
An XML Based System of Systems
Agent-in-the-Loop Simulation Framework using

Discrete Event Simulation
Matthew Hosking

Department of Computer Engineering
Rochester Institute of Technology

Rochester, NY, USA

Dr. Ferat Sahin
Department of Electrical Engineering

Rochester Institute of Technology
Rochester, NY, USA

Abstract—This paper extends an XML based system of systems
simulation framework using DEVS to support hardware-in-the-
loop simulations for SoS. A system of systems approach enables
the simulation and analysis of multiple complex, independent,
and cooperative systems by concentrating on the data transferred
among systems. This paper wraps information exchanged among
heterogeneous systems in XML to enable receiving systems to
correctly parse and interpret the information. A Groundscout
robot is deployed as a real agent working cooperatively with
virtual agents in a robotic swarm. The DEVS activity concept
facilitates communication between the real system and virtual
systems in the SoS. A robust threat detection example is provided.
Initial performance metrics of the SoS are briefly discussed.

Index Terms—Discrete Event Simulation, DEVS, XML, System
of Systems, Swarm Behavior, Groundscout robots, Hardware-in-
the-loop simulation

I. INTRODUCTION

The concept of Systems of Systems (SoS) is essential
to more effectively implement and analyze large, complex,
independent, and heterogeneous systems [1], [2]. SoS are
comprised of systems which themselves are independent and
complex systems that interact among each other to achieve
a common goal [1]. For example, a Boeing 747 airplane is
a system of an SoS, but an airport is an SoS. The SoS
concept is still in the developing stages and several formal
definitions are available [3], [4]. For this work we considered
the following definition: SoS are large-scale concurrent and
distributed systems that are comprised of complex systems.
This is an Information Systems view as it emphasizes the
interoperability and integration properties of an SoS [1].

Considering a military operations example, it is obvious
that many different ground, air, sea, and space units contribute
data to the SoS. Information may be simple sensor data or
it may be complex data from an aircraft carrier. Various
command centers attempt to aggregate data and inform their
subsystems to accomplish the goals of the military. Each of
the systems could be developed at different times and with
different hardware/software. This can create a barrier to data
aggregation and meeting goals of the SoS if the systems
cannot interact and communicate. One solution to achieve
interoperability is to standardize the communication medium
among the systems. Two methods are presented in [2]:

• Create a software model which each component in the
SoS talks to the module embedded in itself

• Describe the data in a common language which each
component in the SoS can understand

There is the potential for large overhead in generating software
models. Each new member of the SoS would require the re-
generation of software models and this approach also assumes,
incorrectly, that the complete state-space model is available or
practical to describe. In light of the difficulties of software
models, this work promotes the use of XML to standardize
the communication among the systems in the SoS. A data-
driven approach avoids the risk of potentially large overhead
and more readily supports legacy components which may not
have a model readily available [5]. The data exchanged among
the members of the SoS is also captured and processed later to
determine the degree of success to which the SoS completes
its goal.

The Levels of Conceptual Interoperability Model (LCIM)
[6] distinguishes varying degrees of interoperability from tech-
nical levels to a conceptual level enabling automated re-use
of simulations over a network. XML is also recommended
for data exchange as part of an open standard supporting
conceptual interoperability in [7]. In a multi-agent system the
agents operate autonomously but it is very important they
cooperate with other agents to take better actions for the overall
goal of the SoS. Interoperability in this example requires each
system to exchange data according to an XML standard which
is commonly understood in the SoS.

The integration property implies that systems can commu-
nicate and interact with the SoS regardless of their hardware
and software characteristics, operating systems, and internal
data format. As systems enter and leave the SoS their data
will be made available and aggregated with existing systems’
data.

In [1], an SoS simulation framework based on the Exten-
sible Markup Language (XML) is developed in order to wrap
data originating from different subsystems in a common way
to address the interoperability and integration requirements of
an SoS.

References [8] and [9] employ the basic framework in a

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3393

conventional simulation of swarm agents. The new framework
bridges simulation and implementation through the use of a
system of systems approach to hardware-in-the-loop simulation
using discrete events [10]. This paper provides further insight
into the framework and presents initial results on a semi-
automated method of measuring the performance of swarm
behavior.

II. XML SOS AIL SIMULATION FRAMEWORK

The desire to have a seamless migration from initial devel-
opment simulations to deployed systems in the field is referred
to as ‘model continuity’. A four step process for general model
continuity is found in [11]: conventional simulation, real-time
simulation, HIL simulation, real implementation and execution.
The HIL simulation step allows part of the final system to be
implemented and debugged before more resources are directed
towards a flawed product. In [12] a rig is built to perform
HIL testing of aerial vehicles’ sensors and flight algorithms
without the need to fly the UAV. A simulation based virtual
environment to study cooperative robotics is discussed in [13]
and [14] specifically presents “robot-in-the-loop” simulations.
An integrated test bed for robots utilizing an overhead camera
system for monitoring the system is presented in [15].

A. DEVS

The interactions between the independent systems within
an SoS are asynchronous in nature and can be effectively
represented as discrete event models [1]. Discrete Event Sys-
tem Specification (DEVS) [16] is a formalism which provides
a means of specifying the components in a discrete event
simulation.

As stated formally using set theory nota-
tion, an atomic model in DEVS is a struc-
ture M = 〈X,S, Y, δint, δext, δcon, λ, ta〉 [16] where

X: is the set of input values

S: is a set of states

Y : is the set of output values

δint : S → S is the internal transition function

δext : Q × Xb → S is the external transition function,

δext : Q × Xb → S

where Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is total state set

and e is the time elapsed since last transition

Xb denotes the collection of bags over X

(bags are sets in which some elements may occur more than once)

δcon : Q × Xb → S is the confluent transition function

λ : S → Y b is the output function

ta : S → R+
0,∞is the time advance function

Basic models, called atomic models, can be connected
together to form larger, more complex models called coupled
models. A SoS hierarchy of systems is easily organized and
simulated in this context. Couplings among atomic models are
the connections which specify the relationships between one
DEVS model’s output port and another model’s input port. An

output value from one model is transferred in a message
object to be received as an input value for a second model if
a coupling exists between them. DEVS coupling is a closed
operation as each coupled model can be represented as an
atomic model [16]; thus, the system-subsystem hierarchical or-
ganizational view in a system of systems approach is intuitively
supported by the DEVS formalism.

DEVSJAVA [17] is used as the simulator for the DEVS
models. This Java implementation of the DEVS formalism
supports different types of simulations in the model continuity
process; a real time centralized simulator is chosen to execute
the virtual systems in this work.

B. Virtual Environment

The environment contains a virtual representation of objects
in the system: active systems and passive obstacles in the
simulation. To facilitate the virtual agents’ interaction and
cooperation with real agent, the real agent has a corresponding
virtual representation in the environment. If this virtual model
is kept up to date with the information received from the real
agent in the loop, the two worlds’ current state will remain
synchronized.

C. Interface with Real World

In previous work, the robots used in the simulation locally
execute a lightweight version of the DEVSJAVA simulator and
interact with the virtual robots via the distributed real-time
simulator framework in the software [18].

The Groundscout robot’s 8051 based microprocessor cannot
locally execute a DEVSJAVA simulator. The communication
with the DEVSJAVA simulation is enabled by DEVS activities.
The synchronization of the current state between the two
worlds is provided by the representation of the real robot
within the virtual environment. The communication and control
layers work together to achieve the synchronization of the real
robot with the virtual systems.

The control layer in a real robot’s virtual representation
is a synchronization model used to interface with the virtual
environment model as is shown in Fig. 1. A simulated robot’s
control layer contains the algorithm or behavioral control to
define its actions in the SoS as well as the abstract activity used
to interface with the environment. The similar design between
a real and virtual agent reflects model continuity principles
and allows the real robot to be hidden from view of the other
virtual systems.

The communication layer’s activity listens for updates to
the incoming serial packet queue using the Java Observer-
Observable API. The activity is an Observer to the
Observable serial port packet buffer. The activity extracts
the XML messages from the packets and makes them available
to the communication layer via the DEVS external transition
function. The data packets arrive as well-formed packets of
bytes containing header information and a data envelope with
XML encapsulated data. The communication layer forwards
the message to the control layer and/or broadcasts the message
to other virtual systems. The control synchronization layer then

3394

gsCommLayer

gsCommActivity

gsCtrlLayer –
Synchronization

gsCtrlAbsActivity

simOutsimIn

gsRobot

Virtual
Environment

R
S

23
2

B
u

ff
er

Fig. 1. Communication and Synchronization of Robot Model

makes a request to the virtual environment when a new location
or sensor data from the real robot is contained in the message.
The response from the virtual environment is given to the
control layer and it then broadcasts the feedback to the virtual
systems via the communication layer’s output port. Thus, the
real robot is transparent and requires no special handling on
the part of the virtual systems.

The Groundscout robot tethers to the computer using an
RS232 serial connection, but the methodology of connecting
and synchronizing a real system with the virtual world is easily
applicable to any communication medium from TCP/IP to
custom systems.

D. XML Messages

The XML architecture shown in Fig. 2 arises from the
necessity to fit data within the storage available in the commu-
nication layer of the Groundscout. The IDs of the system and
the sensors are single bytes but these are transformed into more
user readable String types in Java by the communication
layer’s activity. This simple transformation between two
ways of representing the data demonstrates XML’s flexibility
using XLST to help understand the meaning of the XML tags.

Within the simulator, XML string messages are wrapped
as XmlStrEntity objects to inherit the properties of an
entity to be sent as messages between different com-
ponents. This class also provides basic parsing and encoding
methods for the simple XML architecture in use.

III. MODELING

Each component in the SoS is described as a DEVS model.
In general, an atomic model in DEVS would correspond to
a single system in the SoS, and coupled models are created
to show the hierarchical relationship among the systems and
their paths of communication. The designer, however, can be
as detailed as desired in describing the model of a single
system. Each robot in the system is created as a coupled
model to reflect the actual hardware. This provides a more

<!–Created 12/01/2008 Author @ Matt Hosking–>
<q>

<y>
<i>ID of the system</i>
<s>

<i>ID of the first sensor</i>
<d>sensor data</d>

</s>
<s>

<i>ID of the second sensor</i>
<d>sensor data</d>

</s>
</y>
<y>

<i>ID of the 2nd system</i>
<s>

<i>ID of the sensor</i>
<d>sensor data</d>

</s>
</y>

</q>

Fig. 2. An XML based SoS architecture implementation

thorough verification of the agent and follows model continuity
principles.

A. Command Center

The command center serves as an interface between the
multiple stationary sensors and the robot team. In this example,
the command center searches for the presence of a threat in
the incoming data from each sensor. When a threat is detected,
the command center broadcasts a target location to mobilize
the robotic swarm. If the command center is tracking a threat
which is no longer detected by any radar station, the robotic
swarm is also notified.

Fig. 3 shows the serialPortThread contained in the
command center. This is the thread responsible for handling
operating system level calls to the serial port on the workstation
containing the virtual systems. Incoming and outgoing packets
are each stored in a buffer which is observed by the virtual
model’s communication activity. The flow of data operates
independently of the command center control and does not
feed into the command center but only serves as an intuitive
place to locate this part of the framework.

basicBaseStation
cmdOutsensorsIn

txBuffer :: ArrayBlockingQueue

serialPortThread

rxBuffer :: ArrayBlockingQueue

Fig. 3. DEVS model of command center

3395

B. Radar Stations (Sensors)

Each radar station can detect a threat within its range. When
a threat is detected, or when a threat leaves its sensor area,
this is communicated to the command center. The exact threat
location cannot be determined by the sensor itself, so only the
location of the sensor is sent to the command center.

C. Mobile Threat

A threat is any undesirable agent: a chemical spill in a
factory, a fire in a national forest, or in this example, an
enemy tank within a friendly zone. The threat moves around
randomly and is never disabled. This enables a more thorough
investigation of the swarm operating over time.

D. Mobile Swarm Agent (Groundscout)

Mobile swarm agents receive target coordinates from the
command center and navigate autonomously to the destination.
They communicate and cooperate with one another to more
efficiently use their resources. When no threat is present in
the area, the swarm agents return to their home positions.

The Groundscout robot has separate control and communi-
cation layers [19] which are modeled in the communication and
control layers. In this way the modeling reflects the architecture
of the robots closer than our previous modeling efforts [9].

1) Communication Layer: The communication layer is
responsible for sending and receiving the XML data to the
other systems. There is an inport, rxSimMsg, and an outport,
txSimMsg to facilitate this external communication as shown
in Fig. 4. The communication layer also must connect to
the control layer in order to forward data to it and transmit
any requested information to other systems. ctrlLayIn and
ctrlLayOut provide this path.

To facilitate communication with the real Groundscout
robot, the DEVS model includes gsCommActivity. This
activity runs as a Java Thread and has access to the serial
port’s transmit and receive buffers for data packets. The activity
retrieves packets from the receive buffer if it belongs to the
model and places outbound data packets in the transmit buffer.

gsCom m Layer

txM sg

toCtrlLayer

rxM sg

from CtrlLayer

outputFrom Activity

gsCom m Activity

*txBuffer::ArrayBlockingQueue

*rxBuffer::ArrayBlockingQueue

Fig. 4. DEVS model of gsCommLayer

2) Control Layer: Behavior of the swarm agent is de-
termined by the algorithm used in the control layer of
the model. The control layer uses the communication layer
to send and receive packets from other systems and uses
gsCtrlAbsActivity as an interface to the virtual envi-
ronment. Distance sensor readings and position updates are

sent from the environment when the activity requests a move
to be completed. Fig. 5 shows the general DEVS model for
the control layer of the coupled robot model.

gsCtrlLayer
toCom m Layer

from Com m Layer

outputFrom Activity

gsCtrlAbsActivity

Fig. 5. DEVS model of gsCtrlLayer

The control layer implements basic swarm behavior if it is
part of a virtual agent model, but implements synchronization
logic if it is part of the model representing the real Ground-
scout. This keeps the state of the robot updated between the
real and virtual worlds. It is also possible for distributed control
of the real robot: some control is deployed on the robot locally
while other, perhaps more advanced algorithms or goals, would
be deployed in the DEVS control layer model along with the
synchronization model.

IV. EVALUATING SWARM BEHAVIOR

In the context of general swarm behavior, it may be difficult
to have a concrete set of metrics by which to analyze the sys-
tem. We distinguish between the performance of an individual
robot and the emergence of swarm behavior by the robot when
cooperating with other systems.

The performance of a robot is closely related to the tech-
nical specifications claimed by the unit. Position, heading,
speed of travel, rate of communication, and accuracy of sensor
readings can be measured very objectively. These factors may
or may not affect the emergence of swarm behavior depending
on the desired goal of the SoS swarm.

Convoy speed, number of adjustments, formation coher-
ence, scalability, and sensitivity are given as performance
metrics for the robot following convoy example in [20]. In the
threat detection example of this paper, there is no predefined
formation to expect or number of adjustments required to
maintain this formation. Additionally, the swarm behavior will
not cease when a goal has been met because the SoS will
continue to evolve and meet other goals. The formal analysis
of such concepts is still a developing area [21], [22].

The use of an overhead camera system to provide global
state data for analysis is not practical for real applications
of swarm robotics and may not even be an option if we are
considering, for example, UAVs or an entire military division.
Other means of analysis, such as tracking and aggregating
interactions and communications from the other systems in
the SoS, must be employed. In perhaps the most subjective
example, human ‘systems’ provide the feedback of whether or
not the desired behavior was exhibited. In additional to this
metric of pass/fail given a certain experimental setup, data
from other systems could be used to verify the agent in the
simulation loop is responding and taking cooperative actions

3396

according to the swarm behavior and for the good of the SoS’
goal of detecting a threat.

The desired swarm behavior of the mobile systems in the
threat detection SoS is to converge on a given target location
and yield to a teammate who is closer to the threat target. The
goal of the robot team is to investigate a threat before it leaves
the sensor network area.

V. ROBUST THREAT DETECTION EXAMPLE

In this example, a network of sensors detects an enemy
threat and report their readings to a central command center
which dispatches a team of mobile agents to investigate the
area. The scenario follows that of [8] and [9]. The helicopters
cooperate using basic swarm behavior and this allows the
helicopter closest to the supposed tank location to take the
lead investigating while the other helicopters in the team hold
their positions a distance from the lead helicopter.

(a) Radar (b) Helicopter (c) Enemy Tank

Fig. 6. Graphics used in simulation

The results of the threat detection simulation are presented
in this section to illustrate the behaviors of the components in
the SoS and the successful communication using XML data
messages. Fig. 6 depicts the graphics used in the simulation
example. A circle surrounding a radar station gives notice of
the range at which it can detect the enemy tank. Seven radar
stations form a sensor network area illustrated by the adjacent
circles in Fig. 7. The radar stations are named left to right
and from top to bottom so that the first station, sr81, is
on the top left, sr84 is in the center of the network, and
sr87 is the lower right station. Fig. 7 also shows three scout
helicopters stationed around the radar network. The darker
green helicopter, gs02, stationed in the bottom left corner
of the plot is deployed as a Groundscout robot in the lab
environment. The other two lighter, yellow helicopters are
virtual systems in the simulation.

The simulation begins in Fig. 7; as the simulation continues
a radar station detects a threat and notifies the command center.
The command center transmits the following XML message to
the scout helicopters:

<y>
<i>bs09</i>
<s>

<i>+</i><d>509,384</d>
</s>

</y>

The scout helicopters receive this message and interpret the
parsed coordinate data as the destination location to investigate.
The swarm agents communicate with one another using XML
messages containing their current locations:

<y>
<i>gs02</i>
<s>

<i>$</i><d>384,384</d>
</s>

</y>

Fig. 8 shows gs02, the Groundscout robot deployed in the
lab, over sr85 with another virtual agent holding in close
proximity.

When the enemy tank is no longer detected and the lead
helicopter has investigated the last reported location of the
threat, all swarm agents return to their initial locations and
wait for an XML message from the base station.

It is observed through the AIL simulation that the Ground-
scout robot does exhibit the desired swarm behavior. The robot
travels towards the threat location and yields to other team
members or emerges as the leader. Motion towards a home
location is executed while the threat is not visible to the sensor
network.

Fig. 7. Initial positions of agents in the SoS [10]

Fig. 8. Scout helicopters intercept enemy tank

The emergent behavior of the robot team achieves a goal
bigger than a single robot can handle through the successful

3397

exchange of information within the example SoS. The goal of
the example SoS is to investigate a threat; it is expected that
as more robots are deployed to the area the more likely the
threat will be investigated. Any robot, real or virtual, arriving
at the threat’s location before it leaves the area is counted as
a success. The success rate increases non-linearly but begins
to saturate as it nears 100% in Fig. 9.

50

60

70

80

90

100

Su
cc

es
sf

ul
 In

ve
st

ig
at

io
n

(P
er

ce
nt

ag
e)

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Su
cc

es
sf

ul
 In

ve
st

ig
at

io
n

(P
er

ce
nt

ag
e)

Size of robot team

Fig. 9. Percentage of successful threat investigations vs. swarm size

VI. CONCLUSION

It is important not only to be able to efficiently model and
simulate systems of systems, but to integrate these simulations
with the systems deployed in the field. It is desirable to main-
tain the same modeling from simulation to implementation and
verify the interoperability of the system within the SoS before
a full scale implementation. An XML based system of systems
agent-in-the-loop simulation framework accomplishes this task
and provides an important step in the model continuity process.
Interoperability is achieved by wrapping the data exchanged
among the systems with commonly understood XML tags.
DEVS activities provide a link between the simulation world
and the physical world. The framework presented in this
paper has been verified through a successful simulation of
a robust threat detection using a Groundscout robot working
cooperatively with virtual swarm agents. The robot team met
the desired system goal of investigating a threat. As the number
of robots in the example SoS increased, so did the success rate.
The collection and analysis of further evidence will facilitate
more concrete methods of analyzing the behavior in the future.

More data will be captured in varying simulation runs and
analyzed for more performance metrics. These may include the
effects of communication loss on swarm performance and the
robustness of the swarm algorithm independent of meeting the
higher goal of the SoS. Additionally, the XML structure will
continue to be developed into a proposed standard for systems
of systems based approaches to analyze and implement large,
complex, and distributed systems.

REFERENCES

[1] F. Sahin, M. Jamshidi, and P. Sridhar, “A discrete event xml based
simulation framework for system of systems architectures,” in Proc.
IEEE International Conference on System of Systems Engineering SoSE
’07, 2007.

[2] F. Sahin, P. Sridhar, B. Horan, V. Raghavan, and M. Jamshidi, “System of
systems approach to threat detection and integration of heterogeneous in-
dependently operable systems,” in Proc. IEEE International Conference
on Systems, Man and Cybernetics, 2007.

[3] M. Jamshidi, Ed., System of Systems - Innovations for the 21st Century.
Wiley & Sons, 2008.

[4] ——, System of Systems Engineering. CRC Press, 2008.
[5] S. Mittal, B. P. Zeigler, J. L. R. Martin, F. Sahin, and M. Jamshidi,

Modeling and Simulation for System of Systems Engineering. Wiley &
Sons, 2009, ch. 5 in System of Systems Engineering - Innovations for
the 21st Century, pp. 101–149.

[6] A. Tolk and J. A. Muguira, “The levels of conceptual
interoperability model (lcim),” in Proc. Fall Simulation
Interoperability Workshop, September 2003. [Online]. Available:
http://www.sei.cmu.edu/isis/pdfs/tolk.pdf

[7] A. Tolk, “Composable mission spaces and m&s repositories - appli-
cability of open standards,” in Spring 2004 Simulation Interoperability
Workshop (SIW), 2004.

[8] C. Parisi, F. Sahin, and M. Jamshidi, “A discrete event xml based system
of systems simulation for robust threat detection and integration,” in
Proc. of IEEE/SMC International Conference on System of Systems
Engineering, June 2008.

[9] M. Hosking and F. Sahin, “An xml based system of systems discrete
event simulation communications framework,” in SCS Spring Simulation
Multiconference, 2009.

[10] ——, “A discrete xml based system of systems hardware-in-the-loop
simulation for robust threat detection,” in IEEE Fourth International
Conference on System of Systems Engineering, 2009.

[11] Y. K. Cho, B. P. Zeigler, and H. S. Sarjoughian, “Design and implemen-
tation of distributed real-time devs/corba,” in Proc. IEEE International
Conference on Systems, Man, and Cybernetics, vol. 5, 7–10 Oct. 2001,
pp. 3081–3086.

[12] V. Narli and P. Y. Oh, “Hardware-in-the-loop test rig to capture aerial
robot and sensor suite performance metrics,” in Proc. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, P. Y. Oh, Ed.,
2006, pp. 3521–3526.

[13] X. Hu and B. Zeigler, “A simulation-based virtual environment to study
cooperative robotic systems,” Integrated Computer-Aided Engineering
(ICAE), vol. 12, no. 4, pp. 353–367, November 2005.

[14] X. Hu, “Applying robot-in-the-loop-simulation to mobile robot systems,”
in Proc. International Conference on Advanced Robotics ICAR ’05, 2005,
pp. 506–513.

[15] H. Azarnoush, B. Horan, P. Sridhar, A. Madni, and M. Jamshidi,
“Towards optimization of a real-world robotic-sensor system of systems,”
in Proc. World Automation Congress WAC ’06, B. Horan, Ed., 2006, pp.
1–8.

[16] B. Zeigler, “Devs today: recent advances in discrete event-based infor-
mation technology,” in Proc. 11th IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer Telecommunications
Systems MASCOTS 2003, 2003, pp. 148–161.

[17] B. Zeigler and H. Sarjoughian, Introduction to DEVS Modeling and
Simulation with JAVA. www.acims.arizona.edu, 2001.

[18] X. Hu and B. Zeigler, “Model continuity in the design of dynamic
distributed real-time systems,” IEEE Transactions on Systems, Man and
Cybernetics, 2005.

[19] F. Sahin, “Groundscouts: Architecture for a modular micro robotic
platform for swarm intelligence and cooperative robotics,” in Proc. IEEE
International Conference on Systems, Man and Cybernetics, 2004.

[20] X. Hu and B. Zeigler, “Measuring cooperative robotic systems using
simulation-based virtual environment,” in Performance Metrics for In-
telligent Systems Workshop, August 2004.

[21] A. F. T. Winfield, C. J. Harper, and J. Nembrini, “Towards dependable
swarms and a new discipline of swarm engineering,” in Simulation of
Adaptive Behaviour, workshop on Swarm Robotics SAB’04, 2005.

[22] A. F. Winfield and J. Nembrini, “Safety in numbers: fault-tolerance in
robot swarms,” Int. Journal Modelling, Identification and Control, vol. 1,
no. 1, 2006.

3398

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

