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Abstract—A common approach to pattern classification prob-
lems is to train a bank of layered perceptrons or other classifiers
by clustering the input training data and training each classifier
with just the data from a specific cluster. There is no provision
in such an approach, however, to assure the component layered
perceptron is well suited to learn the training data cluster it
is assigned. An alternate method of training, herein proposed,
lets a layered perceptron in a classifier bank choose the cluster
of inputs it processes on the basis of the perceptron’s ability
to successfully classify those inputs. During training, data is
therefore processed only by the classifier in the bank that best
classifies the data or, equivalently, to which the data is most
receptive. This allows each classifier to learn a localized subset
of data dictated by the classifier’s own classification ability. Once
each classifier in the bank is trained, a separate independent
cluster pointer is trained to recognize to which cluster an input
test pattern belongs. The cluster pointer is used in the test mode to
identify which classifier in the bank will best classify the problem.
The approach, also applicable to regression type problems, is
illustrated through application on a simulated Gaussian data
set and an active sonar test estimation problem. In both cases,
the maximally receptive classifer/regression bank significantly
outperforms a single layered perceptron trained on the same
data,

Keywords: Index Terms—pattern classification, regression,
clustering, classifier banks, domain expertise, active sonar classi-
fication.

I. INTRODUCTION

Classification requirements of data sets can be too complex
to be handled by a single classifier. A solution is to break the
problem down into smaller pieces to distribute the problem to
a bank of simpler classifiers. This type of general system is
referred to as a multiple classifier system (MCS).

A common approach of a MCS classifier is to first divide
the training data into sets by clustering. Each cluster of data is
then used to train a classifier in a bank. In the test mode input
data is first subjected to a clustering algorithm to determine
in which cluster the data best resides. The corresponding
component in the classifier bank is then used to perform
the final classification. An alternate approach is to allow the
bank of classifiers to perform self-clustering by letting only
that classifier most receptive to a training pattern adapt. This
maximally receptive classifier is updated using, for example
error backpropagation, while the other classifiers remain un-
changed. After repeated presentation of the training data, the

process ideally converges and each training pattern is assigned
to the classifier that produces minimum classification error.
The training data assigned to the nth classifier thus belongs to
the nth cluster. It remains to train a cluster pointer classifier
on this data. Specifically, if an element to the nth cluster is
input to the cluster pointer, the cluster pointer will indicate in
some way, at its output, a pointer to the nth classifier.

II. FOUNDATIONS

Much research is focused on cases where there is specific
a priori information about the data leading directly to use in
multiple classifiers. One example is where the distribution is
known to be multi-modal. Consider, for example, a two class
classification problem where data from both classes is concen-
trated in two far removed disjoint regions in the classification
space. The overall classification problem is improved greatly
by identifying to which of the two cluster data belongs and
using two classifiers -one for each cluster. Another case for
the use of a classifier bank occurs when different feature sets
can be extracted from the raw data or when the feature scan
be processed in different ways to generate pseudo-features [1],
[2].

There is much interest in work on combining classifiers [3],
[4]. This work, however, solves the problem of combining the
outputs of multiple classifiers and assumes that disjoint set
of trained classifiers is available. No concern is given to the
coordinated training of the component classifiers.

A full MCS is one where a data set (with a single set of
features) is fed to multiple classifiers and the output so the
classifiers are somehow combined to produce a single output
vector. The key elements to a MCS lie in how the subsets
are chosen, in how the classifiers are trained, and is how the
outputs are combined. The simplest solution is to pass the
entire data set to randomly initialized classifier and to combine
the outputs by am majority vote [5], [6]. This solution, though,
does not present a clear advantage to a single classifier since
each classifier is attempting to learn the entire space of data
and therefore may reach approximately the same solution.

Another solution is to cluster the the data before classifica-
tion and then pass each cluster of data to a different classifier
[7], [8], [9], [10], [11], [12], [13]. The clustering can be done
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using one of many well known clustering algorithms such
as k- means clustering, ART, or a Kohonen self organizing

map (SOM) [15]. This approach can be effective if the data
successfully clusters and if the clusters give a less complex
input-output mapping as a result of this clustering. There
is no provision made, however, for assuring the component
classifiers are well suited to handle the cluster assigned to it.

A modular neural network, or a mixture of experts (MoE)
[14], [16], [17], uses single layer perceptrons as experts to
classify data and a gating net work to combine the results
of the experts. The gating network is also a single layer
perceptron [18] (note that both the expert and gating networks
are linear: there is only a single node in the hidden layer and
there is no activation function.) This MCS uses an aposteriori

probability function that is back propagated through both the
experts (component classifiers) and the gating network (cluster
pointer). By adjusting the weights of both the experts and the
gating network simultaneously, the MoE allows the clusters
to adapt. The experts are linear and the region learned by
each expert is largely determined by the initialization of the
gating networks. It is possible to build a more complex MoE
system by hierarchically arranging several MoE’s in a tree-
like structure. Since the gating networks separate the data
linearly, however, the spawning of branches from the tree
does not guarantee better classification. That is, if a high
order declassifier is needed, linearly separating the input space
into several branches (partitions) may not lead to linear class
separation within the partitions. Without reliable stopping
criteria, it is possible to spawn too many branches and over
fit certain regions of the input space which have good class
separation, due to other regions which have worse separation.
A high order classifier, on the other hand, is able to use varying
degrees of complexity in different regions of input space.

III. SELF-SELECTIVE MAXIMALLY-RECEPTIVE
CLASSIFIER/REGRESSION BANK

We propose a new method of training which allows multiple
classifiers to learn desired targets of disjoint subset of data
without imposition of clustering heuristics. This is done by
training each classifier in a classifier bank on only the training
data it classifies most accurately, i.e. on the data to which
the classifier is most receptive. In general, any classifier
can be used. We investigate specifically use of the feed -
forward multi-layered perceptron neural network (NN ) [18].
Before training, each NN in the classifier bank will have
its own unique error surface, assuming the weights of each
are randomly initialized. If each NN is trained on the entire
data set the results of each after training should be roughly
equivalent since the objective of error backpropagation is to
minimize the overall error. Although each NN may in fact
approach different local minima, the overall combination will
not be significantly better than a single NN [5]. On the other
hand, by training each NN on only the data it best classifies,
each NN will become an expert at classifying a specific subset
of data. Instead of attempting to reduce error throughout the
entire space, the error is reduced in its self-assigned cluster

locally rather than globally. The resulting maximally-receptive
classifier/regression bank will be referred to as the MaRC bank.

A. Algorithm Description

Let the training set contain N patterns and be defined
by inputs, X = [X1, X2, · · · , XN ], Xi ∈ RnF , and by
targets (desired outputs), T = [T1, T2, · · · , TN ], Ti ∈ RnO

where nF is the number of features and nO is the number
of outputs. The data will be classified by M NN ’s labeled
NN1, NN2, · · ·NNM . The output of the jth NN for the ith
pattern, Xi, is Yij . Define a cluster pointer, πj , associated with
NNj ,whose output for the ith pattern, Xi, is γij , and whose
target (which is based on the error of NNj) is τij . The purpose
of the cluster pointer is to identify the regions of input space
for which each NN has minimum error. Implementation of
the MaRC bank consists of the following 3 steps.

1) Training the NNs. To train the NNs using on-line
training [18], feedforward a single training pattern, Xi,
to each of the NNs. Find the mean square error (mse)
of each NN , Eij ,

Eij = ||Yij − Tij ||2.
where i = 1, 2, · · · , N and j = 1, 2, · · · , M . Only back-
propagate the NN for which Eij is minimum and do not
backpropagate another NN . This forces each pattern to
be learned by only the classifier which classifies it best.
One epoch is complete when this procedure is repeated
for all patterns in the training set. The training can also
be batch-mode [18].

2) Training the Cluster Pointers. The cluster pointers (re-
ferred to as π networks), which are also classifiers (in
this case, feedforward multilayer perceptrons [18]), are
trained to learn some function of the NN error. A simple
value for the cluster pointer to learn is an indicator
function. For each input Xi set the desired output τij

of the jth cluster pointer as follows

τik =
{

1 , if the kth mse is smallest
0 , otherwise (1)

The actual output of the jth cluster pointer is γij and the
mse of the network is εij = ||γij − τij ||2. To train the
cluster pointers, simply backpropagate this error. Once
the cluster pointers are trained, they will indicate which
NN classifies a given pattern best

3) Testing. The last stage in classification is to present the
system with new data. In this stage we assume that the
desired output is not known. To determine the output, y,
of a given test pattern, x, pass it through all the cluster
pointers and find the maximum γ. Then the output y will
be the output of the NN corresponding to maximum γ

y = Yk; if the kth mse is smallest. (2)

B. Visualization

The objective of the MaRC bank is to reduce the over- all
error surface by focusing each individual classifier on specific
areas of input space. In training the NNs, this objective is
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easy to meet since the errors are known, and each pattern is, by
definition, classified by the most receptive classifier. However,
the true test of how well the MaRC bank is working is the
degree to which the cluster pointers learn this error surface.
That is, the π networks must be able to recognize, for a given
input pattern, the NN for which the error is minimum. In
order to gauge how well the π networks are doing, the clusters
chosen by the cluster pointers should be compared to the ideal
separating surface, if available. The ideal separating surface
is only available, of course, if the distribution of the data is
known a priori.

For the special case where the input space is two- dimen-
sional (i.e., nF = 2) and the ideal classifier is known, it is
relatively straightforward to visualize the separating surface
traced by the ideal classifier and compare it to the π networks.
The tracings of course need not overlap exactly, as long as the
cluster pointers are choosing a reasonable NN . For example,
if an input pattern falls between two NNs at a point where
the error surfaces intersect, both NNs will classify the pattern
equally well. The main objective is that one of these two NNs
is chosen by the cluster pointers.

In order to visualize the performance of the MaRC bank
we can use a two dimensional Kohonen SOM. This is done
using the training set to create a SOM and then mapping the
MaRC bank onto it. An n × m SOM in two dimensions has
n×m neurons, each representing the mean of some subset of
the original training data. Each pattern in the training set is
associated with a particular neuron. The SOM is constructed
in such a way that neurons which are close in the SOM
contain patterns which are close in the original space. Also,
patterns within an individual neuron are close in a Euclidean
distance sense. If a large enough SOM is created, every neuron
in the SOM can be associated with a particular classifier if
the patterns that belong to the neuron are all chosen by one
classifier. A SOM with many neurons clusters the data to some
degree, but its main function in this application is to reduce the
dimensionality of the space in order to facilitate visualization.
The region chosen by each classifier can be traced on the SOM
and the cluster pointer outputs can be traced onto the SOM and
compared with the regions chosen by the classifiers.

IV. RESULTS

The MaRC bank has been tested on two classification prob-
lems. The first uses simulated Gaussian data. Seven Gaussian
clouds clouds in 2 dimensional space are generated. The
data describes 2 classes with fairly high overlap between the
classes. This data set is used since the ideal classifier (a
maximum likelihood classifier) is known and, as such, can
be compared to the MaRC bank results. The MaRC bank
is then used to classify a complex, high dimensional sonar
approximation problem, giving excellent results.

A. Gaussian Problem

This data set contains 1600 patterns, with 2 features and 2
outputs, divided randomly into 800 training patterns and 800
test patterns. Class a is comprised of 4 Gaussian clouds (each

TABLE I
MEANS, VARIANCES (VAR), NORMALIZED (NORM) MEAN AND NUMBER OF

PATTERNS FOR EACH GAUSSIAN CLOUD, C

C mean norm mean var Count
a 1 0.3 0.4 0.31 0.26 0.3 0.4 200
a 2 0.3 0.3 0.60 -0.46 0.3 0.3 200
a 3 0.5 0.2 0.05 -0.08 0.5 0.2 200
a 4 0.4 0.2 0.30 -0.59 0.3 0.1 200
b 1 0.3 0.1 0.35 -0.59 0.3 0.1 200
b 2 0.3 0.1 0.33 -0.29 0.3 0.1 400
b 3 0.4 0.2 -0.32 0.06 0.4 0.2 200

with 200 patterns) with relatively large variance, while class
b is comprised of 3 Gaussian clouds with smaller variance
(one of the clouds has 400 patterns, the other two have 200
each). Table I shows the means and variances of the clouds
(the features were uncorrelated). Note that the second column
represent the mean given to the random number generator,
while the actual normalized mean is given in column 3.
Figure 1a shows a scatter plot of the training points. The
original data is normalized to the region [-1, 1] in both
dimensions for training purposes, and the plots reflect this
normalization. The table gives the original means and variances
used to generate the data, along with the actual normalized
means. The data was purposely constructed to have fairly
severe overlap between the two classes. Since the clouds are
Gaussian and have different shapes (i.e. different covariance
matrices), the ideal maximum likelihood classifier separates
each cluster from every other cluster by a quadratic curve.
These quadratic curves can be calculated since the density
functions of the clouds are known a priori. These quadratic
separating surfaces can then be combined to form an overall
class separation surface. Thus, the ideal classifier can be found.
This ideal classifier can be traced and compared to the surfaces
produced by a single NN and by the MaRC bank.

This type of problem suits a MCS well. If 3 NNs are used,
each needs at least 2 hidden nodes (equivalent to a quadratic
discriminant) to trace the clouds. Therefore, the MoE, with 3
experts, does not give optimal results (note that a tree structure
may improve the MoE’s results). The MoE does separate
clouds, but is unable to isolate the clouds due to lack of
complexity. The MaRC bank, on the other hand, can easily
adapt to handle more complex problems by simply increasing
the number of nodes in either the NNs or the π networks.
For this problem, the MaRC bank was implemented in two
ways. The NNs were fixed to have 1 hidden node while the π
networks were set to have 2 hidden nodes in the first case and
3 hidden nodes in the second. A single NN was also trained
on this Gaussian data. The architecture of the single NN was
chosen after experimenting with several different NNs. The
best performance was obtained using two hidden layers, each
with 3 hidden nodes. More complex NNs tend to overfit this
data set, while simpler NNs give inferior error rates. Table II
compares the error rates between the single NN , the MoE,
the MaRC bank with 2 hidden nodes, and the MaRC bank
with 3 hidden nodes. The results of the single NN are almost
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Fig. 1. a) A scatter plot of the Gaussian Data, normalized in both dimensions t o the range [-1,1]. The two classes are represented by the letters ‘a’ and ‘b’;
b) The training results with the π network trace (dotted line) sumperimposed on the ideal separating surface (solid line); c) The test results for the MaRC bank,
lowercase letters ‘a’ and ‘b’ indicate correct classifications, while uppercase letters ‘A’ and ‘B’ indicate misclassifications; d) The test results for a single NN ,
dotted line is NN ’s separating surface.

as good as the MaRC bank, but are slightly worse. Note that
the complexity of the single NN is very similar to the MaRC
bank with 3 hidden nodes. Another interesting observation is
that the MaRC bank is typically able to converge to its results
within 1000 epochs, while the single NN took on the order of
30,000 epochs to converge. A visual interpretation of the error
rates of the MaRC bank with 3 hidden nodes can be found
in Figure 1b and 1c. Figure 1b shows the mapping of the π
networks. When correctly classified, the two classes are noted
by the letters ‘a’ and ‘b’, while incorrect classifications are
noted by the capital letters, ‘A’ and ‘B’. The dotted lines in
the plot represent the ideal separating surface, generated from
the means and variances of the clusters. The solid lines is the
trace of the cluster pointers. The cluster pointer selects NN1

for data in the upper left corer. NN2 is selected for data in the
middle left section, for feature 1 less than 0, feature 2 between
approximately -0.1 and 0.5. The circle around cluster b2 also
indicates a region for which NN2 is chosen by the cluster
pointers. The cluster pointers choose NN3 for the remaining
space (containing mostly patterns from class a).

TABLE II
ERROR RATES FOR THE GAUSSIAN PROBLEM.

Classifier Training Testing
Single NN 14.12% 15.25%

MoE 18.30% 22.25%
MaRC bank (2 nodes) 19.75% 21.00%
MaRC bank (3 nodes) 13.75% 15.00%

Figure 1c shows the test results, using the π networks to
trace the space again. Compare these test results with that
of the single NN , in Figure 1d. Note that the separating
surface of the single NN is unable to trace the ideal separating
surface as closely as the MaRC bank. This results in some
misclassification in the region (0.1, 0.3), where several pat-
terns from class a are misclassified. The MaRC bank, on the
other hand is able to correctly classify these patterns.
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B. Sonar Data

The goal of the sonar approximation problem is to generate
a map of the signal to interference ratios (SIRs) for an
active sonar on a grid of hypothesized target locations. A
data set was generated using a standard underwater acoustic
modeling tool based on a ray tracing approximation [19].
For a given hypothesized target location, the signal level
is calculated from the dominant rays connecting the target
and sonar locations. The interference level is the sum of
ambient noise and reverberation (backscatter from interfaces
and volume inhomogeneities) levels at the time of the sonar
return corresponding to the two-way travel time of the rays
used for the signal level calculation.

A single SIR ‘map’ represents a vertical slice of the ocean,
and consists of 13 pixels in depth and 30 pixels in range,
with each pixel representing the SIR for a hypothesized target
location. A total of 4000 SIR maps were generated by ran-
domly varying five input parameters (sonar and environment
descriptors). Half of these maps were used for training, and
the other half were used for testing.

Figure 2 shows a typical pixel map. The 30 range pixels
represent approximately 6 km, while the 13 depth pixels rep-
resent 200 m. A surface ship located at the top left of the pixel
map deploys an active monostatic sonar at a specified depth,
transmits an acoustic pulse, and processes the resulting signal
received on its hydrophones. The SIR map is used to identify
regions in range and depth where potential targets may or may
not be detected. In general, high SIR corresponds to higher
probability of detection, while low SIR corresponds to lower
probability of detection. The nature of acoustic propagation in
the ocean leads to non-uniform coverage in range and depth.
The objective of the neural net approximation is to accurately
and quickly predict regions of good/poor detection capability.

The biggest challenge with this data set is the high dimen-
sionality (390) of the output space coupled with sparse training
data. Also, the complexity of acoustic propagation in the ocean
can cause one or more ‘hot spots’ to appear in the pixel map.
These hot spots are areas of high SIR which appear in isolated
regions of the ocean. The problem is that hot spots are not well
represented in the data. A hot spot may appear at a certain
region for a given set of inputs, but a slight change in one
of the input parameters may cause the hot spot to move to
a completely different region, or to disappear altogether. As
a result, the training set may not contain a smooth input to
output mapping, and thus hot spots tend to become blurred (or
completely ignored) when a single NN is trained on the data.
Aside from the problem of hot spots, a single neural network
is unable to learn the space without memorizing the training
patterns just because of the complexity of acoustic propagation.

Referring to the sample SIR map in Figure 2, several
features can be identified. The areas of high SIR (hot spots) are
in the bottom left (the location of the sonar) and in 3 diagonal
stripes, all beginning near the ocean surface at ranges 5, 14,
and 21. Also, there is a ‘shadow zone’ (area with low SIR)
located in the top right. The well trained classifier should pick
out the 3 diagonal hot spots as well as the shadow zone.

Fig. 2. Pixel map of a single SIR output. See text for detailed description.

The MaRC bank was constructed with five NNs, each with
three hidden layers. The number of nodes in each NN is1

[5 − 12 − 12 − 30 − 390].The π networks each have one
hidden layer with 20 nodes. Visualization of the clusters in
390-space is only possible by looking at individual pixel maps.
However, by mapping the outputs onto a SOM we can trace
the clusters formed by the NNs. This allows us to see whether
the clusters contain patterns which are close to one another in
Kohonen space. Also, by mapping the cluster pointers onto the
same SOM, we can evaluate how well the cluster pointers are
learning the errors of the NNs. Figure 3 shows the results of
mapping the sonar output onto a 10× 10 SOM. Each color in
both a) and b) can be mapped to a cluster. Figure 3a shows
the division of the training data as chosen by the NNs. This
represents the target for the cluster pointers. Figure 3b shows
the actual trace of the cluster pointers. Note that the cluster
pointers choose the correct NN for all but 10 of the neurons.
And that the missed neurons occur mostly in transition regions.

The MaRC bank was directly compared to both a single
NN and to another MCS, which clustered the data with an
ART neural network [15] and then classified each cluster with
a NN (referred to herein as the pre-clustering technique). The
architecture of the single NN was chosen by trying several
different NNs and choosing the best, a [5-12-12-30] NN .
Smaller NNs completely miss certain patterns, while bigger
NNs memorize the training data and do not outperform the
[5-12-12-30] network. The NNs in the pre-clustering tech-
nique are of the same complexity [12-12-30] as the NNs in
the MaRC bank. The performance of the three classifiers is
compared in two ways. First, the overall mse is found and
compared, and second, the actual SIR maps from individual
patterns are plotted and compared. Both are performance
measure are effectively the same from the classifier’s point of

1Meaning 5 inputs, 12 neurons in the first and second hidden layer and 30
on the next and 390 output nodes.
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Fig. 3. Mapping the MaRC bank onto a SOM. The colours navy blue, sky
blue, green, orange, and brown indicate that the corresponding neuron belongs
to NN1, NN2,NN3,NN4 and NN5, respectively. In a) the color indicates
that the corresponding NN has minimum error (desired network selection). b)
shows the choice of the cluster pointers. Note that the selection of the cluster
pointers match very closely to the NN selection.

TABLE III
MEAN SQUARE ERRORS FOR SONAR DATA

Classifier Training Testing
Single NN 0.0333 0.0402

per-clustering 0.0187 0.0328
MaRC bank 10.0158 0.0293

view, but the high dimensionality of the output causes there to
be a distortion between them. The human eye perceives a good
pixel map that may actually have high mse because of a shift
of one or two ‘very bad’ pixels. As a result, the mse is useful as
an overall performance indicator, but observing the individual
SIR maps manually can be much more informative. Table III
shows the mse results of the three classification techniques for
the same training and testing sets. Notice that the MaRC bank
has lower mse for both training and testing.

Finally, Figure 4 shows the actual pixel maps for eight pat-
terns. The first four patterns belong to a cluster (as chosen
by the MaRC bank) containing patterns with one or two
downward bending rays. The last four patterns belong to a
cluster whose patterns have a downward bending ray followed
by an upward bending ray. Pre-clustering the patterns gives
better results than a single NN , but the hot spots are still not as
crisp as they are in the MaRC bank. Take, for example, the SIR
maps in columns 2, 3, and 4. In each case, there are two distinct
diagonal hot spots shown by the target and in the second and
fourth column there is a horizontal hot spot. The MaRC bank
identifies these hot spots (albeit somewhat less distinctly than
the model), whereas the pre-clustering and single NN both
blur the hot spots together. This slight difference does not give

significantly worse mse’s, but the difference in SIR maps can
be very important to the ship’s captain. The bottom four SIR
maps also show hot spots are more accurately represented by
the MaRC bank. Although the pre-clustering captures the hot
spots fairly well, it still blurs the edges more than the MaRC
bank. data before classifying.

• Learning the error surface. As presented, the cluster
pointers are only identifying the classifier with minimum
error (i.e. the maximally-receptive classifier) for a given
pattern. By training the cluster pointers to learn the actual
error of each classifier, the MaRC bank will be able to
more accurately assign patterns. It will also allow areas
of high error to be identified.

• Aggregating the classifier’s decision. In the generic MaRC
bank, the output of the most receptive classifier is used
as the output of the system. Alternatively, the out- puts
of all the classifiers can be combined through, for ex-
ample, a simple weighted average, or a more sophisticated
technique, such as fuzzy integration [20], [21].

• Invertibility. Another useful feature of the MaRC bank is
that it is a fully invertible system. In fact, if the component
classifiers are invertible, the MaRC bank can be inverted
internally. That is, there is no need to run an external opti-
mization loop to invert the system. An internally invertible
system can be inverted very quickly and efficiently and is
needed for applications which specify a de- sired output
and require a corresponding input. To invert the MaRC
bank, first invert the output through every classifier. Then
feed-forward the input of each classifier to its respective
cluster pointer. Choose the input corresponding to the
maximum cluster pointer output [22].
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