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Abstract—Outdoor, unstructured and cross-country 
environments introduce several challenging problems such as 
highly complex scene geometry, ground cover variation, 
uncontrolled lighting, weather conditions and shadows for vision-
based terrain classification of Unmanned Ground Vehicles 
(UGVs). Color stereo vision is mostly used for UGVs, but the 
present stereo vision technologies and processing algorithms are 
limited by cameras’ field of view and maximum range, which 
causes the vehicles to get caught in cul-de-sacs that could possibly 
be avoided if the vehicle had access to information or could make 
inferences about the terrain well beyond the range of the vision 
system. The philosophy underlying the proposed strategy in this 
paper is to use the near-field stereo information associated with 
the terrain appearance to train a classifier to classify the far-field 
terrain well beyond the stereo range for each incoming image. To 
date, strategies based on this concept are limited to using single 
model construction and classification per frame.  Although this 
single-model-per-frame approach can adapt to the changing 
environments concurrently, it lacks memory or history of past 
information. The approach described in this study is to use an 
online, self-supervised learning algorithm that exploits multiple 
frames to develop adaptive models that can classify different 
terrains the robot traverses. Preliminary but promising results of 
the paradigm proposed is presented using real data sets from the 
DARPA-LAGR project, which is the current gold standard for 
vision-based terrain classification using machine-learning 
techniques. This is followed by a proposal for future work on the 
development of robust terrain classifiers based on the proposed 
methodology.     
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I. INTRODUCTION 

Autonomous navigation system requires a vehicle to move 
reliably, at a desired speed from a starting location to a goal 
point (optionally via waypoints) avoiding obstacles. In order to 
realize autonomous capability, the vehicle needs a set of 
sensors and algorithms to estimate the vehicle’s position and 
orientation (pose), and to predict the traversability of the 
terrain. In this paper, we use color stereo vision as the main 
sensor that can provide not only 3D perception of terrain 
geometry but also color and texture information.  

The present stereo vision technologies and processing 
algorithms are limited by cameras’ field of view and maximum 
range. As of now, the maximum range of a typical stereo vision 
system comprising of short base line is effectively up to about 

10 - 15 meters [1]. Beyond this, the accuracy of the estimates 
degrades as the distance from the camera pair increases. This 
near-sightedness with stereo vision often causes the vehicles to 
get caught in cul-de-sacs that could possibly be avoided if the 
vehicle had access to information or could make inferences 
about the terrain well beyond the range of the vision system 
[1]. This problem can be alleviated by associating the terrain 
geometry regions close to the robot with visual appearance 
mostly in terms of color and/or texture and use this association 
to segment terrain and obstacles in the far-field. However, 
finding a global correlation between terrain geometry 
characteristics and appearances that can be broadly applied is 
impossible at present due to the complex variability of 
appearance on the type of the terrains and weather conditions in 
outdoor, unstructured and cross-country environments. 
Therefore, almost any hand-designed deterministic and rule-
based system has proved to be futile as it is not robust to 
changing environments and not able to adapt to unforeseen 
ground cover variations. Machine learning is a promising 
paradigm in order to replace hand-designed deterministic 
vision-based terrain classification systems for UGVs. The 
ALVIN (Autonomous Land Vehicle In a Neural Network) [2] 
by Pomerleau was one of the pioneering learning based 
approach to robot navigation. A supervised neural network is 
trained using image data associated with steering angle for road 
following by watching a human driver’s actions when driving 
on roads of varying properties. Manduchi et al. [3] have 
successfully implemented learning color distributions of terrain 
classes by training over a large number of images taken under 
widely different illumination conditions. Since the outdoor off-
road environment is highly unconstrained, collecting and hand 
labeling of a large amount of data may be difficult, time 
consuming and impractical in many real world applications and 
finally this type of learning will be limited to the certain 
environment types. 

Recently, Self-Supervised Learning (SSL) has been 
introduced which is proving to be essential for many real-time 
navigation systems. Self-supervised learning is an approach for 
designing a system that can train on the incoming data stream, 
adapting to unknown environments without using any hand-
labeled training data. The terms Online learning or Near-to-Far 
learning are often used to refer to Self-Supervised Learning. 
Thrun et al. [4] use a combination of self-supervised learning 
and reverse optical flow technique for adaptive road following. 
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The self-supervised learning takes information from the near-
range local sensors such as physical bumpers and infrared 
range sensors about objects and terrain types and labels input 
data without human assistance. When an object is registered in 
the near-field of local sensors, the optical flow procedure is 
called to trace the view of that object in the current image back 
to where it appeared first in the field of view of the robot in 
order to extract visual appearance of the object at a greater 
distance. This information is then used to train the Mixture of 
Gaussian classifier. Therefore, the robot learns the visual 
characteristics of objects at different distances for making early 
navigation decisions.  

More recently, single-model-per-frame near-to-far learning 
was addressed by the LAGR - Learning Applied to Ground 
Robots. Several teams in DARPA-LAGR (API [5], JPL [6], 
SRI [7] and NIST [8]) exploited standard Near-to-Far learning 
using single-model-per-frame approach. The near-to-far 
learning refers to an approach of generating near-field 
traversability labels from each incoming pair of stereo images 
using only the near-field stereo information. Next, these labels 
are associated with the visual appearance features to train a 
classifier, and the model obtained is used to classify the far-
field terrain well beyond the stereo range. Later, this model is 
discarded. Therefore, one full training and classification cycle 
are completed on every incoming pair of stereo images. 
Although this single-model-per-frame approach can adapt to 
the changing environments concurrently, it lacks memory or 
history of past information. It is quite common that the 
autonomous robot moving in unstructured and cross-country 
environments may return back to the same or similar terrain 
previously traversed (e.g. recurring contexts). Moreover, it is 
worth mentioning that at each frame the robot can only sense 
the world partially so it cannot be expected that it learn 
everything at once even if it adapts to the changing 
environment on-the-fly. To address the shortcomings of 
common single-model-per-frame near-to-far learning, Procopio 
et al. [9] introduce near-to-far Best-K ensemble algorithm. This 
ensemble learns and stores terrain models for application in 
future terrains. For each incoming frame, a single model is 
trained on the appearance of near-field stereo labels, and then 
this model is added to the model library. Later, when a new 
image is received, all models in the library are evaluated on the 
new image. They are ranked by their performance on near-field 
validation data provided by stereo. The better a model performs 
on validation data, the more weight it will receive. Then the 
best K models are selected and the outputs of these models are 
combined using weighted average method. They use linear 
SVM as their baseline technique. A drawback of their method 
is that it has memory loss over time for long courses. Another 
drawback is that the evaluation of all models of the library on a 
new incoming frame is computationally expensive when the 
robot moves for long time.  

In this paper, we describe an approach using an online, self-
supervised learning algorithm to develop online model to 
classify the different terrains the robot traverses. This online 
learning can train incrementally over time on the incoming data 
stream, adapting to unknown environments without using any 
hand-labeled training data while improving its performance 

with each new training example. It is able to learn new 
knowledge while keeping previously learned knowledge. 

II. ONLINE SELF-SUPERVISED TERRAIN CLASSIFICATION

      In online, self-supervised learning, stereo vision reading is 
used to find the ground plane (traversable region) and obstacles 
(non-traversable region) in the near-field. The visual 
appearances of the near field regions are then associated with 
traversability (supervisory labels provided by stereo vision) as 
inputs for training a classifier. The trained classifier is then 
applied over all remaining regions of the image in order to 
estimate obstacles and traversable terrain well beyond the 
stereo range. The data flow of online, self-supervised learning 
used in our system is illustrated in Fig. 1. This includes pre-
processing, ground plane estimation, auto labeling, feature 
extraction, balancing, scaling, online training and classification.  

Figure 1. Data flow of Online Learning 

A. Ground Plane Estimation and Obstacle Detection 
The vision sensor used in our experiments is a short 

baseline Point Grey Bumblebee color stereo vision system. We 
use Triclops SDK, a Stereo Vision Software Development Kit 
(SDK) provided by Point Grey for stereo processing [10]. 
There are two main processing blocks in this library. The first 
one is the image pre-processing block that applies a low-pass 
filter, rectifies the images and performs edge detection. A 

3184



sample of rectified RGB image is shown in Fig. 2. A pair of 
pre-processed images is used as an input to the second block 
that performs stereo matching using Sum of Absolute 
Differences correlation method (SAD) to create a disparity 
map. The obstacles and ground plane estimator module applies 
fast RANSAC algorithm directly to the disparity image to 
estimate the dominant ground plane. First, the invalid pixels in 
current disparity map are removed (0 and 255 values). Second, 
3 points are randomly selected directly from the near-field of 
the disparity image. A plane is fitted to these 3 points and then 
ranked by the number of points that are close enough to the 
plane (known as supporting points). A ground plane with 
maximum number of supporting points is selected as the 
dominant ground plane. Complete details of the ground plane 
estimation method are given in [11]. Once the ground plane is 
estimated, any point whose measured disparity is not within 
some threshold of the expected ground plane disparity range 
will be considered as an obstacle. This threshold is found by 
several tests in typical outdoor environments. Therefore, lower 
part of obstacles may not be detected as their disparity 
differences may not be significant enough. The ground plane 
(shown in green) and obstacles (shown in red) detected in the 
near-field are projected back to the original RGB image are 
depicted in Fig. 2. 

B. Auto-Labeling 
Once the ground plane and obstacles are estimated in the 

disparity image, their corresponding image pixels in the 
reference image (right image) are labeled. In order to reduce 
computation time, a 320x240 = 76800 pixels color image is 
quantized into patches of size 10x10. We set a 20–pixel margin 
for each side of an image (because invalid disparity values are 
often located in the side of images) and then decompose the 
entire image into 560 patches of size 10x10. Then, the lower 
half of the frame is selected as the supervision module (280 
patches). The number of ground plane and obstacle labels is 
counted in each patch, and the patch is assigned traversability 
label of either obstacle or ground plane based on the number of 
whichever is greater. In order to fail on the safe side, if the 
numbers of both labels are the same the patch is marked as an 
obstacle. Fig. 2 shows a labeled image using patches size of 
10x10. Only near-field stereo range is labeled (280 patches). 

Figure 2. Original RGB image (top left), stereo disparity image (red to blue 
indicating decreasing disparity) (top right), ground plane (green) and obstacle 

(red) detection (bottom left), Traversability labels using fixed size patch 
traversable (green), non-traversable (red) (bottom right) 

C. Feature Extraction 
      Next, a list of descriptors also known as a feature vector is 
extracted for each labeled patch. Here, we carry out an in-
depth comparative analysis verified by experiments for 
common and state-of-art feature extractors. A comparison of 
different representations for feature vectors is shown in table I. 
It compares results (FP-rate and F-score) of two different data 
sets for one baseline classifier algorithm (SVM-Linear) using 
different sets of features. The most common color spaces 
which are good enough to describe all the ranges of colors are 
RGB, HSV (Hue, Saturation and value) and L*a*b (L stands 
for Luminance, while “a” and “b” represent the two color 
areas). Table I shows the baseline classifier performances 
based on using these 3 colors spaces with 2 commons color 
descriptors, mean and standard deviation and color histograms. 
The mean and standard deviation for three color channels 
produce a feature vector of depth 6. Besides, the fixed number 
of bins (here 5 and 8 bins) are used for 1D color histograms 
results respectively yielding feature depths of 15 or 24 values 
(three channel * five (eight) bins per channel). As it is shown 
in table I, the statistics information of L*a*b color space 
performs slightly better than the other models. Results of using 
only texture features are also illustrated in table I. The log 
Gabor filters with different orientations (3-4-8) and different 
scales (5-4-3) (respectively 15, 16, and 24 filter banks) are 
compared and tabulated. The best result is Log Gabor filter 
with 4 orientations and 4 scales, which covers the whole range 
of possible textures in outdoor environments. We measured 
mean and standard deviation of texture features in each patch 
of an image. Next, we combine the best color representation 
and the best texture representation (shown as red color in table 
I) in one feature vector with depth of 38. Before applying this 
feature vector to a classifier, the data has to be normalized to a 
specific range such as [0,1]. There are many normalization 
methods for scaling data such as Min-Max, Z-score, and 
decimal normalization. The algorithm used for this study is 
Min-Max normalization, which is simple and fast for real-time 
applications.  

D. Evaluation Measurements 
      The efficiency of the learning applied to computer vision 
can be measured qualitatively by means of visual perception or 
quantitatively as the percentage of corrected classified pixel to 
total number of pixels. However, when a data set is 
unbalanced (when the number of samples in different classes 
varies considerably), the error rate of a classifier is not 
representative of the true performance of the classifier. On the 
other hand, human eyes simply can tell which classifiers 
perform qualitatively better than the others do, but the visual 
perception may fail to separate classifier when they perform 
almost the same. For quantitative evaluation measurements, 
there are many methods such as confusion matrix, Receiver 
Operating Characteristic (ROC), and the Area-Under-an-ROC-
Curve (AUC). To evaluate classification techniques in this 
study, we use two metrics based on confusion matrix elements. 
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Table I. Comparison of different features using baseline classifier 

Dataset 

Color Texture 

RGB HSV L*a*b 
Gabor15 Gabor16 Gabor24 

M/Std Hist5 His8 M/Std Hist5 His8 M/Std Hist5 His8 

DS1B 
FP-rate 0.11 0.09 0.10 0.12 0.12 0.12 0.07 0.21 0.19 0.10 0.10 0.11 

F-score 0.86 0.87 0.89 0.93 0.93 0.93 0.95 0.80 0.86 0.83 0.84 0.84 

DS2A
FP-rate 0.23 0.27 0.25 0.26 0.30 0.29 0.21 0.53 0.54 0.14 0.14 0.15 

F-score 0.88 0.87 0.87 0.88 0.87 0.86 0.90 0.85 0.84 0.91 0.91 0.91 

Avg
FP-rate 0.17 0.17 0.17 0.19 0.21 0.20 0.14 0.37 0.36 0.12 0.12 0.13 

F-score 0.87 0.87 0.88 0.90 0.9 0.89 0.92 0.82 0.85 0.87 0.87 0.87 

Table II. Confusion Matrix 

Predicted class 

T N 

True Class 

T TP FN 

N FP TN 

      The elements of the confusion matrix are the number of 
true positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN).Precision is the proportion of the 
predicted positive cases that were correct, as calculated using 
the equation: 

                  Precision =                                (1)   
       
      In addition, recall or true positive rate (TPR) is the 
proportion of positive cases that are correctly identified, and is 
calculated using the equation: 

                                       Recall =                           (2)

      Precision and Recall are better descriptors when one class 
is rare. To combine precision and recall in one metric we use 
F-score, which is a harmonic average of precision and recall. 
The weighted harmonic mean of recall(r) and precision (p) is: 

                                     F-score =                              (3)

      F-score commonly uses “average” of precision and recall 
[12] (i.e. =1). In outdoor environments, where the cost of 
classifying an obstacle as ground point is too high, F-score is 
unable to rank the classifiers with their False Positive rate. 
Therefore, the FP-rate is generated separately and added to F-
score as one of our evaluation performance metrics. The 
evaluation performance metrics are used to measure 

differences between the classification output and the ground 
truth images hand-labeled by a human. 

                                      FP-rate =                                 (4) 

E. Classifier Training 
      Most existing learning algorithms don’t allow incremental 
learning. They were designed in such a way that if a new data 
become available, they will tend to forget old information, re-
initialize and try to train on new data. None had the ability to 
be able to learn new knowledge while keeping previously 
learned knowledge. This problem is known as the stability-
plasticity dilemma. It means that how a learning system can 
remain plastic (adaptive) in response to new, unseen 
information, yet remain stable in response to irrelevant 
information and can filter out them. The adaptive resonance 
theory (ART) was initially developed by Grossberg [13] as a 
response to the stability-plasticity dilemma. There are several 
architectures in the ART family including unsupervised 
learning architectures to perform clustering like ART1 [14], 
and FuzzyART [15], supervised learning architectures like 
ARTMAP [16] and Fuzzy-ARTMAP (FAM) [17]. 

      In order to address the problem of baseline single-model-
per-frame approach, we use an online, self supervised learning 
method called Fuzzy ARTMAP (FAM). Fuzzy ARTMAP is a 
class of neural network architectures that perform incremental 
supervised learning. The network is capable to add new data 
items without the need of re-training. Fuzzy ARTMAP 
architecture includes a pair of unsupervised Fuzzy ART 
modules, ARTa and ARTb, linked via an inter-ART module 
called map field that implements a supervised learning control 
process between ARTa and ARTb categories and internal 
vigilance test that ensures autonomous system works in real-
time as shown in Fig. 3. A summary of the Fuzzy ARTMAP 
(FAM) is given below: 

1) Initialization: 
      The performance of ART networks depends on a learning 
rate  [0, 1] and a vigilance parameter . In FAM, there are 
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two additional parameters: the baseline vigilance known as 
and the vigilance parameter of map field . The baseline 

vigilance parameter  is set to zero initially to allow broad 
generalization, coarse categories, and abstract memories. On 
the other hand, set to one to have fine categories and detail 
memories for output. 

2) Input Pattern: 
      The first network ARTa takes the stream of input data (a) 
and ARTb receives output classes (b) where they are the 
correct prediction of given inputs. 

3) Category Selection: 
      When a pattern is applied to ARTa, a category will be 
chosen through the bottom-up and up-bottom ART 
competition. If the input vector does not match any stored 
category within a given vigilance parameter, then a new 
category is created by storing a new pattern similar to the input 
vector. 

4) Map Field Activation: 
      The map field abF  is activated when one of the ARTa or 
ARTb categories is activated. If both ARTa and ARTb are 
active, the map field becomes active only if ARTa predicts the 
correct category as ARTb. In the case of any mismatches 
match tracking is raised. 

5) Match Tracking: 
      ARTMAP has the mechanism that if the prediction failed 
at ARTb, the vigilance parameter will be increased by 
minimum amount necessary to correct error. Initially, 
vigilance parameter equals baseline vigilance. This 
feedback control mechanism is called match tracking. Match 
tracking enables ARTMAP to learn a prediction for rare 
events. 

Figure 3. Fuzzy ARTMAP architecture [17] 

III. EXPERIMENTAL RESULTS

A. Baseline Learning 
To quantify the performance of the online, self-supervised 

learning technique, we compare it against a baseline scenario of 

single-model-per-frame near-to-far learning using SVM-linear, 
which is simple with reasonable computational demands for 
real-time applications. 

B. Datasets 
      For experimental results presented in this study, we have 
used image frames logged during live runs of the robot in the 
LAGR program, which have been made publicly available on 
the Internet [18]. The datasets used here were taken from three 
different scenarios, each with two separate lighting conditions. 
Each scenario has 100 image sequences. Each frame consists 
of a raw RGB image, raw disparity information and a hand-
labeled image. Each pixel in a hand-labeled image indicates a 
label: 0 means ground plane, 1 means obstacle, and 2 means 
unknown. If it is hard for a human to assign a class label for a 
pixel, or it is from “don’t care” regions (e.g. sky) is labeled as 
an unknown pixel. Representative images from datasets are 
shown in Fig. 4. 

Figure 4. Representative images from six datasets [18] 

Figure 5. RGB image (top left), ground plane estimation (top middle), hand-
labeled ground truth (top right), Online fuzzy ARTMAP learning (bottom 

left), SVM-Linear learning-baseline (bottom right)-DS1B 

    Fig. 5 and 6 show examples of online fuzzy ARTMAP 
learning against baseline SVM-Linear. The results for the 100 
frames of dataset DS1B are shown in Fig. 7. The overall FP-
rate of baseline SVM is “1” for the first 30 frames, though 
Online ARTMAP can learn new knowledge from each frame 
while keeping its previous models .On the whole, It has less 
false positive error rate and higher F-score rate compared to 
baseline SVM.  
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Figure 6. RGB image (top left), ground plane estimation (top middle), hand-
labeled ground truth (top right), Online fuzzy ARTMAP learning (bottom 

left), SVM-Linear learning-baseline (bottom right)-DS3A 

Figure 7. SVM-Linear vs. Online fuzzy ARTMAP learning, DS1B 

IV. CONCLUSIONS AND FUTURE WORKS

To address the shortcoming of basic near-to-far learning, 
we have described an online, self-supervised Fuzzy ARTMAP 
(FAM) learning algorithm to develop an adaptive model to 
classify the different terrains the robot traverses. To the best of 
author’s knowledge, this is the first study, where FAM is used 
for self-supervised terrain classification for UGVs. This online, 
self-supervised learning approach can train incrementally over 
time on the incoming data stream, adapting to unknown 
environments without using any hand-labeled training data 
while improving its performance with each new training 
example. It is able to learn new knowledge while keeping 
previously learned knowledge. For analysis of performance of 
the proposed methodology, we have used image frames logged 
during live runs of the LAGR project, which is the “gold 
standard” for learning based terrain classification. 

Stereo information as supervision for our online learning 
may misclassify some parts of objects as ground plane (e.g. 
foot of obstacles – transition from obstacle to ground). 
Therefore, the input data to online ART learning may be noisy 
and this causes category proliferation. Moreover, when the 
robot keeps moving, the model library grows gradually. These 
will make it very difficult to adapt online when terrain 
appearance changes. Future work is aimed at algorithms with 

strong theoretical underpinnings to autonomously decide which 
categories are relevant, which need to be removed from library 
and how to select from existing categories and how to combine 
them, or to evolved or created any new category. 
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