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Abstract—A scalable Sigma-Point Kalman filter (DSPKF) is 
proposed for distributed target tracking in a sensor network in 
this paper. The main idea is to use dynamic consensus strategy to 
the information form sigma-point Kalman filter (ISPKF) that 
derived from weighted statistical linearization perspective. Each 
node estimates the global average information contribution by 
using local and neighbors’ information rather than by the 
information from all nodes in the network. Therefore, the 
proposed DSPKF algorithm is completely distributed and 
applicable to large-scale sensor network. A novel dynamic 
consensus filter is proposed, and its asymptotical convergence 
performance and stability are discussed. Finally, a numerical 
example is given to illustrate the proposed scheme. 
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weighted statistical linearization, target tracking, sensor network 

I. INTRODUCTION

With the advance in the fabrication technologies that 
integrate the sensing and the wireless communication 
technologies, tiny sensor motes can be densely deployed in the 
desire field to form a large-scale wireless sensor network 
(WSN). Distributed estimation and tracking through sensor 
networks is a problem with a large spectrum of applications [1-
3], such as surveillance, rescue, traffic monitoring, pursuit 
evasion games, etc. The well-known strategy concerning 
estimation and tracking is decentralized Kalman filtering, 
which involves state estimation using a set of local Kalman 
filters that communicate with all other nodes [4-5]. The 
information flow in the traditional decentralized Kalman 
filtering or sigma-point Klaman filtering scheme [6] is all-to-all 
with communication complexity of O(n2) which is not scalable 
for sensor network [7]. Usually the energy cost related to 
communication between sensor nodes and computation in each 
node is significant when using such an algorithm in sensor 
networks. Reducing the energy cost in communication and 
computation can significantly increase the node life span [8].  

Average consensus algorithms have proven to be effective 
tools for performing network-wide distributed computation task 
ranging from flocking to robot rendezvous as in the papers [9-
10] and the references therein. Recently in [11-12], Olfati-
Saber introduces a distributed Kalman filtering (DKF) 
algorithm that uses dynamic consensus strategy. The DKF 
algorithm consists of a network of micro-Kalman filters each 
embedded with a high-gain high-pass consensus filter. The role 

of consensus filters is fusion of sensor and covariance data 
obtained at each node. Very recently, the problem of estimating 
a simpler scenario with a scalar state of a dynamical system 
from distributed noisy measurements based on consensus 
strategies is considered in [13], the focuses are with the 
interaction between the consensus matrix, the number of 
messages exchanged per sampling time, and the Kalman gain 
for scalar systems. However, to the best the authors’ 
knowledge, the distributed estimation problem in a sensor 
network so far is mainly focused on the state estimation 
problem for linear Gaussian noises case, little effort is devoted 
to the distributed state estimation problem in the case of 
nonlinear system dynamic or non-Gaussian noises. 

In this paper, we focus on scalable or distributed sigma-
point Kalman filtering algorithms (DSPKF) based on the 
information form SPKF, which is derived from the weighted 
statistical linear regression property of SPKF. Moreover, each 
node in the network only communicates message with its 
neighbors and then estimates the global average information 
contribution by using local and neighbors’ information using a 
dynamic consensus strategy. Therefore, unlike the 
decentralized sigma-point Kalman filter (see e.g. [6]), the 
proposed filter is completely distributed and applicable to the 
large-scale network.  

II. PROBLEM STATEMENT
Consider a sensor network with N sensors that are 

interconnected via an overlay network. As is well known the 
sensor network can be modeled by using algebraic graph theory 
[14]. A vertex of the graph corresponds to a node and edges of 
the graph capture the dependence of interconnections. Formally, 
a graph ),( EVG  consists of a set of vertices 21,{ vvV ,

}Nv  indexed by nodes in the network, and a set of edges 
}),{( VVvvE ji , containing unordered pairs of distinct 

vertices. The set of neighbors of node i on graph G is defined 
as Ejiji ),(: . The degree of vertex i is defined as 

iid  and maximum degree is ii dd maxmax . Let  be the 
degree matrix, )( iddiag . The adjacency matrix J is the 
integer matrix with rows and columns indexed by the vertices, 
such as the ij-entry of J is equal to the number of edges from i
to j. Following [14], Laplacian matrix of a graph G is defined 
as JL .
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Considering the following nonlinear discrete-time system 
modeling a moving object in the sensor network 

)()),(()1( kkkxfkx
,N,,,ikkkxhkz iii 321),()),(()(

where nkx )( , m
i kz )(  are the state of the system and 

the ith measurement at the time step k , respectively; f and hi
are known, possibly nonlinear function of the state x(k) and 
time step k. The process noise pk)(  is assumed to be 

zero mean with covariance )(kQ , m
i k)(  is additive 

measurement noise of the ith sensor. It is assumed that )(ki  is 
zero mean with covariance )(kRi , and independent of the 
process noise )(k . To ease the analysis, we assume that all 
sensors are synchronized and have the same measurement rate. 

This paper focuses on design an appropriate filter capable 
of performing the target state estimation and tracking tasks 
with less communication and computational load. Note that the 
information flow in the traditional decentralized sigma-point 
Kalman filtering is all-to-all with communication complexity 
of O(n2) which is not scalable for large-scale sensor networks. 
Usually the energy cost related to communication between 
sensor nodes is significant when using such an algorithm.  

III. THE INFORMATION FORM SPKF 
In this section, the so-called information form sigma-point 

Kalman filter is derived from the weighted statistical 
linearization perspective.  

A. Weighted Statistical Linearization 
Now, consider a nonlinear function )(xgu  which is 

evaluated in r sigma-points ( rjj ,...,2,1, ), i.e. 

rjg jj ,...,2,1),(

where the points j  are chosen such that the mean and 
covariance are consistent with the prior information xx ˆ  and 

xxxx PP , with r

j jjx
1

, r

j jjxx xP
1

T
j x , and 1

1

r

j j . The statistical linearization is to 

find the linear regression bAxxg )(  that minimizes the 
weighted sum of squared errors [15] 

j

r

j

T
jjbA

1
minarg,

where the point-wise linearization error is defined as 
)( bA jjj . If we further define the following 

estimate of the posterior (Gaussian approximate) statistics of 
the propagated regression points j

r

j jjuuE
1

T
j

r

j jjuu uuPu
1

Var
T

j
r

j jjxu uxPux
1

,Cov

the weighted statistical linear regression solution to is the usual 
weighted least square fitting: 1

xx
T

xu PPA  and xAub . The 
mean and covariance of the linearization error  is 

0
1

bxAur

j jj

T
xxuu

T
j

r

j jj APAPP
1

Once the statistical linearization has been determined we 
now can approximate the nonlinear function )(xgu  as 

bAxxglin )(

where  is assumed to be zero-mean with covariance matrix 
P  and uncorrelated with x. Note that the statistical lineari-
zation in (18) provides the same approximation as (5)-(7): 

uxAuxAxgE lin 0)()(

uu
T

xxuu
T

xx
lin PAPAPAPAxg )()(Var

xu
T

xx
T

xuxx
Tlin PPPPAxxgx 1)(Var)(,Cov

B. Information form Sigma-Point Kalman Filtering 
From (10), the discrete-time system (1)-(2) can be 

linearized into the following formulations 

)()()()()1( kkbkxkFkx x

)()()()()( kkbkxkHkz i
z

ii
i

where the components corresponding to the state and the noise 
are separated. To obtain the linearization (14), (2n+1) sigma-
points jj kk ),|(  are generated according to 

)|(ˆ)|(0 kkxkk
n0

jxxj Pnkkxkk )|(ˆ)|( nj
nj ,..,2,1,

2
1

jxxnj Pnkkxkk )|(ˆ)|(
nnj 2

1

where  is a scaling parameter usually chosen as 0 or 3-n and 

jP  denotes the j-th row of the Cholesky decomposition of 
P. Then, each of the sigma-point is processed through the 
nonlinear transition equation (1). Moreover, to obtain the 
linearization (15), each of those (2n+1) sigma-points 

jj kk ),|1(  generated by (16) in a similar way is 
propagated through the nonlinear observation equation (2). 
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Based on the propagation of these sigma-points, the 
corresponding matrices in (14) and (15) can be computed from 
(10) as follows 

)|()|1,1()( 1 kkPkkkPkF xx
T

xx

)|()()|1()( kkxkFkkxkbx

)|1()|1()( 1 kkPkkPkH xx
T

xzi

)1|()()1|()( kkxkHkkzkb ii
zi

Furthermore, the total process noise )()()( kkk x

and the total observation noises )()()( kkk iz
iii  of ith 

sensor are zero-mean with covariance respectively 

)()|()()|1()(

)()()())((Var

kFkkPkFkkPkQ

kPkQkQk
T

xxxx

x

)()1|()()1|()(

)()()())((Var

kHkkPkHkkPkR

kPkRkRk
T
ixxizzi

z
iii

ii

i

where in second equation of above two derivations, covariance 
of the linearization error in (9) is used. 

Then, by define )|( kkYi  and )1|( kkYi  the information 
matrices of the local estimator and applying the standard 
information form Kalman filter to the linearized state-space 
(14)-(15), the information form sigma-point Kalman filter for 
the nonlinear system (1)-(2) can be derived as 

PREDICTION 

)()1|1(ˆ)()1|()1|(ˆ kbkkxkFkkYkky x
iii

11 )()()1|1()()1|( kQkFkkYkFkkY T
ii

UPDATE 

)()()()()1|(ˆ)|(ˆ 1 kbkzkRkHkkykky iz
ii

T
iii

)()()()1|()|( 1 kHkRkHkkYkkY ii
T
iii

As is well known, the sigma-point Kalman filter is a usual 
Kalman filter running on the very same linearized state-space. 
On this linear state-space, the information filter and the Kalman 
filter are strictly equivalent. Therefore, the information form 
sigma-point Kalman filter is equivalent to a sigma-point 
Kalman filter. 

Remark 1: Since the similar structural simplicity to the 
standard information filter is preserved, the sigma-point 
information Kalman filter can be easily extended to achieve 
decentralized estimation as described in [6]. However, as stated 
above, the information flow in the decentralized sigma-point 
Kalman filtering is all-to-all with communication complexity 
of O(n2) which is not scalable. Usually the energy cost related 
to computation in each node and communication between 

sensor nodes is significant when using such an algorithm. This 
motivates the research on the scalable sigma-point Kalman 
filtering for sensor networks in Section IV.  

IV. DISTRIBUTED SIGMA-POINT KALMAN FILTER 
We now consider the distributed sigma-point filtering based 

on average consensus. The main idea is to calculate global 
information contribution of the entire network from the local 
(neighbors’) information based on dynamic consensus strategy. 
First, we define the following average inverse-covariance 
matrix 

N

i
ii

T
i

N

i
i kHkRkH

N
kU

N
kU

1

1

1
)()()(1)(1)(

and the average measurements 

N

i

z
ii

T
i

N

i
i kbkzkRkH

N
ku

N
ku i

1

1

1
)()()()(1)(1)(

These averages can be estimated in each sensor node by 
using an average consensus filter proposed in [9] and [16]. 
Each node exchanges the local information contribution with 
its neighbors and estimates the global information contribution 
based on neighbor’s local ones through the consensus filter. 
Specifically, in a sensor node i, let )(ˆ kUi  denote the estimate 
of global average inverse-covariance matrix U(k), and )(ˆ kui

denote the estimate of average measurement u(k). A discrete-
time form consensus filter is designed as follows 

)1(x)(x)(y)(y)(y)(y k-kk-kkk ii
j

ijii
i

where  is the sampling time-step, the gain 0  is relatively 
large ( )1(~ 2O  where 2  is the second smallest eigenvalue 
of the Laplacian matrix L) for randomly generated ad-hoc 
topologies that are rather sparse [12]. )(y ki  is the consensus 
filter state of node i on time step k, which estimates the filter 
input )(x ki . As can be proofed, )(y ki  asymptotically 
converges to the average of the local input )(x ki  (see 
subsection B for details) 

N

i
ii k

N
k

1
)(x1)(y

Note that the output )(y ki  represents either )(ˆ kUi  or 
)(ˆ kui , and the input )(x ki  represents either Ui(k) or ui (k), we 

have 

N

i
ii kU

N
kUkU

1
)(1)()(ˆ
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N

i
ii ku

N
kuku

1
)(1)()(ˆ

Remark 2: In the continuous-time form, (25) can be 
reformulated as  

i
j

iji
i

- xyyy

We notice the consensus filter proposed in [12] has the 
following form: 

ii j
ij

j
ijii ---

dt
d xxyyxy

The difference between (29) and (30) is that the consensus 
filter in (30) does not need to have neighbor’s input 

)(x ij,k j , which certainly reduces the cost of 
communication. Moreover, in [16], the equation of the dynamic 
consensus algorithm is given as ij iji

i
- xyyy , which 

is a special case when assuming 1.

A. Procedure of the Distributed Sigma-Point Kalman Filter 
In terms of the above discuss, procedure of the proposed 

DSPKF can be summarized as follows. 

Algorithm 1. Distributed sigma-point Kalman filtering 

1: Initialization: )0(iU , )0(iu , )0(ˆ
iU , )0(ˆiu .

2: Update the local information contribution in terms of 

)()()()( 1 kHkRkHkU ii
T
ii

)()()()()( 1 kbkzkRkHku iz
ii

T
ii .

3: Consensus filter: 

Each node calculates the estimated global information 
contribution using (25). 

4: Update the local predictive information state and matrix 
according to (19)-(20).  

5: Estimate the local information state and matrix 

)(ˆ)1|(ˆ)|(ˆ kukkykky iii

)(ˆ)1|()|( kUkkYkkY iii .

Remark 3: Note in Algorithm 1 the message broadcasted only 
to the neighbor nodes in the set i  for ith sensor. In the 
contrary, the decentralized estimation algorithm proposed in [6] 
involves broadcasting the message to all the nodes in the 
network, which will congest the link. Especially in the large-
scale network or tiny sensor motes densely deployed wireless 
sensor network, we believe there are significant scalability 
advantages for the proposed sigma-point Kalman filtering 

strategy compared with the traditional schemes [6]. Moreover, 
since the dynamic consensus filter (25) is convergent provided 
that the network is connected (see the following subsection for 
details), this makes the distributed sigma-point filter more 
robust in the case of switching topology and link failure. 

B. Performance Analysis of the Consensus Filter 
In this subsection, we will prove that the proposed 

dynamics (26) is a high-pass filter and tracks the dynamic 
consensus with zero steady-state error. First, by stacking all 
node states iy  and input ix  into vectors y  and x ,
respectively, we get a matrix form from (26) 

xyy L

The corresponding MIMO transfer function is given by 

sLsI
s
ssH 1

)(X
)(Y)(

It can be seen from (32) easily that IsH
s

)(lim . Therefore, 

given the graph G is connected, the proposed consensus filter 
(25) is a high-pass filter.  

Furthermore, for a connected undirected graph G,
0

j ijL . That implies that 0yL . Thus, we have the 
following conservation property [16] for the above dynamics 
consensus 

N

i
i

N

i
i dt

d
dt
d

11
xy

Therefore, the instantaneous sum of the estimate variables 
iy  is equal to the instantaneous sum of the input variables ix . 

Intuitively, this is precisely the property we would expect in 
order to track the time-varying average consensus. This 
intuition is formalized in the following theorem. 

Theorem 1: Consider the dynamic system (26) with the MIMO 
transfer function (40). Suppose the input )x(s  has all its poles 
in the left half-plane, and at most one pole at s=0. Then, for all i,

0)(x1)(ylim
1

N

i
iit

t
N

t

That is, each agent tracks the dynamic consensus with zero 
steady-state error. 

Proof: Consider the error signal )e(t , and its Laplace 
transform 

)(X111)(Y)E( s
N

ss T

where 1  is the vector composed of N entries of scalar 1. The 
error )e(t  is the vector of deviations between the )(y ti
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estimates, and the instantaneous average of the )(x ti terms. 
Based on (35) and (32), we have the following MIMO transfer 
function from )(X s  to )E(s

T

N
sLsI

s
ssH 111
)(X
)(E)( 1

ex

Since the Laplacian is a symmetric matrix, it admits a 
spectral decomposition as 

N

i
ii PL

1

where the i  terms are real eigenvalues, and the Pi terms are 
orthogonal projections onto mutually orthogonal eigenspaces. 
It is a fact from graph theory that connectedness of G implies 
the following properties: 1) 01 ; 2) NP T111 ; and 3) 

01  for all i>1. Then (36) can be reformulated as 

N

i
i

i

T
N

i
i

i

T P
s

s
N

P
s

s
N

sH
22

ex 111111)(

This transfer function has a single zero at s=0, and all the 
terms in the summation are stable. Thus, for an arbitrary stable 
input signal )(X s  with at most one pole at s=0, the Final Value 
Theorem implies that 0)e(t  as t . This completes the 
proof.                                                                                       

V. SIMULATION EXAMPLE 
The proposed sigma-point filter is applied to tracking a 

target moving on noisy circular trajectories. Consider N=50 
sensors randomly deployed in the query area, which is 
50m 50m with the coordinate from (-25, -25) to (25, 25). The 
layout of the network is illustrated in Fig. 1, where a ‘o’ stands 
for the location of a sensor. In the particular setup of Fig. 1, 
there are 230 links with 8maxd . Consider a target with the 
following dynamics adopted from [12] 

cc GxFx

with 02;20cA , and 2IGc . We use the discrete-time 
model of the target with parameters 

3
3

2
2

2 62 ccc FFFIF cGG

The step-size is 025.0 . We adopt the following 
measurement model for the ith sensor [18] 

)()(),()(),(/)( kiyixkykxaky issi

where 40a  is the assumed known amplitude of the sound 
source, )(),()(),( iyixkykx ss  denoting the distance 

between the target and the ith sensor, and the covariance of 
)(ki  is ikRi )(  for i= 1, 2, …, 50. 

The simulation is performed 100 Monte Carlo runs each 
with 200 time steps. The Root of Mean Square Error (RMSE) 
is adopted to evaluate the performance. We compared the 
proposed algorithm (referred DisSPKF thereafter) with 

1) centralized sigma-point Kalman filter (CenSPKF), in 
which the original measurement of each node is transmitted to 
a fusion center, then the SPKF is adopted to estimate the target 
state; and 

2) decentralized sigma-point Kalman filter with a track 
fusion center (DeFusion), in which each node in the network 
estimate the target’s track by SPKF in terms of local 
measurement, then the fusion center combines the local 
estimate according to weighted average approach. 

Simulation results for RMSE in x-direction are compared in 
Fig. 2 and Fig. 3. In Fig. 2, for DisSPKF, the i=49 node with 
degree 649d  is shown; for CenSPKF and DeFusion, the 
measurements or the estimation of all nodes are sent to the 
fusion center, respectively. In Fig. 3, RMSE in x-direction by 
DisSPKF from node i=40 ( 140d ) is compared with those by 
CenSPKF and DeFusion. Obviously, the proposed algorithm 
yields identical, if not better, performance compared to the 
DeFusion strategy. Furthermore, both DisSPKF and DeFusion
performance very closely to the CenSPKF, which is minimum 
mean squared error estimation (MMSE) in the case of Gaussian 
white noise. The RMSE in y-direction performs similarly, thus 
omitted for space reason. Of course, the difference among 
DisSPKF, DeFusion, and CenSPKF is that the latter two 
algorithm need the communication between all the local nodes 
and the fusion center, hence are not scalable for large-scale 
sensor network. While the proposed DisSPKF is scalable due to 
that it estimates the global average information contribution by 
using information from its neighbors rather than from all nodes 
in the network. The results from other nodes have a similar 
pattern and are omitted here. 

Estimation error by itself is no longer the only measure of 
performance in distributed estimation in sensor networks. In a 
peer-to-peer estimation architecture, no particular fusion 
centers exist and every node is supposed to known the estimate 
of the target state. The agreement of estimate of every node 
permits the query on any node in the network about the 
estimation. In Fig. 4, the consecutive snapshots of estimates of 
all nodes are shown. The estimates appear as a cohesive set of 
particles that move around the position of the target. 

VI. CONCLUSIONS 
The distributed sigma-point Kalman filtering problem for 

target tracking in sensor networks has been investigated based 
on average consensus strategy. Each node estimated the global 
average information contribution by using local and neighbors’ 
information. A novel dynamic consensus algorithm has been 
proposed, with its asymptotical convergence performance 
explored. Furthermore, the proposed DSPKF is applicable to 
the large-scale sensor network. A numerical example has been 
given to illustrate the effectiveness of the proposed scheme. 
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Fig. 1. A sensor network with 50 nodes and 230 links.

(m
)  

(m) 

Fig. 2. Compared RMSE in x-direction by Dis. SPKF from 
node i=49 (degree=6) with by Cen. SPKF and De.Fusion.

Iteration 

(m
)

Iteration 

(m
)  

Fig. 3. Compared RMSE in x-direction by Dis. SPKF from 
node i=40 (degree=1) with by Cen. SPKF and De.Fusion.

Fig. 4. Snapshots of the location estimates from all nodes on 
the 1, 60, 120, and 200th iteration in (a)-(d), respectively.

(a) (b) 

(c) (d) 
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