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Abstract—A reinforcement learning (RL) agent that performs 
successfully in a complex and dynamic environment has to 
continuously learn and adapt to perform new tasks. This 
necessitates for them to not only extract control and 
representation knowledge from the tasks learned, but also to 
reuse the extracted knowledge to learn new tasks. This paper 
presents a new method to extract this control and 
representational knowledge. Here we present a policy 
generalization approach that uses the novel concept of policy 
homomorphism to derive these abstractions. The paper further  
extends the policy homomorphism framework to an approximate 
policy. The extension allows policy generalization framework to 
efficiently address more realistic tasks and environments in non-
deterministic domains. The approximate policy homomorphism 
derives an abstract policy for a set of similar tasks (a task type)
from a set of basic policies learned for previously seen task 
instances. The resulting generalized policy is then applied in new 
contexts to address new instances of related tasks. The approach 
also allows to identify similar tasks based on the functional 
characteristics of the corresponding skills and provides a means 
of transferring the learned knowledge to new situations without 
the need for complete knowledge of the state space and the 
system dynamics in the new environment.  

We demonstrate the working of policy abstraction using 
approximate policy homomorphism and illustrate policy reuse to 
learn new tasks in novel situations using a set of grid world 
examples. 

Keywords—Transfer Learning, Policy Homomorphism, 
Reinforcement Learning 

I. INTRODUCTION

A life-long learning agent that performs tasks in the real 
world needs to continuously learn new tasks. In addition, these 
agents need to adapt what they have learned to perform 
successfully in a complex and dynamic environment. While 
traditional RL agents have the capability to learn new tasks, 
they face significant challenges in terms of scaling to complex 
domains because the policies learned by these agents do 
frequently not transfer and therefore the knowledge gained 
from learning to perform a given task in a specific situation 
cannot be used to learn related new tasks in novel scenarios.  
The main reason for this is that the policies learned are usually 
directly tied to the perceptual representation of the environment 
and as a result the policies become useless as soon as the 
environment or the way the perceptual information is 
represented changes. Another issue with traditional RL agents 

is that they often use the raw perceptual information to learn 
policies. These percepts, however, produce a huge amount of 
data and processing and basing decisions upon this perceptual 
information can easily become a computationally intractable 
problem in complex environments. Furthermore, traditional RL 
agents generally make decisions as to what action they need to 
perform at each point in time. However, reasoning about 
actions at this scale and performing them in real time can 
become impossible as the complexity of the tasks these agents 
are learning increases.  

Biological systems face similar issues [8][9], still they learn 
to perform increasingly complex tasks in the real world. They 
do this by successfully learning to only process the relevant 
information for the task at hand while ignoring the irrelevant 
aspects of the environment. Furthermore, they also learn 
throughout their development to build reusable abstractions 
that contain the knowledge gained from learning and 
performing tasks, and to use this knowledge to learn and 
perform new, increasingly complex tasks.  

RL agents need to have similar capabilities that would not 
only allow them to autonomously identify similar tasks, but 
also to extract knowledge from the learned policies of these 
tasks, and to reuse them to learn new tasks. Further, they need 
methods that allow them to make decisions at a higher level of 
abstraction and techniques that can extract information relevant 
for task completion while ignoring the task-irrelevant aspects 
of the environment. 

The work presented in this paper introduces a new approach 
to policy generalization and abstraction of control knowledge 
and their reuse, using the new framework of policy 
homomorphism. Our approach to life-long learning uses the 
policy homomorphism to form abstract skill and 
representational abstractions. To achieve this, the policy 
homomorphism framework uses a set of policies from similar 
tasks to extract a general policy for a corresponding task type,
where a task type is defined by the maximal set of policy 
instances for which a general homomorphic policy can be 
found. The abstracted policy is here defined by two sets of 
functions where the first maps the individual states of each 
homomorphic policy to an abstract state of the general policy, 
thus allowing to identify situations in which the abstracted 
general policy is applicable. The second set of functions maps 
individual actions from each base policy to specific actions of 
the abstract policy, thereby identifying the action that the RL  
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agent needs to perform from each state of the general policy. 
The abstracted general policies are then reused to learn new 
tasks by adding each of them as one of the actions that the RL 
agent can choose to perform. Fig. 1 shows an example of a 
generalized policy derived from a set of two homomorphic 
policies as well as the corresponding state and action mappings.  

In this paper we focus on the formalism of policy 
homomorphism and of policy reuse and extend our previous 
framework [1] of partial policy homomorphism to approximate 
partial policy homomorphism in order for it to be more 
efficient and applicable in non-deterministic environments and 
real world scenarios. The working of the policy 
homomorphism framework to abstract policies and their reuse 
to learn new tasks is demonstrated using examples in non-
deterministic grid worlds.  

II. RELATED WORK

Over the years there has been a significant amount of 
research  related to abstraction in the context of decision 
making and learning. Most of this research can be loosely 
divided into temporal abstraction and spatial abstraction. Sutton 
Precup and Singh [12] developed a temporal abstraction 
method that allows the agent to reason at a higher level of 
abstraction by representing the system as a Semi-Markov 
Decision Problem (SMDP). Here higher level actions, referred 
to as options, take multiple time steps to complete and are 
temporal extensions of lower level actions. Once a higher level 
action is chosen it follows the policy of the option until it 
terminates. Although this work allows for accelerated learning 
and scaling to more complex tasks, it does not in itself provide 
a mechanism to automatically find a useful set of options and 
to reduce the complexity of the state space. To address this and 
to provide a general learning system, hierarchical 
reinforcement learning techniques have been proposed 
[2][3][4][5][7]. These techniques aim at autonomously forming 
skill and representational abstractions. However, although these 
techniques can abstract useful sets of options that can be reused 
to allow faster learning times and to learn complex tasks, the 
extracted options are generally context specific and can thus 
still only be applied to tasks in the same environment.   

Similar to temporal abstraction, the issue of spatial 
abstraction is very important to learn to successfully perform in 
a complex and dynamic environment. Among others, Stone and 
Jong [6] have recently tried to address this issue. They present 
an approach that autonomously aggregates states based on 
policy irrelevance of state attributes. Though their approach 
allows to successfully abstract a task-specific state 
representation, the need for carefully engineered initial state 
variables limits the applicability of their approach to a narrowly 

defined environment. A totally different approach to state space 
abstraction was presented by Ravindran and Barto[10][11]. 
They develop a formal framework based on MDP 
homomorphism that extracts a smaller state space from the 
original one by exploiting its symmetries and redundancies. 
They further extend their method to SMDPs by defining SMDP 
homomorphism which, in addition to state space compression 
provides a framework to identify situations in which policies 
can be transferred. However, their condition requires that the 
abstracted SMDP and the core MDP have the same properties 
and identical transition structure under all possible policies, 
limiting its applicability to perfectly symmetric or identical 
environments. An extension to this approach was proposed by 
Wolf and Barto[14]. In their work they identify object types 
based on MDP homomorphisms. Their approach considers two 
objects to be of the same type in the presence of additional state 
properties if the behaviors of all possible policies in their 
context are homomorphic and achieve the same result in terms 
of the chosen property. The limitation of this approach is that it 
identifies two objects as similar only if all functions of these 
objects are similar and further, due to the requirement of a local 
MDP homomorphism, both these objects have to be in the 
same environment. As a result of this these objects become 
dissimilar if the environment changes. 

To address some of the limitation of these abstraction 
approaches and to allow for the efficient reuse of learned 
control knowledge, this paper presents a framework of 
approximate policy homomorphisms which allows for a more 
effective abstraction of general skills and representations in 
terms of task types. This abstraction framework is further 
integrated into a learning architecture which allows for the 
efficient acquisition, management, and reuse of the abstract 
skills and concepts. 

III. LEARNING ARCHITECTURE

The learning architecture is the core part of the RL agent. 
Fig. 2 shows our RL agent’s learning architecture which the 
agent uses not only to learn skills and representational 
abstractions in the form of a general policy and corresponding 
representational concepts but also to reuse the abstracted 
general policy to learn new tasks. The learning architecture 
shown in Fig. 2 is made up of skills, concepts, learning, and 
policy abstraction components. The agent with this 
architecture starts out by learning basic policies for tasks by 
interpreting the state of the environment and interacting with it 
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using its primitive actions. As a result of performing each 
action, the agent receives reinforcement from the environment. 
This is used by the agent to learn a policy for the task and the 
policy learned for the specific task instance is stored in the 
skills memory. As the number of basic policies learned 
increases, the agent uses the policy abstraction component of 
the learning architecture to extract a general policy from a set 
of policies for similar task.  The policy abstraction component 
uses the policy homomorphism framework to extract reusable 
skills represented as general policies and corresponding 
representational concepts. These reusable skills and concepts 
are stored by the agent in its skills and concepts memory and 
can subsequently be used as higher level actions that the agent 
can choose to perform.  This, in turn, allows the agent reuse 
the extracted control knowledge to learn related tasks in novel 
environments. 

A. Skills and Concepts Memory  
The skills and concepts components serve mainly as 

repositories for the learned skills and concepts. These learned 
skills and concepts are then used by the learning component to 
learn new, more complex tasks and concepts. 

B. Learning Component 
The learning component of the RL agent’s learning 

framework learns policies to perform tasks successfully. At 
each time t the agent perceives the state ts of the environment 
and chooses to perform action ta from the set of admissible 
primitive actions. As a result the environment reaches state 

1+ts and the agent receives a reward tr . The agent uses this 
piece of information to learn a policy that maximizes the 
expected reward using Q learning. Each time a state–action 
pair is visited its value is updated using Q value update 
equation: 

)),aQ(s))a,Q(s((r),aQ(s)',aQ(s ttt
Aa

ttttt −′++=
∈′

max

where 10 ≤≤ α is the learning rate and 10 ≤≤ γ is a constant 
that represents the relative value of delayed versus immediate 
rewards. Policies that choose actions only from the set of 
primitive actions are called basic policies. Once the agent 
learns a basic policy, it stores this policy in the skill memory 
which is in turn used by the policy abstraction component to 
abstract a general policy for a given task type. These 
abstracted general policies are known as the higher level 
actions or options which allow the agent to reuse the 
knowledge gained from previous experiences of a given task 
type to learn policies for related tasks in novel situations. Each 
option is only admissible in specific situations, identified by 
the abstracted state representations of the general policy 
corresponding to the given option. All options may take 
multiple time steps to complete. A lower level action is a 
special option that takes one time step to complete. To learn a 
policy for a new task reusing the knowledge of the past 
experiences available, the agent at time step t  perceives the 
state ts  of the environment and calculates the set of 
admissible options from the current state, and chooses an 
option to . Once an option is chosen the agent continues to 
choose lower level actions based on the general policy 

corresponding to this option to  until the policy terminates or 
the agent reaches a state kts + from where to is no longer 
available. As a result, the environment gives the agent reward 
r . The agent uses this to learn a policy for this new task by 
iteratively updating the values of state-action pairs each time 
they are visited using the SMDP value function update 
equation: 

( ) ( )( )′+= +
∗

∈′
∗

+

tsoosQrEosQ ttktO
Oo

k
ttO

kts
,,|,max, εγ

where k is the number of time steps between initiation of 
option to at state ts and its termination at kts + , and ( )tso tt ,,ε
is the event of option to initiated at time t in state ts .

C. Policy Abstraction Component 
The policy abstraction component of the learning 

framework extracts a general policy for a task type from a set 
of situation specific policies. To do this, the policy abstraction 
unit uses the policy homomorphism framework to 
autonomously identify policies of previously learned instances 
of similar tasks and to construct a general policy from them. 
The abstracted general policy is represented in terms of a 
function sg that encodes the state-action mapping for the 
abstract policy and two sets of functions, )(),( agsh s , that map 
the individual states of the specific policy instances to unique 
states of the abstract policy and that map the actions from 
specific policy instances to abstract actions in the general 
policy, respectively.  During reuse, the state mapping functions 
allow to identify the situations in which the corresponding 
general policy is applicable and the action mappings along with 
function sg  gives the agent information about what action the 
agent needs to perform in a specific situation while the agent is 
executing the option corresponding to the generalized policy.  

IV. POLICY HOMOMORPHISM

To derive the formalism of a policy homomorphism we 
formulate our problem as a finite Markov Decision Process. 

A Finite Markov Decision Process is a tuple RTAS ,,,
where naa SSS ∪= is a finite set of states, with SSa ⊆ and 

SSna ⊆ representing the sets of absorbing and non absorbing 
states, respectively, and φ=∩ naa SS . A is a finite set of 
actions, ]1,0[→××= SAST is the transition probability 
function, and R  is the expected reward function.  

For the experiments presented in this paper, the agent uses 
Q-learning to learn a policy for the given tasks. The only 
policies considered in our framework are the goal based 
policies as goal of a task defines the objective of a task. Thus it 
important to capture and generalize goal based policies of 
similar task types to learn policies of related tasks in novel 
environments. 

Definition 1: A Goal Based Policy is a tuple 

gTI SSS ,,,π where ]1,0[:),( →× ASas ππ is a mapping 
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from states in πS to probabilities of selecting actions in A .

TI SSS ∪=π is the state set on which policy π is defined and 

naI SS ⊆ ,and Tg SS ⊆ are the sets of initiation states, 
termination states, and goal states for policyπ , respectively, 
with Ta SSS ⊆∩ )( π .

Once the agent learns a set of basic policies they are 
generalized using the policy homomorphism framework. 

Definition 2: A Policy Homomorphism ππ ′→:f is a 
surjection from base policy π to an abstract policy π ′ ,
where f is defined by a tuple of surjections, ( ππ SSh ′→:
, ππ AAg s ′→: and function ]1,0[→×= ππ SAsg over the 

state and action sets for policy π , SS ⊆π and 
{ }0),(: >∈∃∈= asSsAaA πππ , such that the following 

properties hold:  

1. For each state-action pair ( )as, : ( ) ( )( ) ( )asgagsh ss ,, =′π

2. For each state pair ),( ji ss :

=

′′

∈

′∈

π

π

π
π

Aa jii

jiAb i

sasTas

shbshTbsh

),,(),(

))(,),(()),((

where T and T′ are the transition probabilities in the base and 
in the abstract policy, respectively. 

 A complete policy homomorphism requires that every state 
in a given policy be mapped onto a particular state in the 
abstract policy. As a result, it does not allow abstraction of 
policies that might be partially homomorphic. Another issue 
with an absolute policy homomorphism is that it requires the 
probability of transitions into a state s′ from state s by taking 
an action a in the base policy to be exactly equal to the 
probability of transitions into ( )sh ′ from state ( )sh  by taking 
an action ( )ags in the abstract policy. However, having two or 
more goal based policies with equal transition probabilities is 
very unlikely in the real world, significantly reducing the 
applicability and thus impact of absolute policy 
homomorphisms. In order to make the policy homomorphism 
framework applicable in real world tasks we extend it to an 
approximate partial policy homomorphism that addresses both 
the limitations that exist in a absolute policy homomorphism. 

Definition 3: An Approximate Partial Policy 
Homomorphism ppf ππ ′→: is a surjection from a partial 

base policy pπ to an abstract policy pπ ′ where f is defined by a 
tuple of surjections (

pp
SSh ππ ′→:

pp
AAgs ππ ′→:, )and 

functions ]1,0[→×= pp
SAg s ππ over the state and action sets 

of the partial policy pπ , ππ SS
p

⊆ and 

( ) ( ) }0,:|{ >∧′∉∈∃∈= asSshSsAaA Tpp
πππ  , such that 

the following properties hold:  

1. For all state action pairs ( )as, : ( )asgagsh ssp ,))(),(( =′π

2. for each state pair ),( ji ss with ( ) Tii SshSs
p

′∉∈ ,π :

επ

π

π

π

≤−

′′

∈

′∈

p

p

Aa jii

Ab jii

sasTas

shbshTbsh

),,(),(

))(,),(()),((

where T and T′ are the transition probabilities for the base 
policy and the abstract partial policy, respectively.  

Both absolute and approximate partial policy homomorphisms 
can be applied to derive abstract policies. However, to ensure 
that the general policy captures the objective of the underlying 
policies, the approach presented here limits the application of 
policy homomorphisms to goal based policies. To do this we 
define a goal based policy homomorphism which is then 
applied in conjunction with the absolute or approximate partial 
homomorphism definition to extract an abstract policy from a 
set of basic policies. 

Definition 4: A Goal Based Policy 
Homomorphism ππ ′→:f is a policy homomorphism that 
fulfills the following additional properties: 

1. All states that are goal states in the base policy are 
present as goal states, 

g
Sπ′  in the abstract policy π ′

and )(shS
gg Ss ππ ∈=′ .

2. φ
πππ =′ −∈ ))(( )( shS

gpg SSs .

3. All non-goal states in policy π ′  are either terminal states 
or have a non-zero probability to lead to a goal state 
under policyπ ′ .

By utilizing this framework, the learning and abstraction 
approach extracts a maximal abstract policy that is 
homomorphic to all policy instances of a given task type. The 
framework uses a greedy algorithm and decision tree learners 
to extract the abstract policy and corresponding surjective 
mappings from the base set of policy instances to make the 
extraction procedure efficient. Table 1. shows the algorithm 
used to autonomously extract a general policy. To achieve this 
the policy abstraction algorithm starts at the goal state of each 
policy and builds a set of functions that map each state of the 
policy. The result of the algorithm is a general goal based 
policy π ′ and general mapping function ),( GsfG

),(
GsG gh= such that ),(),( shsGh G=′  ),,( asGsg ′

)(ag
gs= where G is the goal state or states in the policyπ .

These general mapping functions allow states in new policy 
instances to be mapped to states in the general policy without 
the need to map the entire partial policy and thus without the 
need for a complete state space model for the new 
environment. The algorithm uses a greedy method to build the 
functions. This is aimed at keeping the method tractable and 
continues until it reaches a point where the addition of more  
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TABLE I. POLICY ABSTRACTION ALGORITHM

1. Initialization t=0,  
},,,{{},{},

321 npppps Pgh ππππ==′=′       

ggggg ssshsSisS
iiiipp

′=′=∀′=′ ),(,:; )0()0(
ππ

2. Increment t 
3. Pi

ip ∈∀ π:  find )( )1()( −−∈ t

ipip
t SSsi ππ  such that: 

• )(t
is  is a predecessor of a state in 

)1( −t
ip

Sπ

)0.0),(()0.0),,((

:,)1(

>∧>

∈∃ −

assasT

aSs

t
ii

t
i

t

ip

π

π

ε≤′− ))(),(),((),,( shagshTsasT s
t
i

t
i

• There is an abstract state 
)(ts′  such that 

o )()()()( )(),( tt
i

tt
ig sshssh

i
′==′

o )(),,( )( bgbssg
ii s

t
igs =′

o ),(
isi gh  is an approximate partial policy 

homomorphism for the partial policy 
ipπ with 

state set )()1( t
i

t sS
ip

∪−
π

• )()1()()()1()( , tttt
i

tt sSSsSS
ppipip

′∪′=′∪= −−
ππππ .

   4.  If step 3 is successful, then: Goto 2. Else:  Stop

states no longer increases the expected utility of the general 
policy. 

V. EXPERIMENTS AND RESULTS

We demonstrate the working of the approach presented 
using examples in a non deterministic grid world domain. The 
experiments are divided into three phases. In the first phase we 
learn a set of “Reach Door” policies to reach specific doorways 
using a set of non deterministic grid worlds with rooms 
connected by doorways. The agent then uses these specific 
“Reach Door” policies to abstract a general policy using the 
approximate partial policy homomorphism framework in the 
second phase. In the final phase of the experiments we 
demonstrate how the learned generalized policy can be reused 

to learn similar tasks in novel environments and situations. 

Learning Basic Policies: In this phase of  the experiments the 
agent learns a set of basic “Reach Door” policies to reach 
specific doorways. Fig 3. shows the set of grid worlds used by 
the RL agent to learn to reach specific doorways. The action 
space of a RL agent in this phase of the experiments consists of 
FORWARD, TURN-LEFT, and TURN-RIGHT actions. The 
grid world domain is probabilistic, i.e. when the agent picks a 
lower level action like FORWARD then the agent successfully 
reaches the grid location in front of it 80% of the time and 
results in the agent’s orientation being changed 20 % of the 
time. Similarly, if the agent chooses to execute the other lower 
level actions TURN-LEFT or TURN-RIGHT then the agent 
successfully turns in the specified direction 80 % of the time, 
10% of the time it reaches the grid location in front of it and 
another 10 % of the time it results in the agent turning in the 
opposite direction to the specified action. All three actions have 
a cost of -0.25. The agent receives a reward of +100 when it 
reaches the goal doorway. The agent’s state space for this set of 
experiments consists of the agent’s x, y location, its orientation, 
and the 4 nearest doorways’ x, y locations. To learn a policy to 
the specified doorway the agent starts at a random empty 
location within the grid world and explores the world. To do 
this the agent uses the Boltzmann “soft-max” distribution and 
reduces the temperature variable continuously until the 
exploration drops to 10%. This level of exploration is 
maintained to enable the agent to learn a globally optimal 
policy. During each step of learning the agent uses Q-learning 
to update the Q value for the state action pair visited. As a 
result of learning in both worlds with each of the doorways as 
the goal doorway at some point in time during the learning 
phase, the agent learns a total of 5 basic policies to reach a 
specified doorway within these grid worlds. 

Extraction of Generalized Policy: In this phase of the 
experiments the agent used the learned policies to extract a 
general policy. To do this the agent first enhances the state 
representation within the learned policies by adding new state 
attributes. The new state attributes that are added are formed by 
applying various logical, relational, and arithmetic operators on 
an attribute or a set of attributes of the original state 
representation. This step is aimed at capturing information that 
is not explicit in the original state attributes but may be 
important to capture the non contextual information relevant 
for successfully completion of a task type. The policy 

Figure 3.     Grid Worlds used to learn basic “Reach Door” policies 

Figure 4.     Generalized policy (middle) with partial mapping to Grid 
World 1 (left) and Grid World 2 (right). Shaded regions indicate the scope 

of the generalized partial policy 
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abstraction algorithm uses this state representation to extract a 
general mapping function without the need of a complex 
function approximator. Table. 1 shows the steps of the policy 
abstraction algorithm. Fig. 4 shows the area covered by the 
extracted general policy in both the grid worlds, along with a 
subset of the state and action mappings from the original policy 
to the general policy.

Reuse of Generalized Policy: To demonstrate the reuse of the 
abstracted general policy to successfully learn new tasks, the 
RL agent learns a cleaning task in a novel grid world 
environment. Fig. 5 shows the grid world environment used 
for learning the cleaning task. In this task the agent has to 
learn a policy to pick up the “Blue” (at row:8, col:1) and 
“Red”(at row:7, col:17) objects and drop them in the “Grey” 
colored trash can(at row:6, col:9).  To learn this task the agent 
uses the extracted general “Reach Door” policy as a higher 
level action. Besides this action, the agent’s action list consists 
of the primitive actions FORWARD, TURN-LEFT, TURN-
RIGHT, PICK-DROP. The grid world domain is probabilistic 
and behaves in same ways to that of grid worlds in previous 
section. Action PICK-DROP always succeeds with a 
probability of 1. The agent incurs a cost of -0.25 for 
performing each single step action and receives a reward of 
+100 when it drops each object in the trash can. The agent 
starts at a random start location within the grid world and uses 
SMDP learning to learn an optimal policy for the cleaning 
task.  Fig 6. shows the learning curve for the cleaning task 
with and without using the generalized policy. Each curve is 
an average of 30 runs and the performance is presented in 
terms of the average reward per step (where a step corresponds 
to the execution time of a primitive action) that the agent would 
receive under the policy learned at that point.  The vertical 
confidence intervals indicate one standard deviation in each 

direction. The learning curves show that there is a significant 
improvement in the time it takes for the agent to learn a policy 
to reach the goal state when using the generalized policy. These 
experiments successfully demonstrate the applicability and 
usefulness of policy generalization using partial policy 
homomorphism. 

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new approach that allows 
autonomous abstraction of important skills and concepts for 
task completion. We defined an absolute and an approximate 
partial policy homomophism framework which the agent uses 
to abstract a general policy from a set of policy instances. The 
abstracted policy is then used to address related tasks in novel 
situations and environments.  The experiments in this paper 
demonstrate that reuse of the knowledge gained in the form of 
the general policy and the corresponding learned mapping 
functions reduces the time it takes to learn new tasks. In 
addition to improving learning time, this framework also 
promises to allow the agent to compress the state space by 
abstracting information important for task completion.  
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