
Learning to Generalize and Reuse Skills Using
Approximate Partial Policy Homomorphisms

Srividhya Rajendran
Department of Computer Science and Engineering

The University of Texas at Arlington
P.O. Box 19015, Arlington, Texas-76019

srividhya.rajendran@mavs.uta.edu

Manfred Huber
Department of Computer Science and Engineering

The University of Texas at Arlington
P.O. Box 19015, Arlington, Texas-76019

huber@cse.uta.edu

Abstract—A reinforcement learning (RL) agent that performs
successfully in a complex and dynamic environment has to
continuously learn and adapt to perform new tasks. This
necessitates for them to not only extract control and
representation knowledge from the tasks learned, but also to
reuse the extracted knowledge to learn new tasks. This paper
presents a new method to extract this control and
representational knowledge. Here we present a policy
generalization approach that uses the novel concept of policy
homomorphism to derive these abstractions. The paper further
extends the policy homomorphism framework to an approximate
policy. The extension allows policy generalization framework to
efficiently address more realistic tasks and environments in non-
deterministic domains. The approximate policy homomorphism
derives an abstract policy for a set of similar tasks (a task type)
from a set of basic policies learned for previously seen task
instances. The resulting generalized policy is then applied in new
contexts to address new instances of related tasks. The approach
also allows to identify similar tasks based on the functional
characteristics of the corresponding skills and provides a means
of transferring the learned knowledge to new situations without
the need for complete knowledge of the state space and the
system dynamics in the new environment.

We demonstrate the working of policy abstraction using
approximate policy homomorphism and illustrate policy reuse to
learn new tasks in novel situations using a set of grid world
examples.

Keywords—Transfer Learning, Policy Homomorphism,
Reinforcement Learning

I. INTRODUCTION

A life-long learning agent that performs tasks in the real
world needs to continuously learn new tasks. In addition, these
agents need to adapt what they have learned to perform
successfully in a complex and dynamic environment. While
traditional RL agents have the capability to learn new tasks,
they face significant challenges in terms of scaling to complex
domains because the policies learned by these agents do
frequently not transfer and therefore the knowledge gained
from learning to perform a given task in a specific situation
cannot be used to learn related new tasks in novel scenarios.
The main reason for this is that the policies learned are usually
directly tied to the perceptual representation of the environment
and as a result the policies become useless as soon as the
environment or the way the perceptual information is
represented changes. Another issue with traditional RL agents

is that they often use the raw perceptual information to learn
policies. These percepts, however, produce a huge amount of
data and processing and basing decisions upon this perceptual
information can easily become a computationally intractable
problem in complex environments. Furthermore, traditional RL
agents generally make decisions as to what action they need to
perform at each point in time. However, reasoning about
actions at this scale and performing them in real time can
become impossible as the complexity of the tasks these agents
are learning increases.

Biological systems face similar issues [8][9], still they learn
to perform increasingly complex tasks in the real world. They
do this by successfully learning to only process the relevant
information for the task at hand while ignoring the irrelevant
aspects of the environment. Furthermore, they also learn
throughout their development to build reusable abstractions
that contain the knowledge gained from learning and
performing tasks, and to use this knowledge to learn and
perform new, increasingly complex tasks.

RL agents need to have similar capabilities that would not
only allow them to autonomously identify similar tasks, but
also to extract knowledge from the learned policies of these
tasks, and to reuse them to learn new tasks. Further, they need
methods that allow them to make decisions at a higher level of
abstraction and techniques that can extract information relevant
for task completion while ignoring the task-irrelevant aspects
of the environment.

The work presented in this paper introduces a new approach
to policy generalization and abstraction of control knowledge
and their reuse, using the new framework of policy
homomorphism. Our approach to life-long learning uses the
policy homomorphism to form abstract skill and
representational abstractions. To achieve this, the policy
homomorphism framework uses a set of policies from similar
tasks to extract a general policy for a corresponding task type,
where a task type is defined by the maximal set of policy
instances for which a general homomorphic policy can be
found. The abstracted policy is here defined by two sets of
functions where the first maps the individual states of each
homomorphic policy to an abstract state of the general policy,
thus allowing to identify situations in which the abstracted
general policy is applicable. The second set of functions maps
individual actions from each base policy to specific actions of
the abstract policy, thereby identifying the action that the RL

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2308

agent needs to perform from each state of the general policy.
The abstracted general policies are then reused to learn new
tasks by adding each of them as one of the actions that the RL
agent can choose to perform. Fig. 1 shows an example of a
generalized policy derived from a set of two homomorphic
policies as well as the corresponding state and action mappings.

In this paper we focus on the formalism of policy
homomorphism and of policy reuse and extend our previous
framework [1] of partial policy homomorphism to approximate
partial policy homomorphism in order for it to be more
efficient and applicable in non-deterministic environments and
real world scenarios. The working of the policy
homomorphism framework to abstract policies and their reuse
to learn new tasks is demonstrated using examples in non-
deterministic grid worlds.

II. RELATED WORK

Over the years there has been a significant amount of
research related to abstraction in the context of decision
making and learning. Most of this research can be loosely
divided into temporal abstraction and spatial abstraction. Sutton
Precup and Singh [12] developed a temporal abstraction
method that allows the agent to reason at a higher level of
abstraction by representing the system as a Semi-Markov
Decision Problem (SMDP). Here higher level actions, referred
to as options, take multiple time steps to complete and are
temporal extensions of lower level actions. Once a higher level
action is chosen it follows the policy of the option until it
terminates. Although this work allows for accelerated learning
and scaling to more complex tasks, it does not in itself provide
a mechanism to automatically find a useful set of options and
to reduce the complexity of the state space. To address this and
to provide a general learning system, hierarchical
reinforcement learning techniques have been proposed
[2][3][4][5][7]. These techniques aim at autonomously forming
skill and representational abstractions. However, although these
techniques can abstract useful sets of options that can be reused
to allow faster learning times and to learn complex tasks, the
extracted options are generally context specific and can thus
still only be applied to tasks in the same environment.

Similar to temporal abstraction, the issue of spatial
abstraction is very important to learn to successfully perform in
a complex and dynamic environment. Among others, Stone and
Jong [6] have recently tried to address this issue. They present
an approach that autonomously aggregates states based on
policy irrelevance of state attributes. Though their approach
allows to successfully abstract a task-specific state
representation, the need for carefully engineered initial state
variables limits the applicability of their approach to a narrowly

defined environment. A totally different approach to state space
abstraction was presented by Ravindran and Barto[10][11].
They develop a formal framework based on MDP
homomorphism that extracts a smaller state space from the
original one by exploiting its symmetries and redundancies.
They further extend their method to SMDPs by defining SMDP
homomorphism which, in addition to state space compression
provides a framework to identify situations in which policies
can be transferred. However, their condition requires that the
abstracted SMDP and the core MDP have the same properties
and identical transition structure under all possible policies,
limiting its applicability to perfectly symmetric or identical
environments. An extension to this approach was proposed by
Wolf and Barto[14]. In their work they identify object types
based on MDP homomorphisms. Their approach considers two
objects to be of the same type in the presence of additional state
properties if the behaviors of all possible policies in their
context are homomorphic and achieve the same result in terms
of the chosen property. The limitation of this approach is that it
identifies two objects as similar only if all functions of these
objects are similar and further, due to the requirement of a local
MDP homomorphism, both these objects have to be in the
same environment. As a result of this these objects become
dissimilar if the environment changes.

To address some of the limitation of these abstraction
approaches and to allow for the efficient reuse of learned
control knowledge, this paper presents a framework of
approximate policy homomorphisms which allows for a more
effective abstraction of general skills and representations in
terms of task types. This abstraction framework is further
integrated into a learning architecture which allows for the
efficient acquisition, management, and reuse of the abstract
skills and concepts.

III. LEARNING ARCHITECTURE

The learning architecture is the core part of the RL agent.
Fig. 2 shows our RL agent’s learning architecture which the
agent uses not only to learn skills and representational
abstractions in the form of a general policy and corresponding
representational concepts but also to reuse the abstracted
general policy to learn new tasks. The learning architecture
shown in Fig. 2 is made up of skills, concepts, learning, and
policy abstraction components. The agent with this
architecture starts out by learning basic policies for tasks by
interpreting the state of the environment and interacting with it

Policy B
Generalized

Policy

Figure 1. Policy Mappings From Base Policies A and B

State Abstractions

Action
Abstractions

sg

New Skills

Abstract States

Skills

Concepts

LEARNING

New
Concepts

POLICY
ABSTRACTION

CONCEPTS State

Rewar

Action

Action
Eligibility

Actions

Learner

Figure 2. Learning Architecture of RL Agent

SKILLS

2309

using its primitive actions. As a result of performing each
action, the agent receives reinforcement from the environment.
This is used by the agent to learn a policy for the task and the
policy learned for the specific task instance is stored in the
skills memory. As the number of basic policies learned
increases, the agent uses the policy abstraction component of
the learning architecture to extract a general policy from a set
of policies for similar task. The policy abstraction component
uses the policy homomorphism framework to extract reusable
skills represented as general policies and corresponding
representational concepts. These reusable skills and concepts
are stored by the agent in its skills and concepts memory and
can subsequently be used as higher level actions that the agent
can choose to perform. This, in turn, allows the agent reuse
the extracted control knowledge to learn related tasks in novel
environments.

A. Skills and Concepts Memory
The skills and concepts components serve mainly as

repositories for the learned skills and concepts. These learned
skills and concepts are then used by the learning component to
learn new, more complex tasks and concepts.

B. Learning Component
The learning component of the RL agent’s learning

framework learns policies to perform tasks successfully. At
each time t the agent perceives the state ts of the environment
and chooses to perform action ta from the set of admissible
primitive actions. As a result the environment reaches state

1+ts and the agent receives a reward tr . The agent uses this
piece of information to learn a policy that maximizes the
expected reward using Q learning. Each time a state–action
pair is visited its value is updated using Q value update
equation:

)),aQ(s))a,Q(s((r),aQ(s)',aQ(s ttt
Aa

ttttt −′++=
∈′

max

where 10 ≤≤ α is the learning rate and 10 ≤≤ γ is a constant
that represents the relative value of delayed versus immediate
rewards. Policies that choose actions only from the set of
primitive actions are called basic policies. Once the agent
learns a basic policy, it stores this policy in the skill memory
which is in turn used by the policy abstraction component to
abstract a general policy for a given task type. These
abstracted general policies are known as the higher level
actions or options which allow the agent to reuse the
knowledge gained from previous experiences of a given task
type to learn policies for related tasks in novel situations. Each
option is only admissible in specific situations, identified by
the abstracted state representations of the general policy
corresponding to the given option. All options may take
multiple time steps to complete. A lower level action is a
special option that takes one time step to complete. To learn a
policy for a new task reusing the knowledge of the past
experiences available, the agent at time step t perceives the
state ts of the environment and calculates the set of
admissible options from the current state, and chooses an
option to . Once an option is chosen the agent continues to
choose lower level actions based on the general policy

corresponding to this option to until the policy terminates or
the agent reaches a state kts + from where to is no longer
available. As a result, the environment gives the agent reward
r . The agent uses this to learn a policy for this new task by
iteratively updating the values of state-action pairs each time
they are visited using the SMDP value function update
equation:

() ()()′+= +
∗

∈′
∗

+

tsoosQrEosQ ttktO
Oo

k
ttO

kts
,,|,max, εγ

where k is the number of time steps between initiation of
option to at state ts and its termination at kts + , and ()tso tt ,,ε
is the event of option to initiated at time t in state ts .

C. Policy Abstraction Component
The policy abstraction component of the learning

framework extracts a general policy for a task type from a set
of situation specific policies. To do this, the policy abstraction
unit uses the policy homomorphism framework to
autonomously identify policies of previously learned instances
of similar tasks and to construct a general policy from them.
The abstracted general policy is represented in terms of a
function sg that encodes the state-action mapping for the
abstract policy and two sets of functions,)(),(agsh s , that map
the individual states of the specific policy instances to unique
states of the abstract policy and that map the actions from
specific policy instances to abstract actions in the general
policy, respectively. During reuse, the state mapping functions
allow to identify the situations in which the corresponding
general policy is applicable and the action mappings along with
function sg gives the agent information about what action the
agent needs to perform in a specific situation while the agent is
executing the option corresponding to the generalized policy.

IV. POLICY HOMOMORPHISM

To derive the formalism of a policy homomorphism we
formulate our problem as a finite Markov Decision Process.

A Finite Markov Decision Process is a tuple RTAS ,,,
where naa SSS ∪= is a finite set of states, with SSa ⊆ and

SSna ⊆ representing the sets of absorbing and non absorbing
states, respectively, and φ=∩ naa SS . A is a finite set of
actions,]1,0[→××= SAST is the transition probability
function, and R is the expected reward function.

For the experiments presented in this paper, the agent uses
Q-learning to learn a policy for the given tasks. The only
policies considered in our framework are the goal based
policies as goal of a task defines the objective of a task. Thus it
important to capture and generalize goal based policies of
similar task types to learn policies of related tasks in novel
environments.

Definition 1: A Goal Based Policy is a tuple

gTI SSS ,,,π where]1,0[:),(→× ASas ππ is a mapping

2310

from states in πS to probabilities of selecting actions in A .

TI SSS ∪=π is the state set on which policy π is defined and

naI SS ⊆ ,and Tg SS ⊆ are the sets of initiation states,
termination states, and goal states for policyπ , respectively,
with Ta SSS ⊆∩)(π .

Once the agent learns a set of basic policies they are
generalized using the policy homomorphism framework.

Definition 2: A Policy Homomorphism ππ ′→:f is a
surjection from base policy π to an abstract policy π ′ ,
where f is defined by a tuple of surjections, (ππ SSh ′→:
, ππ AAg s ′→: and function]1,0[→×= ππ SAsg over the

state and action sets for policy π , SS ⊆π and
{ }0),(: >∈∃∈= asSsAaA πππ , such that the following

properties hold:

1. For each state-action pair ()as, : () ()() ()asgagsh ss ,, =′π

2. For each state pair),(ji ss :

=

′′

∈

′∈

π

π

π
π

Aa jii

jiAb i

sasTas

shbshTbsh

),,(),(

))(,),(()),((

where T and T′ are the transition probabilities in the base and
in the abstract policy, respectively.

 A complete policy homomorphism requires that every state
in a given policy be mapped onto a particular state in the
abstract policy. As a result, it does not allow abstraction of
policies that might be partially homomorphic. Another issue
with an absolute policy homomorphism is that it requires the
probability of transitions into a state s′ from state s by taking
an action a in the base policy to be exactly equal to the
probability of transitions into ()sh ′ from state ()sh by taking
an action ()ags in the abstract policy. However, having two or
more goal based policies with equal transition probabilities is
very unlikely in the real world, significantly reducing the
applicability and thus impact of absolute policy
homomorphisms. In order to make the policy homomorphism
framework applicable in real world tasks we extend it to an
approximate partial policy homomorphism that addresses both
the limitations that exist in a absolute policy homomorphism.

Definition 3: An Approximate Partial Policy
Homomorphism ppf ππ ′→: is a surjection from a partial

base policy pπ to an abstract policy pπ ′ where f is defined by a
tuple of surjections (

pp
SSh ππ ′→:

pp
AAgs ππ ′→:,)and

functions]1,0[→×= pp
SAg s ππ over the state and action sets

of the partial policy pπ , ππ SS
p

⊆ and

() () }0,:|{ >∧′∉∈∃∈= asSshSsAaA Tpp
πππ , such that

the following properties hold:

1. For all state action pairs ()as, : ()asgagsh ssp ,))(),((=′π

2. for each state pair),(ji ss with () Tii SshSs
p

′∉∈ ,π :

επ

π

π

π

≤−

′′

∈

′∈

p

p

Aa jii

Ab jii

sasTas

shbshTbsh

),,(),(

))(,),(()),((

where T and T′ are the transition probabilities for the base
policy and the abstract partial policy, respectively.

Both absolute and approximate partial policy homomorphisms
can be applied to derive abstract policies. However, to ensure
that the general policy captures the objective of the underlying
policies, the approach presented here limits the application of
policy homomorphisms to goal based policies. To do this we
define a goal based policy homomorphism which is then
applied in conjunction with the absolute or approximate partial
homomorphism definition to extract an abstract policy from a
set of basic policies.

Definition 4: A Goal Based Policy
Homomorphism ππ ′→:f is a policy homomorphism that
fulfills the following additional properties:

1. All states that are goal states in the base policy are
present as goal states,

g
Sπ′ in the abstract policy π ′

and)(shS
gg Ss ππ ∈=′ .

2. φ
πππ =′ −∈))(()(shS

gpg SSs .

3. All non-goal states in policy π ′ are either terminal states
or have a non-zero probability to lead to a goal state
under policyπ ′ .

By utilizing this framework, the learning and abstraction
approach extracts a maximal abstract policy that is
homomorphic to all policy instances of a given task type. The
framework uses a greedy algorithm and decision tree learners
to extract the abstract policy and corresponding surjective
mappings from the base set of policy instances to make the
extraction procedure efficient. Table 1. shows the algorithm
used to autonomously extract a general policy. To achieve this
the policy abstraction algorithm starts at the goal state of each
policy and builds a set of functions that map each state of the
policy. The result of the algorithm is a general goal based
policy π ′ and general mapping function),(GsfG

),(
GsG gh= such that),(),(shsGh G=′),,(asGsg ′

)(ag
gs= where G is the goal state or states in the policyπ .

These general mapping functions allow states in new policy
instances to be mapped to states in the general policy without
the need to map the entire partial policy and thus without the
need for a complete state space model for the new
environment. The algorithm uses a greedy method to build the
functions. This is aimed at keeping the method tractable and
continues until it reaches a point where the addition of more

2311

TABLE I. POLICY ABSTRACTION ALGORITHM

1. Initialization t=0,
},,,{{},{},

321 npppps Pgh ππππ==′=′

ggggg ssshsSisS
iiiipp

′=′=∀′=′),(,:;)0()0(
ππ

2. Increment t
3. Pi

ip ∈∀ π: find)()1()(−−∈ t

ipip
t SSsi ππ such that:

•)(t
is is a predecessor of a state in

)1(−t
ip

Sπ

)0.0),(()0.0),,((

:,)1(

>∧>

∈∃ −

assasT

aSs

t
ii

t
i

t

ip

π

π

ε≤′−))(),(),((),,(shagshTsasT s
t
i

t
i

• There is an abstract state
)(ts′ such that

o)()()()()(),(tt
i

tt
ig sshssh

i
′==′

o)(),,()(bgbssg
ii s

t
igs =′

o),(
isi gh is an approximate partial policy

homomorphism for the partial policy
ipπ with

state set)()1(t
i

t sS
ip

∪−
π

•)()1()()()1()(, tttt
i

tt sSSsSS
ppipip

′∪′=′∪= −−
ππππ .

 4. If step 3 is successful, then: Goto 2. Else: Stop

states no longer increases the expected utility of the general
policy.

V. EXPERIMENTS AND RESULTS

We demonstrate the working of the approach presented
using examples in a non deterministic grid world domain. The
experiments are divided into three phases. In the first phase we
learn a set of “Reach Door” policies to reach specific doorways
using a set of non deterministic grid worlds with rooms
connected by doorways. The agent then uses these specific
“Reach Door” policies to abstract a general policy using the
approximate partial policy homomorphism framework in the
second phase. In the final phase of the experiments we
demonstrate how the learned generalized policy can be reused

to learn similar tasks in novel environments and situations.

Learning Basic Policies: In this phase of the experiments the
agent learns a set of basic “Reach Door” policies to reach
specific doorways. Fig 3. shows the set of grid worlds used by
the RL agent to learn to reach specific doorways. The action
space of a RL agent in this phase of the experiments consists of
FORWARD, TURN-LEFT, and TURN-RIGHT actions. The
grid world domain is probabilistic, i.e. when the agent picks a
lower level action like FORWARD then the agent successfully
reaches the grid location in front of it 80% of the time and
results in the agent’s orientation being changed 20 % of the
time. Similarly, if the agent chooses to execute the other lower
level actions TURN-LEFT or TURN-RIGHT then the agent
successfully turns in the specified direction 80 % of the time,
10% of the time it reaches the grid location in front of it and
another 10 % of the time it results in the agent turning in the
opposite direction to the specified action. All three actions have
a cost of -0.25. The agent receives a reward of +100 when it
reaches the goal doorway. The agent’s state space for this set of
experiments consists of the agent’s x, y location, its orientation,
and the 4 nearest doorways’ x, y locations. To learn a policy to
the specified doorway the agent starts at a random empty
location within the grid world and explores the world. To do
this the agent uses the Boltzmann “soft-max” distribution and
reduces the temperature variable continuously until the
exploration drops to 10%. This level of exploration is
maintained to enable the agent to learn a globally optimal
policy. During each step of learning the agent uses Q-learning
to update the Q value for the state action pair visited. As a
result of learning in both worlds with each of the doorways as
the goal doorway at some point in time during the learning
phase, the agent learns a total of 5 basic policies to reach a
specified doorway within these grid worlds.

Extraction of Generalized Policy: In this phase of the
experiments the agent used the learned policies to extract a
general policy. To do this the agent first enhances the state
representation within the learned policies by adding new state
attributes. The new state attributes that are added are formed by
applying various logical, relational, and arithmetic operators on
an attribute or a set of attributes of the original state
representation. This step is aimed at capturing information that
is not explicit in the original state attributes but may be
important to capture the non contextual information relevant
for successfully completion of a task type. The policy

Figure 3. Grid Worlds used to learn basic “Reach Door” policies

Figure 4. Generalized policy (middle) with partial mapping to Grid
World 1 (left) and Grid World 2 (right). Shaded regions indicate the scope

of the generalized partial policy

2312

abstraction algorithm uses this state representation to extract a
general mapping function without the need of a complex
function approximator. Table. 1 shows the steps of the policy
abstraction algorithm. Fig. 4 shows the area covered by the
extracted general policy in both the grid worlds, along with a
subset of the state and action mappings from the original policy
to the general policy.

Reuse of Generalized Policy: To demonstrate the reuse of the
abstracted general policy to successfully learn new tasks, the
RL agent learns a cleaning task in a novel grid world
environment. Fig. 5 shows the grid world environment used
for learning the cleaning task. In this task the agent has to
learn a policy to pick up the “Blue” (at row:8, col:1) and
“Red”(at row:7, col:17) objects and drop them in the “Grey”
colored trash can(at row:6, col:9). To learn this task the agent
uses the extracted general “Reach Door” policy as a higher
level action. Besides this action, the agent’s action list consists
of the primitive actions FORWARD, TURN-LEFT, TURN-
RIGHT, PICK-DROP. The grid world domain is probabilistic
and behaves in same ways to that of grid worlds in previous
section. Action PICK-DROP always succeeds with a
probability of 1. The agent incurs a cost of -0.25 for
performing each single step action and receives a reward of
+100 when it drops each object in the trash can. The agent
starts at a random start location within the grid world and uses
SMDP learning to learn an optimal policy for the cleaning
task. Fig 6. shows the learning curve for the cleaning task
with and without using the generalized policy. Each curve is
an average of 30 runs and the performance is presented in
terms of the average reward per step (where a step corresponds
to the execution time of a primitive action) that the agent would
receive under the policy learned at that point. The vertical
confidence intervals indicate one standard deviation in each

direction. The learning curves show that there is a significant
improvement in the time it takes for the agent to learn a policy
to reach the goal state when using the generalized policy. These
experiments successfully demonstrate the applicability and
usefulness of policy generalization using partial policy
homomorphism.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new approach that allows
autonomous abstraction of important skills and concepts for
task completion. We defined an absolute and an approximate
partial policy homomophism framework which the agent uses
to abstract a general policy from a set of policy instances. The
abstracted policy is then used to address related tasks in novel
situations and environments. The experiments in this paper
demonstrate that reuse of the knowledge gained in the form of
the general policy and the corresponding learned mapping
functions reduces the time it takes to learn new tasks. In
addition to improving learning time, this framework also
promises to allow the agent to compress the state space by
abstracting information important for task completion.

REFERENCES

[1] S. Rajendran and Huber M, “Generalizing and Categoriazation Skills in
Reinfocement Learning Agent Using Partial Policy Homomorphisms”,
In the Proc. of FLAIRS, 2009, In Press.

[2] Asadi, M., and Huber M., “Effective Control Knowledge Transfer
Through Learning Skill and Representation Hierarchies”, In the
Proceedings of IJCAI, 2007, pp. 2054-2059.

[3] Bakker B., and Schmidhuber J., “Hierarchical Reinforcement Learning,
based on Subgoal Discovery and Subpolicy Specialization”, In the Proc.
of IAS, vol. 8, 2004, pp 438-445.

[4] Barto, A.G., and Mahadevan, S., “Recent Advances in Hierarchical
Reinforcement Learning”, DEDS, Vol.13(4), pp 341-379, 2003.

[5] Bulitko V., Sturtevant N., and Kazakevich M., “Speeding Up Learning
in Real-time search via Automatic State Abstraction”, In the Proc. of
AAAI, pp 1349-1354. 2005.

[6] Jong, N. K., and Stone, P., “State Abstraction Discovery from Irrelevant
State Variables”, In the Proc. of IJCAI, pp 752-757, 2005.

[7] Konidaris G, and Barto A. “Building Portable Options: Skill Transfer in
Reinforcement Learning”, In the Proc. of IJCAI 2007, pp 895-900.

[8] Lakoff, G., “Women, Fire, and Dangerous Things”, University of
Chicago Press, 1987.

[9] Mandler, J. M., “How to build a baby: II. Conceptual, primitives ”,
Psychological Review, vol. 99(4), pp 587-604, 1992.

[10] Ravindran, B., and Barto, A. G., “Model minimization in hierarchical
reinforcement learning”. In the Proc. of SARA, LNCS (2371), pp 196-
211, 2002.

[11] Ravindran, B., and Barto, A., “SMDP Homomorphisms: An Algebraic
Approach to Abstraction in Semi-Markov Decision Processes”, In the
Proc of IJCAI, pp 1011-1016, 2003.

[12] Sutton, R., Precup, D., and Singh, S., “Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning”, AI
vol. 112, pp 181–211, 1999.

[13] Watkins, C. J. C. H., “Learning from delayed rewards”, Ph.D. thesis,
Psychology Dept., Cambridge University, 1989.

[14] Wolfe, A. P., and Barto, A.G., “Defining Object Types and Options
Using MDP Homomorphisms”, In Proc. of ICML Workshop on
Structural Knowledge Transfer for ML, 2006.

Figure 5. Grid world domain used for Cleaning Task

2313

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

