the estimated spatial contexts of an object in the current and
previous states, respectively. Each spatial context of an object
belongs to one of some number of different distributions.
In equation (10), each context is described by a component
probability density function, and its mixture of distributions is
the probability that an observation comes from this component.
Here, a mixture of three normal distributions with different
means may result in a density with three spatial contexts
of an object, which is not modeled by standard parametric
distributions.

In equation (1), the last term on the right-hand side is an
update term. The control model u represents simple motion
data related to a state of transition as follows:

⎡
⎢⎢⎢⎣

v
′
(i)

e
′
(i,j)

ρ
′
(i,j)

θ
′
(i,j)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

v(i)

e(i,j)

ρ(i,j)

θ(i,j)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

Δρ · cos(θ(i,j) + Δθ − θc
(i,j))

Δθ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
ερ

εθ

⎤
⎥⎥⎦ (11)

where Δρ and Δθ are robot motions of bearing and movement,
respectively, and ερ and εθ are zero-mean error variables of
motion and bearing.

The localization posterior is calculated using equation (1),
but the modification is not applied directly to our Bayesian
model because equation (1) is not a predictable term. To solve
this problem, we can modify (1) in the localization model to a
particle filter, a type of recursive Bayesian estimation [8][16],
to manage the complicated computations.

In the particle filter, samples of a posterior distribution are
called particles and can be denoted by:

χt := x
[1]
t , x

[2]
t , ..., x

[Y ]
t (12)

Each particle x
[y]
t (with 1 ≤ y ≤ Y ) is a concrete

instantiation of the state at time t. For each particle x
[y]
t ,

the so-called importance factors are used to incorporate the
measurement into the particle set. Therefore, importance is the
probability of the measurement under the particle, given by:

w
[y]
t = p(ot|zt)p(st|ot, zt)p(ot|x[y]

t ,m)p(st|x[y]
t , ot,m)

(13)
By resampling particles with probability proportional to

w
[y]
t , we can see that resulting particles are indeed distributed

according to the product of the proposal and importance
weights w

[y]
t .

Bel(xt) = η
′ · w[y]

t

Y∑
y

p(x[y]
t |x[y]

t−1, ct, ut,m)Bel(xt−1) (14)

III. ACTIVE-SEMANTIC LOCALIZATION

To achieve active semantic localization, we can apply the
greedy technique set out by Fox et al. [11]. First, we assume
that a robot can execute a discrete set of actions A at a
given time t. Each set of actions can be represented by
one of a set of distance and bearing symbols, for example:
A = {move forward 1 step, · · · , move forward K step,
move backward 1 step, · · · , move backward K step, turn
to left foward, turn to left, turn to left rear, turn
to right forward, turn to right, turn to right rear}.
The benefit of a sensing action a∈A can be determined by
considering the uncertainty of the posterior p(x′|o, s, a). The
uncertainty of the location estimate can be calculated using the
following entropy equation:

Hp(x) = −
∫

x

bel(x)logbel(x)dx (15)

The ideal action would allow a robot to determine its
position with a high certainty. Therefore, the information gain
Ib(a) of an action a to change the robot location is defined
by:

Ib(a) = Hp(x) − Hb(x′|o, s, a) (16)

where Hb(x′|o, s, a) defines the entropy of new location x′

based on new evidences o and s obtained by execution of
action a. In general, we do not know what measurement a
robot will obtain after it moves to a new location according to
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action a. . Therefore, it is preferable to consider the expected
entropy by integrating all possible measurements o, s:

Ib(a) = Hp(x) − Eo,s[Hb(x′|o, s, a)] (17)

where Eo,s[Hb(x′|o, s, a)] defines the expected entropy after
the integration of measurements of recognized objects and spa-
tial contexts obtained after execution of action a. Consequently,
we can consider the conditional entropy of the action, with
measurements integrated out:

Eo,s[Hb(x′|o, s, a)]

=
∫ ∑

s

∑
o[Hb(x′|o, s, a)p(o, s|x′)p(x′|a, x)]dx

=
∫ ∑

s

∑
o[Hb(x′|o, s, a)p(o|x′)p(s|x′, o)p(x′|a, x)]dx

(18)

Calculating the expected entropy would require a great deal
of computation. To reduce the required computation time,
we can simulate a subset calculated using particle filtering,
because particles are typically located in a small number of
areas with high probability.

Eo,s[Hb(x′|o, s, a)]

=
∑

x[Y ]

∑
s

∑
o[Hb(x′|o, s, a)p(o|x′)p(s|x′, o)p(x′|a, x[y])]

(19)
Next, action â can be selected out of the action set A to

maximize information gain as follows:

â =
argmax
a∈A

{α(Hp(x) − Eo,s[Hb(x′|o, s, a)]} (20)

The expected entropy Eo,s[Hb(x′|o, s, a)] can be deter-
mined by calculating objects and their spatial contexts in the
given contextual map.

In general, the information gain approach may require
substantial time, to the point that it becomes impractical.
Our proposed method uses measurements of objects and their
spatial contexts. The number of potential cameras obtained at
a specific location is 3N ×8N ×6N , where N is the number of
objects and 3N , 8N , and 6N are spatial contexts of qualitative
distance, bearing, and relationships, respectively.

IV. EXPERIMENTAL RESULTS

To evaluate our proposed method, a Pioneer 3 AT robot
carrying a single consumer-grade camera (Logitech QuickCam
Pro 4000) was driven around a 14m × 26.5m indoor envi-
ronment. The camera observed 16 objects (trained landmarks)
during its travel. Distinctive objects such as doorplates, fire-
plugs, bulletin boards, panel boards, etc. were used for object
recognition.

To derive a fragment of the spatial context, a single camera
was used to estimate the distance from the robot to an observed
object. After the object was recognized, its height in the image
space was measured using a set of corresponding features,
and then a metric distance was estimated using visual pattern
recognition software (ViPR) [17].

��
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�

Door
plate A

Node

Fireplug

Door
plate B

Fig. 4. Landmark (object) based map produced as a result of exploring the
indoor environment.

Fig. 4 illustrates the indoor space, with objects and nodes
marked on a ground-truth map. The green circles indicate the
nodes in the contextual map, and the yellow and blue square
boxes represent doorplates of Type A and Type B, respectively.
It was difficult in this experiment to ensure recognition of doors
using a scale invariant feature transform (SIFT), so we used
the doorframe and the nearby doorplate for training. Type A
doorplates were positioned to the right of the doorframe, and
Type B doorplates were positioned to the left of the doorframe.
In this map, Type A doorplates are identified in 6 nodes.

Fig. 5 shows the probabilistic distribution that denotes the
robot location reflecting an object (Type A doorplate) and
spatial contexts. As shown in Figs. 3 and 4, our active approach
using information gain means the robot will prefer to turn left.

Fig. 6 depicts the improved accuracy of the location after
the robot recognizes the fireplug in node 1.

V. CONCLUSION

We developed an active-semantic localization method that
solves the problem of general methods requiring substantial
time. To solve this problem, we developed abstracted measure-
ments that consist of qualitative metrics. To this end, we devel-
oped a contextual representation and used the Bayesian model
for robot localization by incorporating spatial contexts among
objects, which were described using symbols. Then, we applied
the greedy technique based on Monte Carlo methodology to
the robot’s action selection. We tested the proposed method
using experiments conducted in a real indoor environment.
Our analysis of action based on measurement revealed that this
method enables localization that is more efficient than that of
other methods.
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Fig. 5. Belief distribution when Type A doorplates are observed.
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Fig. 6. Belief distribution when the fireplug is observed after turning.
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