
Formal Modeling and Synthesis of Event-Transferring Communication
among Decentralized Supervisors for Discrete-Event Systems

A. Mannani and P. Gohari

Abstract— This work proposes to model and synthesize
Event-transferring communication among decentralized super-
visors for a Discrete-Event System (DES) within the framework
of Distributed Supervised Discrete-Event Systems (DSDESs),
which was introduced by the authors. This relies on the
Polynomial Dynamical System (PDS) representation of DSDESs,
which reveals the informational dependencies among super-
visors. To serve these dependencies, communication between
every two supervisors is modeled by a communication event,
whose semantics is defined by a map from observable events
of the issuer of the communication to its set of event-encoding
variables. Thereby, the synthesis of communicating decentral-
ized supervisors is reduced to the design of these maps using
standard algebraic tools. The approach is illustrated through
formal synthesis of an information policy.

I. INTRODUCTION
Supervisory Control Theory (SCT) seeks to minimally

restrict the behavior of a DES, called plant, within the
language of a given specification by designing a (centralized)
supervisor, which disables some of the plant’s transitions [1].
In the absence of global observation of the plant’s behavior,
a finite set of decentralized supervisors, each observing
the plant’s behavior locally, have to be designed such that
their synchronous supervision leads to the same closed-loop
behavior which is enforced by the centralized supervisor. If
the specification is not coobservable [2], i.e. some illegal
plant’s moves cannot be distinguished from legal moves by
any of the local supervisors which can disable them, the
local supervisors need to communicate amongst them to
disambiguate their observations and meet the specification.

Inspired by control over networks [3], the study of
communication should specify the sender, receiver, content,
time, and the order of communication [4]. Most pioneering
researches, listed in [5], rely on behavioral formulations and
are limited to high-level algebraic structures of DESs. In the
authors’ viewpoint, this study would be more fruitful if the
algebraic structures of the supervisors are utilized in more
details. The idea is to encode the states of the corresponding
centralized supervisor in a distributed way and represent
its observation and control tasks as dynamic and algebraic
equations in symbolic form. This makes the dynamics-related
information amenable to algebraic characterizations and the
study systematic, simplified and practically appealing [6].

Symbolic systems and PDSs have been of interest since
the early days of SCT to formulate DES centralized control

This work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

The first author is with the ECE Dept., Concordia University, Montreal,
QC, Canada, H3G 1M8, amin man@ece.concordia.ca. The sec-
ond author was with the same institute, but unfortunately passed away in
November 2008.

problems [7], [8] or to improve the associated computational
efficiency [9], [10]. However, we use PDSs to model, synthe-
size, and analyze communicating decentralized supervisors.

In [6], the authors introduced distributed EFSM frame-
work which, using an Agent-wise Labeling Map (ALM),
represents the state structure of a centralized supervisor in
a distributed way, and captures its observation and control
information as guards and actions over Boolean variables, re-
spectively. DSDES framework, then proposed in [5], employs
guard and updating functions, defined on integer labels.
Utilizing the meaningful and compact representation of a
state, DSDES framework improves mathematical proofs and
computations and, on top of its qualitative-like vantage point
to system representation, it can be readily put into concrete
implementation using Boolean variables.

This paper continues the authors’ work on modeling
and synthesis of communicating supervisors within DSDES
framework [5]. The content of communication can be (en-
codings of) states, events, or both. Whereas the first type is
discussed in [11], the second type, called event-transferring
communication, is modeled and synthesized here. Accord-
ingly, communication between supervisors serves to inform
the receiver of the event observed by the sender, and is
used by the receiver to reevaluate its guard or updating
functions. This is modeled as a “communication event,”
whose semantics is determined as a map from the sender‘s
observable events to its event-encoding Boolean variables.
Thus, the synthesis of decentralized supervisors is reduced to
the design of these maps. This is illustrated by synthesizing
an information policy, which is justified on an example.

Section II reviews the DSDES framework of [5] and
its PDS representation of [11]. Section III models event-
transferring communication and Section IV presents the
synthesis of such communication and justifies it.

II. DSDES FRAMEWORK AND ITS PDS REPRESENTATION

Let Σ be a finite alphabet and L ⊆ Σ∗ be plant’s
behavior, or simply plant. Consider a network consisting of
distributed sensors and actuators as means to observe and
control, respectively, the plant’s behavior for n supervisors.
Denote by Si the i’th supervisor in the network, where
i ∈ I = {1, 2, . . . , n}. Associate with Si observable
and controllable event subsets Σo,i and Σc,i, respectively,
where Σo,i,Σc,i ⊆ Σ. Thus, from the viewpoint of the
i’th supervisor we have Σuo,i = Σ \ Σo,i and Σuc,i =
Σ \ Σc,i. Define Σi = Σc,i ∪ Σo,i. Associated with each
event σ denote by Io(σ) the set of all sensors which can
observe σ, i.e. Io(σ) = {i ∈ I | σ ∈ Σo,i}. We define

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3337

the centralized supervisor, denoted by S, to be one which
has access to all sensors’ observations and can exercise
control over all controllable events. For this supervisor we
define Σc =

⋃
i∈I Σc,i, Σo =

⋃
i∈I Σo,i, Σuo = Σ \ Σo,

Σuc = Σ \ Σc, and P : Σ∗ → Σo
∗. S is modeled by an

automaton S = (R,Σ, ξ, r0, Rm), where R is the finite set
of states, r0 is the initial state, Rm is the set of marked
states, and ξ : R×Σ → R is the partial transition function1.
Let N = {0, 1, 2 · · · }. Denote by v = (v1, . . . , vn) ∈ N

n a
vector of n natural numbers and let 0 denote a vector of n
zeros. Consider a map πi : N

n → N such that πi(v) = vi

which picks the ith component of v, and extend πi to a
map pwr(Nn) → pwr(N). The prefix closure of a language
L ∈ Σ∗ is shown by L.

A Distributed SDES (DSDES) is denoted by D =
{Di}i∈I , where each quadruple Di = (Σ, L,Ai,Gi) is
defined as follows. Σ is a finite set of events (alphabet),
L is a (regular) language defined over Σ, i.e. L ⊆ Σ∗,
Ai : Σi × N

n → N is an updating function, and Gi : Σi →
pwr(Nn) is a guard function. For convenience we extend the
domain of Ai and Gi to the alphabet of all events. Define
Âi : Σ × N

n → N and Ĝi : Σ → pwr(Nn) according to: for
σ ∈ Σ and v ∈ N

n,

Âi(σ, v)=
{Ai(σ, v) ;σ ∈ Σi

πi(v) ;σ /∈ Σi
, Ĝi(σ)=

{Gi(σ) ;σ ∈ Σi

N
n ;σ /∈ Σi

(1)

In the natural recursive way, Ai is extended to Âi : Σ∗ ×
N

n → N. We shall use Ai and Gi to denote Âi and Ĝi,
respectively. Define a map A : Σ∗ × N

n → N
n recursively

as follows: for all v ∈ N
n, s ∈ Σ∗, and σ ∈ Σ

A(ε, v) = v; A(sσ, v) =
(
Ai(σ,A(s, v))

)
i∈I

. (2)

Associated with each index i ∈ I , a DSDES is equipped
with guard and updating functions to capture control and
observation, respectively. Control for each Di is based upon
n-vectors of natural numbers; component i of a vector is
updated with Ai.

The semantics of D is as follows: to each string s ∈ Σ∗ a
label A(s, 0) is attached. Thus, starting recursively from ε,
if s is in the behavior of D and σ ∈ Σ is eligible in L after
s (i.e. sσ ∈ L), then σ is “enabled” if the label of s is in the
image of σ under the guard function, i.e. A(s, 0) ∈ G(σ).
When σ is taken, the label of sσ is computed according to
A(sσ, 0) = A(σ,A(s, 0)). The behavior of D is a subset
of L. A DSDES is obtained by guarding events, i.e. limiting
their occurrence, based on the observation of event sequences
of the guarded language. Thereby, a DSDES is equipped
with means to control and observe a given behavior L; in
other words, a DSDES may be used to implement the control
decisions of an already designed supervisor for L, and thus
it is suitable to model a closed-loop DES.

Problem 1 DSDES Control problem: Let a proper, feasible
and admissible centralized supervisor S = (R,Σ, ξ, r0, Rm)
enforce a specification E for a plant G=(Q,Σ, δ, q0, Qm).
Design guard and updating functions for each Di =
(Σ, Lm(G),Ai,Gi) s.t. L(D) = E and Lm(D) = E. �

1Same hold for any recognizers such as G = (Q, Σ, δ, q0, Qm), too

The solution to this problem relies on the assignment of
integer vector labels to the states of S using ALMs. An ALM
for S is a map � : R → pwr(Nn) such that 0 ∈ �(r0),

• ∀r, r′ ∈ R. r �= r′ ⇒ �(r) ∩ �(r′) = ∅, and
• ∀r, r′ ∈ R, r �= r′, ∀σ ∈ Σo, ∀v ∈ N

n. v ∈ �(r)∧r′ =
ξ(r, σ) =⇒ ∃!v′ ∈ N

n. v′ ∈ �(r′) ∧
[∀i ∈ Io(σ). vi �= v′

i] ∧ [∀j ∈ I \ Io(σ). vj = v′
j].

The fact that a finite ALM, i.e. one with finite image, exists
for every S [6], paves the way for defining the updating
functions associated with D. To this end, a map μ : Σ×N

n →
N

n can be defined such that
∀r, r′ ∈ R, ∀σ ∈ Σ, ∀v ∈ N

n. v ∈ �(r) ∧ r′ = ξ(r, σ)
=⇒ [μ(σ, v) ∈ �(r′) ∧ (∀i ∈ Io(σ). πi(μ(σ, v)) �= πi(v)

)
∧ (∀j ∈ I \ Io(σ). πj(μ(σ, v)) = πj(v)

)
].

The updating functions can be defined using map μ:
∀r, r′ ∈ R,∀σ ∈ Σ,∀v ∈ N

n. r′ = ξ(r, σ) ∧ v ∈ �(r)
=⇒ Ai(σ, v) = πi(μ(σ, v)). (3)

Proposition 1 A solution to Problem 1: For all i ∈ I , let Ai

be as in (3), and Gi be as follows: For every σ ∈ Σ

Gi(σ)=
{ {�(r) | r ∈ R ∧ ξ(r, σ)!}; if σ ∈ Σc,i,

∪r∈R�(r); if σ ∈ Σuc,i.
. (4)

Then L(D) = E and Lm(D) = E. �
Computation of the characteristic equation and transition

function associated with, respectively, guard and updating
functions leads to a PDS representation of the corresponding
DSDES. To this end, we use the method of interpolation
polynomials in the Lagrange form [12]. Let p ≥ 2 be a
natural number, Fp be a finite field of p integers with addition
defined modulo p, xi (i ∈ I) be a variable taking values from
Fp, x = (x1, · · · , xn)′, and Fp[x] be the ring of polynomials
in the variables x1, · · · , xn and coefficients taken from Fp

[13]. For a function or formula f , by writing f(x) we mean
that f can in general depend on some or all of the elements
of x. The set of variables on which f precisely depends is
denoted by either arg(f) or explicit listing of such variables.
Let xi be Si’s private variable, with respect to which all
xj’s, j ∈ I \{i}, are referred to as external variables. For an
event σ ∈ Σ, the polynomials corresponding with Ai(σ, .)
and Gi(σ) are denoted by aσ

i (x) and gσ
i (x), respectively.

Given the graph of a function f : F
n
p → Fp as a set U =

{(u, y) ∈ F
n
p ×Fp | y = f(u)}, the method of “interpolation

polynomials in the Lagrange form” computes a polynomial
q ∈ Fp[x] such that q(u) = f(u). Algorithm 1 in [11]
provides a procedure for computing polynomial functions
associated with guard and updating functions.
Definition 1 Associated with Proposition 1, for each Si and
each σ ∈ Σ let polynomial equations xi := aσ

i (x) and
gσ

i (x) = 1 over F
n
p replace the updating function Ai(σ, .)

in (3) and guard function Gi(σ) in (4), respectively. The
polynomials are said to represent the DSDES if they result
in L(D) = E and Lm(D) = E. �
Proposition 2 Let G, E, S, �, be as in Proposition 1. The
polynomial equations, obtained by computation of aσ

i and
gσ

i using Algorithm 1 in [11], represent the DSDES. �
Using this “symbolic” formulation, every DSDES can

be represented as a PDS in state explicit form [7], where

3338

equations associated with updating and guard functions rep-
resent the dynamics of the DES and its algebraic constraints,
respectively. An updating function, associated with a non-
observable event, and a guard function, associated with
an uncontrollable event, are identity and unity functions,
respectively, whose removal yields the following PDS.

∀i ∈ I,∀x ∈ F
n
p .

{
xi := aσ

i (x) ;∀σ ∈ Σo,i

gσ
i (x) − 1 = 0 ;∀σ ∈ Σc,i

(5)

III. MODELING EVENT-TRANSFERRING

COMMUNICATION IN DSDES FRAMEWORK

A. General Considerations
In DSDES framework, communication among decentral-

ized supervisors is needed for reevaluation of their guard
and updating functions. For example assume that the vector
of values after a string s is observed is v := A(s, 0). Then
σ ∈ Σi is enabled at s if and only if v ∈ Gi(σ). To determine
if this is the case, Si may need to receive the value vj , for
some j �= i, from Sj . When σ is taken, Si updates vi with
the value Ai(σ, v). Again, to correctly evaluate Ai(σ, v), Si

may need to receive the value vj , for some j �= i, from Sj .
In PDS (5), Si’s informational dependency is reflected in the
functional forms of its updating and guard polynomials and
their dependency on external variables. Such observations
form the basis to model the communication, define the
communication problem, and synthesize solutions for it.

Assume PDS representation (5) is given over F
n
p . Let the

network of n supervisors be strongly connected, data transfer
be instant with no loss, and disabling controllable events
affects none of communication-related events (to keep the
network connected). Denote a communication-related event
which is issued by Sj to transfer information to Si by
subscript indices ji, and assume that it is observable by both
supervisors and controllable by Sj . Although Σo,j , Σc,j , and
Σo,i should be enlarged by these new events, to keep the
notation simpler, we avoid introducing new sets and assume
that this fact is clear from the context.

The event-driven nature of DESs limits the release of the
system-related information to the occurrence of observable
events such that only the supervisors, who observe them, gain
information about the system’s evolution. As an information-
providing mean, communication should rely on the observa-
tion of the occurrence of events, i.e. issuing a communi-
cation event would follow the occurrence of an observable
event, only. The semantics of each communication event is
defined by a map from a subset of observable events to
an information-containing set. The communication problem
then reduces to designing these maps.

For a DSDES, the system-related information is captured
by x, which is, in turn, updated upon the occurrence of
observable events. Therefore, the information transferred by
a communication event, i.e. the elements of its image set,
should be taken from (bit-wise encodings of) either x or
Σo. Here, we focus on the latter and refer to it as event-
transferring communication. To make it precise, first we
define a Boolean encoding for observable events.
Definition 2 Associated with PDS (5), let e =
�log2(maxi∈I |Σo,i ∪ {ε}|)�, � = {1, 2, · · · , e}, and

i, j ∈ I, j �= i. Denote by Yii = {yk
ii | k ∈ �} the

set of Si’s private event-encoding Boolean variables and
let every event σ ∈ Σo,i ∪ {ε} be encoded2 arbitrarily
as σ = (ye

ii · · · y1
ii). The extra artificial event, “ε,” is

used to distinguish the case where no event has occurred
initially. Denote by yk

ij a copy of yk
jj ∈ Yjj stored by

Si and let Yij = {yk
ij | yk

jj ∈ Yjj}, Yci =
⋃

j∈I\{i} Yij ,
Yi = Yii ∪̇ Yci, and Y =

⋃
i∈I Yi. Assume that all variables

in Y are initially equal to 0. �
B. Communication-related events

We distinguish two types of communication events which
are referred to as I and R events. This classification
divides the communication design into two levels of infor-
mation exchange and routing, which, respectively address
what information needs to be exchanged mutually among
supervisors and how these exchanges can be performed using
the available communication channels. We limit the focus of
this paper to I events, introduced next. Let i, j ∈ I, i �= j.
I events: An event Iji transfers Sj’s private information
to Si. Let ΣI ,j ⊆ (Σo,j∪

⋃
k∈I,k �=j {Ikj | Ikj is defined})

denote the set of observable events by Sj , after which Sj

issues an I event. Correspondingly, define Iji : ΣI ,j →
pwr(Yjj) as a function which associates to an event in ΣI ,j ,
a piece of information stored by event-encoding Boolean
variables in Yjj according to a rule which will become
specified upon the design of the communication. Whereas
the definition of ΣI ,j allows the firing of an I event after
another I event, circular definitions should be avoided.
Since I is finite, there is a finite number of distinct I
events and this, together with the finiteness of Y , guarantee
that the information is exchanged in a finite number of
communication steps. Once received by Si, Iji(.) provides
it with the updated copies of the variables in its image, i.e.

∀i, j ∈ I, i �= j, ∀k ∈ J, ∀yk
jj ∈ Yjj ,

∀σ ∈ ΣI ,j . yk
jj ∈ Iji(σ) =⇒ yk

ij := yk
jj . (6)

In a strongly connected network, I events can singly
implement the exchange of information. However, if some
direct communication links are missing or due to channel
constraints “indirect” data transfers are preferred, R events
should be designed. This issue is left for future work. Notice
that even in the second case, I events still specify what
information needs to exchange between supervisors.

Inherently, the definition of Iji(σ) determine who (i.e. Sj)
sends what (a subset of Yjj) to whom (i.e. Si). Implicitly, the
dependency on an event as its argument, bears a notion of
“logical” time which roughly specifies the soonest moment
at which the communication can start. Also notice that here
communication is event-triggered and its content, being a
(Boolean)-variable representation of the events, is event-
based. An event-based “communication problem” can be
defined within DSDES framework as follows.
Definition 3 Let PDS (5) and its event-encoding in Defini-
tion 2 be given. An information policy for (5) is equivalent
to designing

(
ΣI ,j ,Iji(.)

)
for every i, j ∈ I . �

2Although some Σo,is may have less than e − 1 elements, we choose a
common e for the sake of notational simplicity. Clearly, if |Σo,i| < e − 1,
some higher significant bits in Yii would be constantly equal to 0.

3339

Problem 2 Event-Transferring Communication Problem in
DSDES framework: Associated with Problem 1 and Propo-
sition 1, let PDS (5) represent the DSDES and the event-
encoding in Definition 2 be used. Find an information policy
such that L(D) = E and Lm(D) = E. �

Communication is the third mean, on top of observation
and control, with which decentralized supervisors confine a
plant’s behavior within given specifications. By presenting
the system information of the centralized supervisor in a
distributed way and putting it in PDS form, DSDES frame-
work provides a general, flexible, and systematic approach
for analysis and synthesis of decentralized supervisors. Su-
pervisors’ private variables form the largest set of system in-
formation, owned by a given state representation of the cen-
tralized supervisor. Event-transferring communication helps
each supervisor reevaluate its guard and updating functions
by providing to it the last observed events which affect
the external variables on which it depends. Computation
of communication, as a solution to Problem 2, deserves a
separate work of its own, which is based on the study of
algebraic structures. Here, we illustrate the applicability of
the proposed approach by designing an information policy
and verifying its correctness.

IV. SYNTHESIS OF EVENT-TRANSFERRING

COMMUNICATION IN DSDES FRAMEWORK

A. Informational Dependency of Supervisors
As stated before, a supervisor‘s dependency on external

variables calls for a communication which provides the
required information to the supervisor to make itself updated.
In this subsection, we formalize the informational depen-
dency for each supervisor.

Definition 4 For every i ∈ I , define Nai
= {j ∈ I | ∃σ ∈

Σo,i. xj ∈ arg(aσ
i)} and Ni = {j ∈ I | [∃σ ∈ Σo,i. xj ∈

arg(aσ
i)] ∨ [∃σ′ ∈ Σc,i. xj ∈ arg(gσ′

i)]}. Define also set
Oi ⊆ I recursively as follows.
Ni ⊆ Oi ∧ [∀j ∈ I. j ∈ Oi =⇒ ∀k ∈ Naj

. k ∈ Oi] �
Lemma 1 We have the following.
∀i ∈ I,∀j ∈ Oi,∀σ ∈ Σo,j . xk ∈ arg(aσ

j) =⇒ k ∈ Oi �
In simple words, what Definition 4 means is that Oi is the
largest set of Sjs, on whose private information, i.e. xjs, Si

depends, where i, j ∈ I . This dependency is either explicit,
i.e. when xj appears as the argument of an updating or a
guard function of Si, or implicit, i.e. when the updating
function corresponding to such an xj , j �= i, depends on
xk, k �= j, i.
Lemma 2 For every i ∈ I , Oi is a fixed point of function
F : P(I) → P(I) : A �→ (

A ∪ ⋃
j∈A Naj

)
. �

Clearly F is monotonic and the finiteness of I implies that
for every Ni ⊆ I , F (Ni) converges to fixed point Oi. This
can be regarded as the basis of an algorithm to compute Oi.
Algorithm 1 Computation of Oi: Associated with PDS (5),
for every i ∈ I do the following.

1) Compute Ni = {j ∈ I | [∃σ ∈ Σo,i. xj ∈ arg(aσ
i)] ∨

[∃σ′ ∈ Σc,i. xj ∈ arg(gσ′
i)]}.

2) Set A = Ni and B = F (A).
3) While A �= B do [A := B and B := F (A)].

4) Report Oi = A. �
Following the concept of Oi, if supervisor Si stores a copy

of the private variables it requires (directly or indirectly) to
compute its guard and updating functions together with the
copies of updating functions which are used to reevaluate
those copy variables, it can independently compute the new
values of the copy variables if it is informed of what
observable events occur. The next definition makes it clear
what we mean by copy variables and updating equations.
Definition 5 Associated with PDS (5) and for each i ∈ I
and every j ∈ Oi \ {i}, let xi

j be the copy of xj which is
stored by Si. Let xi be the vector of all xi

js such that they
are sorted from left to right based on their index j (i.e. in
the same order they appear in x). Write xi = x to state
∀i ∈ I,∀j ∈ Oi \ {i}. xi

j = xj . Also assume that all xi
js

are initialized to 0. Correspondingly, denote by aσ
ij(x

i) the
copy of updating function aσ

j (x) stored by Si. �
Lemma 3 For every i ∈ I , j ∈ Oi \ {i}, and σ ∈ Σo,j ,
aσ

ij(x
i) in Definition 5 is well defined. �

To be able to compute copies of other supervisors’ private
variables, each Si should store a copy of their updating
functions. We take this point for granted in the following.
Assumption 1 Assume that for each i ∈ I , each j ∈ Oi \
{i}, and each σ ∈ Σo,j , Si stores aσ

ij(x
i), i.e. it stores a

copy of each of Sj’s non-identity updating functions. �
Under Assumption 1, each supervisor Si can independently
compute the new values of the private variables of other Sjs
upon being informed of the occurrence of every observable
event by those Sjs. This paves the way to define an informa-
tion policy which communicates the observable events, rather
than state-based information. As Definition 2 reads, every
supervisor assigns a code to each of its observable events. To
decode these codes upon their arrival, the target supervisor
should have a look up table which stores the codes. This
is stated in the following assumption. Notice that for each
σ ∈ Σo, every supervisor whose index is in Io(σ), assigns
its own code to σ.
Assumption 2 For each i ∈ I , each j ∈ Oi, and every
σ ∈ Σo,j , Si has a look up table which stores the code(s)
for σ (as assigned by different supervisors whose index is in
Io(σ)). �

Once a supervisor observes the occurrence of an event, on
top of updating its own private variable, it updates copies of
all other private variables which it keeps and are affected by
that event, as summarized in the following assumption.
Assumption 3 For every i ∈ I , each j ∈ Oi, and each
σ ∈ Σo,i ∩ Σo,j , if σ occurs and Si is informed of this
occurrence, Si computes x̂i

j := aσ
ij(x

i). �
B. An event-transferring information policy

We have now enough means to introduce a solution
to Problem 2. The following definition will be helpful in
defining the new policy.
Definition 6 For each σ ∈ Σo define Icom(σ) = k, where
k ∈ Io(σ). �
Notice that for each σ ∈ Σo, Io(σ) �= ∅, and thus Icom(σ)
is well defined.

3340

Definition 7 Considering PDS (5) and following Defini-
tions 5 and 2, for each i ∈ I , let αi ∈ Σo,i∪{ε}, encoded as
αi = (ye

ii, · · · , y1
ii), be the last event observed by Si. Assume

that for each σ ∈ Σo, Icom(σ) is given as in Definition 6.
For PDS (5) information policy E is as follows:
For all i, j∈I such that i�=j we have ΣI ,j=Σo,j , and
∀σ∈Σo,j . Iji(σ)={ŷk

jj∈Yjj| σ=(ŷe
jj , · · · , ŷ1

jj)∧ ŷk
jj �=yk

jj

∧ Icom(σ)=j ∧ i/∈Io(σ) ∧ [∃l∈Oi\{i}. l∈ Io(σ)]} (7)
Once Iji is received by Si, the copies of event-encoding
Boolean variables will be updated, i.e.

∀i, j ∈ I, i �= j,∀k ∈ �,∀ŷk
jj ∈ Yjj ,∀σ ∈ ΣI ,j .

(1) [ŷk
jj ∈ Iji(σ)=⇒ ŷk

ij := ŷk
jj] ∧ [ŷk

jj /∈ Iji(σ)

=⇒ ŷk
ij := yk

ij]

∧ (2) [∀β∈Σo,j ,∀m∈Oi\{i},∀xi∈F
|Oi|
p .

(ŷe
ij , · · · , ŷ1

ij)=β ∧ m∈Io(β)=⇒ x̂i
m:= aβ

im(xi)] �
In simple words, upon the occurrence of σ ∈ Σo, information
policy E requires that one of the supervisors, that is the one
specified by Icom(σ) (which observes the occurrence of σ),
informs the supervisors which cannot observe σ and whose
guards or updating functions are affected by its occurrence
directly or indirectly, of this occurrence, as reflected in
(7). As (7) reads, when the sent bits arrive at the target
supervisor(s), first they are decoded by the receivers to find
out which event has been observed by the sender (Conjunct
1), and then all copies of the private variables, which are
kept by each receiver and are affected by the decoded event,
are updated using the copies of the corresponding updating
functions (Conjunct 2).

Proposition 3 A solution to Problem 2: Associated with
Problem 2 and under Assumptions 1, 2, and 3, if the network
of supervisors is strongly connected with lossless channels
and if communication is instantaneous, information policy E
insures that L(D) = E and Lm(D) = E. �

Definition 7 assumes a given Icom(σ) for every σ ∈ Σo

and introduces information policy E based on it. As (7)
reads, SIcom(σ) is responsible for issuing communication
event IIcom(σ)i to all Sis which cannot observe σ, but
have a copy variable which can be affected by σ. Following
Definition 6, when Io(σ) is a singleton, there is just one
choice for Icom(σ). However, if |Io(σ)| > 1, there are
different supervisors which can be the issuer of IIcom(σ)i.
By Conjunct 2 of (7), once the communication is received,
regardless of which supervisor (among those whose index
is in Io(σ)) has issued it, it results in the same process,
i.e. reevaluation of all copy variables, stored by Si, which
are affected by σ. However, by (7) and Conjunct 1 of (7),
each choice of Icom(σ) would entail communication of the
changed bits of YIcom(σ)Icom(σ). Therefore, it is plausible
to ask if there are choices of Icom(σ)s which lead to a
minimal communication. Whereas this issue is not formally
investigated here, it is worth mentioning, as a rule of thumb,
that if a supervisor Sl has fewer number of observable events,
it has probably more constant bits in Yll. Therefore, choosing
Icom(σ) = l can reduce the content of Ili(σ). Furthermore,

G

(b)

S

α1

α1
α3

r0

r1

r3

r2

α2, β

r4

α1

α2, β α3

α2

α2

(a)

Σ

Fig. 1. (a) The plant’s model. (b) The specification which is also a
centralized supervisor.

TABLE I

UPDATING FUNCTIONS (a, b ∈ {0, 1, 2}, c ∈ {0, 1})

v 00c 21c 12c 201 111 021 else
A(α1, v) 10c 01c 22c 101 011 221 −

v 01c 10c 22c 021 111 201 001
A(α2, v) 00c 12c 21c 001 121 211 021

v 121 211 else
A(α2, v) 111 201 −

v 10c 01c 22c else
A(β, v) 21c 12c 00c −

v ab0 else
A(α3, v) ab1 −

for l, i ∈ I and σ ∈ Σo,l such that Icom(σ) = l, if the
employed event-encoding scheme for Sl is such that along
the system’s evolution, fewer bits in Yll change with the
occurrence of an event σ, the content of Ili(σ) would be
decreased, too. The next example illustrates the procedure.

Example 1 Figure 1-a shows the model of a distributed
network consisting of three plant components and four events
α1, α2, α3 and β, where Σc,1 = Σo,1 = {α1, β}, Σc,2 =
Σo,2 = {α2, β}, and Σc,3 = Σo,3 = {α3}. The specifica-
tion S is shown in part (b) and all its states are marked.
Observe that S is a proper centralized supervisor enforcing
itself. An ALM can be defined for S as follows (A point
(a, b, c) ∈ N

3 is denoted by ‘abc’) �(r0) = {000, 210, 120},
�(r1) = {100, 010, 220}, �(r2) = {001, 211, 121}, �(r3) =
{101, 011, 221}, and �(r4) = {201, 021, 111}. Correspond-
ingly, guard functions are computed as follows: G1(α1) =
�(r0)∪ �(r2)∪ �(r4), G2(α2) = �(r1)∪ �(r2)∪ �(r3)∪ �(r4),
G1(β) = G2(β) = �(r1) ∪ �(r3), G3(α3) = �(r0) ∪ �(r1).
The updating functions are listed in Table I. Arbitrary cases
are denoted by “−” and are used to simplify the guard and
updating functions. Table II shows the polynomials which
represent the updating and guard functions computed using
Algorithm 1 in [11]. Here x = [x1, x2, x3]′, V1 = V2 =
{1, 2, 3}, V3 = {1, 2}, p1 = p2 = 3, and p3 = 2. Step 1 of
Algorithm 1 in [11] yields p = 3, i.e. F3 is the underlying
field.

Let us apply information policy E for the DSDES. To this
end, from Table II we have following.

Na1 = Na2 = {1, 2}, Na3 = {3},
N1 = {1, 2}, N2 = {1, 2, 3}, N3 = {3}

Application of Algorithm 1 then leads to O1 = {1, 2}, O2 =
{1, 2, 3}, and O3 = {3}.

3341

TABLE II

COMPUTED POLYNOMIALS FOR UPDATING AND GUARD FUNCTIONS

x1 := aα1
1 (x) = 2(x2 + 2), x1 := aβ

1 (x) = x1 + 1

x2 := aα2
2 (x) = x1(x1 + 1) + (x2 + 2)(2x1 + x2 + 1)

x2 := aβ
2 (x) = x2 + 1, x3 := aα3

3 (x) = 2(x2
3 + 2)

gα1
1 (x) = 2(x1 + 2)2(x2

2 + 2) + 2x2
1x2(x2 + 1)+

2(x1 + 1)2x2(x2 + 2)

gα2
2 (x) = 2x2

1(x
2
2 + 2) + 2(x1 + 1)2x2(x2 + 1)+

2(x1 + 2)2x2(x2 + 2) + 2x3(x3 + 1)[x1x2 + 2x2
1 + 2x2

2 + 1]

gβ
1,2(x) = x1(x1 + 1)(x2

2 + 2) + (x2
1 + 2)x2(x2 + 1)+

+x1(x1 + 2)x2(x2 + 2)

gα3
3 (x) = 2(x2

3 + 2)

TABLE III

ENCODING OF EVENTS FOR EXAMPLE 1

S1 : (y2
11, y

1
11) ε = (00) α1 = (01) β = (11)

S2 : (y2
22, y

1
22) ε = (00) α2 = (01) β = (11)

S3 : (y2
33, y

1
33) ε = (00) α3 = (01)

Observe that |Σo,1| = |Σo,2| = 2 and |Σo,3| = 1, therefore
following Definition 2 we have e = �log2(2+1)� = 2. Also it
holds that Io(α1) = {1}, Io(α2) = {2}, Io(β) = {1, 2}, and
Io(α3) = {3}. Following Definition 6 we have Icom(α1) =
1, Icom(α2) = 2, and Icom(α3) = 3. However, Icom(β) can
be either 1 or 2 and, based on the fact that S1 and S2 has
each two observable events, there does not seem to be any
difference between choosing either supervisors, hence we set
Icom(β) = 1.

Codes for the events are shown in Table III. Here, all
supervisors encode ε as (00), and we have α1 = (01), α2 =
(01), and α3 = (01) 3. To encode β, we notice that if β =
(10), then between α1 = (01) and β = (10) there would
be a difference of 2 bits, i.e. upon the occurrence of one
of these events after the other one, S1 should send 2 bits.
However, if β = (11), the difference would be between (01)
and (11), i.e. just 1 bit. Therefore, this latter choice is taken
as the code of β assigned by S1. Although, S2 needs not
inform others of the occurrence of β, it encodes β as (11),
because (10) would require S2 to send 2 bits when reporting
the occurrence of α2 after β. Moreover, a common code
for β can save some memory space, by reducing from two
different spaces to one in the look up table of the events,
and helps supervisors distinguish β consistently in the case
of communication faults.

Using the above codes and Definition 7, communication
events can be computed. To this end, assume that the last
event observed by Si is σi ∈ Σo,i ∪ {ε}, encoded as
(y2

ii, y
1
ii) and the new event is encoded as (ŷ2

ii, ŷ
1
ii), where i ∈

{1, 2, 3}. The communication events are shown in Table IV,
where conditions of selecting communication content are
simply formulated as whether corresponding ŷs and ys are
equal to each other or not. For S3, it can be seen that
y2
33 = 0 holds all the time, hence simplifying the content

condition. ♦

3Notice that these codes are assigned to different variables (y2
ii, y

1
ii) for

i = 1, 2, and 3, respectively, as shown in Table III.

TABLE IV

COMMUNICATION AMONGST SUPERVISORS IN EXAMPLE 1 BASED ON

POLICY E

I12(α1) =

⎧⎪⎪⎨
⎪⎪⎩

{ŷ1
11, ŷ

2
11} ; if (ŷ1

11 �= y1
11) ∧ (ŷ2

11 �= y2
11)

{ŷ1
11} ; if (ŷ1

11 �= y1
11) ∧ (ŷ2

11 = y2
11)

{ŷ2
11} ; if (ŷ1

11 = y1
11) ∧ (ŷ2

11 �= y2
11)

∅ ; if (ŷ1
11 = y1

11) ∧ (ŷ2
11 = y2

11)
I13(α1) = I13(β) = I12(β) = ∅

I21(α2) =

⎧⎪⎪⎨
⎪⎪⎩

{ŷ1
22, ŷ

2
22} ; if (ŷ1

22 �= y1
22) ∧ (ŷ2

22 �= y2
22)

{ŷ1
22} ; if (ŷ1

22 �= y1
22) ∧ (ŷ2

22 = y2
22)

{ŷ2
22} ; if (ŷ1

22 = y1
22) ∧ (ŷ2

22 �= y2
22)

∅ ; if (ŷ1
22 = y1

22) ∧ (ŷ2
22 = y2

22)
I23(α2) = I23(β) = I21(β) = ∅
I32(α3) =

{{ŷ1
33} ; if (ŷ1

33 �= y1
33)

∅ ; if (ŷ1
33 = y1

33)
I31(α3) = ∅

It is worth mentioning again that the emphasis here is
not on the solution approaches and their computational effi-
ciency, but rather on illustrating the modeling and synthesis
capabilities of DSDES framework.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control and Optimization, vol. 25,
no. 1, pp. 206–230, Jan. 1987.

[2] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentral-
ized supervisory control,” IEEE Trans. Automat. Contr., vol. 37, pp.
1692–1708, Nov. 1992.

[3] J. H. van Schuppen, “Decentralized control with communication
between controllers,” in Unsolved Problems in Mathematical Systems
and Control Theory, V. D. Blondel and A. Megretski, Eds. Princeton,
USA: Princeton University Press, 2004.

[4] D. Teneketzis, “On information structures and nonsequential stochastic
control,” CWI Quarterly, vol. 10, no. 2, pp. 179–199, 1997.

[5] A. Mannani and P. Gohari, “A framework for modeling communication
among decentralized supervisors for discrete-event systems,” in Proc.
of IEEE Conference on Sys., Man, and Cyb. (SMC’07), Montreal,
Canada, Oct. 2007, pp. 1339–1344.

[6] ——, “Decentralized supervisory control of discrete-event systems
over communication networks,” IEEE Trans. on Automat. Contr.,
vol. 53, no. 2, pp. 547–559, Mar. 2008.

[7] M. L. Borgne, A. Benveniste, and P. L. Guernic, “Polynomial dynam-
ical systems over finite fields,” in Algebraic Computing in Control.
Heidelberg: Springer Berlin, 1991, vol. 165/1991, pp. 212–222.

[8] J. Gunnarsson, “Symbolic methods and tools for discrete event dy-
namic systems,” Ph.D. dissertation, Univ. of Linköping, S-581 83
Linköping, Sweden.

[9] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - an
integrated environment for verification, synthesis and simulation of
discrete event systems,” in Proc. IEEE 8th International Workshop
on Discrete Event Systems (WODES’06), Ann Arbor, MI, USA, July
2006, pp. 384 – 385.

[10] C. Ma and W. M. Wonham, “Nonblocking supervisory control of state
tree structures,” IEEE Trans. on Automat. Contr., vol. 51, no. 5, pp.
782–793, May 2006.

[11] A. Mannani and P. Gohari, “Formal modeling and synthesis of
state-transferring communication among decentralized supervisors for
discrete-event systems,” in Proc. IEEE Conf. on Systems, Man, and
Cybernetics SMC, San Antonio, TX, Oct. 2009.

[12] R. Germundsson, “Symbolic systems: Theory, computation,
and applications,” Ph.D. dissertation, Univ. of Linköping, S-
581 83 Linköping, Sweden, Sept. 1995. [Online]. Available:
http://www.control.ee.liu.se

[13] R. Lidl and H. Niederreiter, Finite Fields, 1st ed. Cambridge
University Press, 1997.

3342

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

