Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

On Semi-Supervised Learning and Sparsity

Alexander Balinsky
Cardiff School of Mathematics
Cardiff University
Cardiff , United Kingdom
BalinskyA @cardiff.ac.uk

Abstract—In this article we establish a connection between
semi-supervised learning and compressive sampling. We show
that sparsity and compressibility of the learning function can
be obtained from heavy-tailed distributions of filter responses
or coefficients in spectral decompositions. In many cases the
NP-hard problems of finding sparsest solutions can be replaced
by ['-problems from convex optimisation theory, which provide
effective tools for semi-supervised learning. We present several
conjectures and examples.

Index Terms—Semi-supervised learning, compressive sam-
pling, heavy-tailed distributions, sparsity.

I. INTRODUCTION AND NOTATIONS

There are striking similarities between goals in semi-super-
vised learning (SSL) and compressive sampling (CS). Semi-
supervised learning refers to the problem of learning from
labeled and unlabelled data [1]. In this case, the data set
X = (®i)igm) can be divided into two parts: the points
X, := (x1,...,), for which values of the learning function
F are provided, i.e. y; = F(z;), i = 1,...,1, are given, and
the points X, := (241, .., xy) for which values of F' are not
known. The main goal of SSL is to calculate the function F
on X, based on the "geometry” of the set X. The theory now
known as "Compressed Sensing” or "Compressive Sampling”
allows the faithful recovery of “compressible/sparse” signals
from a very limited number of fixed measurements [2]. To re-
late SSL and CS we are going to establish connections between
the “geometry” of the set X and the “compressibility/sparsity”
of the learning function/signal F'.

Graph-based methods in SSL give us a very natural way to
represent the geometry of the training set X [1]. This geometry
can be represented by a weighted graph G = (X, E,w)
where nodes X represent the training data and edges FE with
weights given by a positive function w : £ — R, represent
similarities” between nodes. Here, the weight w(e) of an edge
e indicates the similarity of the incident nodes (and a missing
edge corresponds to zero similarity). The weighted adjencency
matrix (or weight matrix) W of the graph G is defined by

W w(e) if e=(x;,x;) € E,
N 0 if (ZEi,:Ej) ¢ E.

Without loss of generality we can assume that the graph G
is a connected graph. If our training set X is a subset of some
metric space, then the weight matrix W can be, for instance,
the k-nearest matrix: W;; = 1 iff x; is among the k-nearest
neighbors of z; or vice versa (and is O otherwise). Another
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popular choice of weight matrix is the Gaussian kernel of width
o: )
_d(wy 24)?

Wi =e 27, M

where d(x;, z;) denotes the distance between z; and z; in the
metric space.

The diagonal matrix D defined by D;; = Zj W;j is called
the degree matrix of G. Let us denote by P the matrix of
transition probabilities D~'W of the graph G, i.e.

Wi
Pj==——.
We have P;; > 0 and Zj P;; =1 for all 4.
For a real vector z = (z1,...,2y) € RM we shall

denote by ||z||o the sparsity of z, i.e. the number of nonzero
elements in (z1,...,2y). Also for 0 < p < oo, we set
1

l|2]lp :== (Zf’zl \zj\p> " || -|lp is a true norm on RY only
for p > 1. Very often we call || - ||, the {P-norm even for
p < 1. This is a standard abuse of terminology: || - ||o is not
positive homogeneous and || - ||, does not satisfies the triangle
inequality for p < 1 (i.e., the unit IP-ball in R is not a convex
set). Nevertheless, || - ||b satisfies the triangle inequality for
0 < p < 1 and induces a metric on RY .

Let L be a linear subspace of RY and b € RY. The
following [P-optimisation problem plays a crucial role in many
applications

min{l[p — 2I1,}, @

i.e., we want to approximate the vector b by elements from L
with minimum [P-error. For p > 1 this is a convex optimisation
problem and many algorithms have been developed to find a
minimiser. The case p = 1 (also called basis pursuit) is a
special case since the ['-sphere in R is not a smooth mani-
fold. For p > 1 the problem (2) has a unique minimiser. In
applications the linear subspace L appears in two forms: (1) as
the image of a linear transform A : RM — RY with M < N,
or (2) as the kernel of a linear transform A : RV — RM
with M < N. The first form appears, for example, in the
context of channel codding, and the second form appears in the
context of sampling theory. The case p = 2 is the standard least
squares problem. The optimisation problem (2) with p < 1
and especially p = 0 has attracted a lot of interest recently in
the context of compressive sampling and statistics with high
dimensionality [2], [3]. The [y-problem (2) is combinatorial

3166

978-1-4244-2794-9/09/$25.00 ©2009 IEEE



and generally NP-hard [4]. One of the main achievements of
CS theory is the fact that, under some mild conditions, the
convex [q-problem (2) yields the same minimiser as the [,-
problem (2) with 0 < p < 1.

In Sec.Il we show how the optimisation problem (2) with
the subspace L in the first form is related to SSL by the statis-
tics of filter response. In Sec.IIl we relate the compressibility
of the learning function with the optimisation problem (2) and
L in the second form.

As an example of the application of our results, we consider
the colourisation problem of natural images [5] as a problem
of SSL. We are given a grey image and an expert marks
several pixels in the image with colours. After that we would
like to learn the colours of all other pixels. We are working
in the colour space YUV with intensity Y (grey image) and
chromacity channels U and V. The graph-based setting of this
problem can be performed as follows. We consider the grey
image as a surface in R® (the graph of the function Y). This
surface will be our data set X and X; will be the coloured
points. The learning function is U (and equivalently V). As the
weight matrix for this data set we are using (1) with d(z;, z;)
a distance in R3. Such choice of the weight matrix appear in
image processing under the name of bilateral filters.

II. SPARSITY OF FILTER RESPONSE

For semi-supervised learning to work, certain assumptions
will have to hold. One of the most popular of such assumptions
is the smoothness assumption of semi-supervise learning: If
two points x;, x; are close, then so should be the corresponding
outputs F'(z;), F(z;). If we want to take into account the
density of the input, then we can also say that if two points
z;, x; in a high-density region are close, then so should be the
corresponding outputs F'(x;), F'(x;) (see [1] for details).

We can make the smoothness assumption more precise by
saying that for the learning function F' we should have “small”
fluctuations, i.e.

V(F) (@) = F(z;) = Y PijFla;) ~ 0,
=1

where P;; are transition probabilities. Using the language of
image processing we shall call v(F')(z;) a filter response at

point ;.
We can now say that one of the main tasks of SSL is to find
a function F' under the constraints F'(z;) = y;, i = 1,...,1,

such that the filter responses (F)(z;) are "small”. To make
the problem precise we should define what “small” means.

If given values yi,...,y; are not all the same, then we
can’t make all v(F)(z;) zero. This fact is a discrete analogue
of the famous Liouville theorem which says that harmonic
functions on compact connected Riemannian manifolds are all
constants. In our case we can prove this as follows. Suppose
that F' is a function on the data set X such that all filter
responses y(F')(z;) are zero. Since X is a finite set, then F'
has a maximum value at some points z;,. From F(z;,) =
> i1 PiyjF(z;) and Py >0, 37, P;,; = 1 we can conclude
that F'(x;) = F(z;,) for all neighbours x; of z;, in the graph

G. Now we can do the same for all neighbours z; and so on.
Finally, connectivity of the graph implies that F' is a constant.

Several researches in the area of SSL used the quadratic
criterion (see [1] for example) as a measure of smallness of
the filter responses. More precisely they proposed to find F'
by minimisation of the quadratic error:

minZ(v(F)(ﬂm))2

under constraints F'(z;) = y;, ¢ = 1,...,l. As it happens
very often with the least squares method, for the resulting
minimising function F' too many of the v(F')(z;) are not zero.
When there are outliers in the data, the quadratic criterion often
has poor performance.

From the probabilistic point of view the quadratic criterion
means that we consider y(F')(z;) as Gaussian noise. Similar to
image processing, such an assumption results in oversmoothing
of the learning function and blurring boundaries between
clusters.

Let us perform a simple Bayesian analysis of the SSL
problem: We are given the graph G and the restriction Fy of
the learning function F' on the subset X;, F'|x, = Fy. For any
event A let us denote by Pg(A) the conditional probability
P(A|G). Then we wish to maximise Pg(F|Fp). Applying
Bayes’ formula results in maximising

Pa(FolF) - Pa(F),
or equivalently to find

arg max Pg(F) 3)
under condition F|x, = Fy.

Remark. If we want to keep F exactly, then Pg(Fp|F) is 1
if F|x, = Fp and zero otherwise. If we assume that we can
have some errors in F then Pg(Fp|F) can be modelled as a
Gaussian distribution for F|x, — Fp.

We model Pg(F) by marginal probability of filter re-
sponses. Let us remind that sparse distributions are distribu-
tions that generate values for the component of a vector v close
to zero most of the time, but occasionally far from zero. Sparse
distributions are defined as being more likely than Gaussian
of the same mean and variance to generate values near zero
and also more likely to generate values far from zero. These
occasional high values can convey substantial information.
Distributions with this character are also called heavy-tailed.
In the real world many filter responses are heavy-tailed and
are very far from Gaussian [6], [7], [8], [9], [10]. Sparseness
has been defined in a variety of different ways. Sparseness of
a distribution is sometimes linked to a high value of a measure
called kurtosis. Kurtosis of the distribution p(v) is defined as

_ v p(w)(w ~ 1)’
(f dv p(o) (v —0)2)2

with ¥ = [dv p(v)v , and it takes the value zero for a
Gaussian distribution. Positive values of k are taken to imply

-3

3167



sparse distributions, which are also called super-Gaussian
or leptocurtotic. Distributions with £k < 0 are called sub-
Gaussian or platykurtotic. This is a slightly different definition
of sparseness from being heavy-tailed. Several researches also
suggest that the kurtosis should be avoided as a sparseness
measure and recommend tanh-functions for measuring noisy
sparseness.

We propose the following enhancement of the smoothness
assumption of semi-supervised learning.
Sparseness assumption of semi-supervised learning:
Distributions of filter responses are heavy-tailed. The vector
(Y(F) (1), ..., y(F)(xn)) should be sparse.

This sparseness assumption leads to the following optimi-
sation problem:

IIliIlH(’V(F)((E1)7...”y(F)(.Z'n))”() 4)
with F(z;) = y;,fori=1,...,L

Very often the combinatorial problem (4) can be replaced by
the simpler problem

min [|(y(F)(@1), -, v (F) (@), 0<p <1,

with F(x;) =y, fori=1,...,1 )

Let us show that the optimisation problem (5) is in fact
the optimisation problem (2) with the linear subspace L in
the second form. Denote by A the n X n-matrix E, — P,
where F, is the identity n X n-matrix and P is the matrix
of transition probabilities. Denote b the n-dimensional vector
A-(y1,-..,uy1,0,...,0)" and the linear subspace L to be the
image of the (n — I)-dimensional space of vectors with first
! coordinates zero, i.e. (0,...,0,21,...,2,—;), under linear
transformation A. Then it is easy to see that (5) becomes (2)
with such b and L.

Consider now our example of the colourisation problem. To
simplify the model, we assume that v(F)(z;), i = 1,...,n,
are i.i.d. random variables, i.e.

n
Po(F) o [ [ p(y(F)(2:)).-
i=1
In ([11]) it was shown that for natural colour images the
distribution p(y(F')(x;)) can be modelled by a Generalised
Gaussian Distribution (GGD)

1 .
Eefw(F)(m/s\ 7

where Z is a normalising constant, s the scale parameter
and « the shape parameter. The GGD gives a Gaussian or
Laplacian distribution when o = 2 or 1, respectively. When
o < 1 we have a heavy-tailed distribution. Figure 1 shows a
typical example (with the vertical axis on a log scale) of the
histogram of pixel intensity that is observed after filtering a
natural colour image. Fitted to the data is a GGD. We also
overlay on the figure the classical parabola shaped Gaussian
distribution which clearly shows the difference in the tails
between the two. Such differences highlight the importance of
choosing the correct distribution as a prior knowledge when
using Bayesian analysis.

Fig. 1.

Taking log(Pg(F')), the problem (3) leads to an equivalent
minimisation objective (p = a < 1) (5).

Figure 2 show an example of a colourised image based
on sparse prior. In ([12]) it was shown that ll—optimisation in
many cases out-perform the case o = 2.

Similar to the cases of natural images and modelling of
human behaviour, we would like to finish this section with the
following
Conjecture: Many learning functions from real life have heavy-
tailed distributions of filter responses.

[1I. COMPRESSIBILITY OF THE LEARNING FUNCTION AND
SPARSE RECOVERY

In this section we look at sparsity of the learning function
from the point of view of compressibility. It is very natural to
assume that learning functions should be very special, and that
they depend only on a small number of parameters. There are
two reasons for this: 1) the learning function ideally should
learn from its values on the labelled set X;, i.e. depend on
a maximum of [ parameters; 2) any supervisor uses a small
number of rules and heuristics. This means that the class of
learning functions should be highly compressible.

The smoothness assumption of semi-supervised learning
suggests that the learning function should be well approxi-
mated by a few “slowly variable” functions. But we can’t
completely forget about higher frequencies since we would
like also to be able to have some jumps between clusters.
This suggest that we should be able to represent the learning
function by a small number of special functions on the graph
G. Such classes of special functions can be, for example,
eigenfunctions of the matrix of transition probabilities P or
graph Laplacians. We can also have more special functions
than the size of the data set X by restricting to the graph G
eigenfunctions of a larger graph with more unlabelled points.

The spectral theory on graphs plays an important role
in many areas of data analysis: diffusion maps, dimension
reductions, feature extractions etc. For example, in [13] it
was shown that the first few eigenvectors and eigenvalues
of the matrix P of transition probabilities of the graph G
contain useful geometric information and that the diffusion
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Fig. 2. Colourisation example. (a) An example gray image; (b) the original

colour image for reference; (c) a set of coloured pixels arbitrary places; (d)
shows colourisation using I optimisation.

map converts the diffusion distance into Euclidean distance.
In [14] multiresolution analysis for data was also developed.
There are different ways of defining the graph Laplacian,
the two most prominent of which are the normalised graph
Laplasian, £, and unnormalised graph Laplacian, L:

L:=E,— D '2WwD1/2
L:=D-W.

Now, if we have some set of special function {fi,..., fxn}
(N > n) on the graph G, we would like to define the learning
function F as a function with F(z;) =y;, i=1,...,1, and
with the smallest number of nonzero coefficients ai,...,ayN
in the decompositions F' = Zf\il a; fi, i.e.

min ||(a1,...,an)l|lo
with F(z;) =y;,fori=1,...,1, 6)
and F = Zf\il a; f;-

We can justify the optimisation problem (6) by Bayesian

analysis, similar to the Sec.Il. We model Pg(F') by marginal
probability distribution of the coefficients ap,...,ay. If

{f1,-.., fn} is an orthonormal basis, then a; =< F, f; >, the
scalar product of F' and f;. To simplify the model, we assume
that a; are i.i.d. random variables, i.e. Pg(F) o< [, p(a;).
Similar to wavelet coefficients in signal processing, the distri-
butions p(a;) in many examples are heavy-tailed. For example,
in the colourisation problem and f; being eigenvectors of the
normalised Laplacian £, the distributions p(a;) can be also
modelled by a GGD. So, similar to the Sec.Il, we can justify
using the problem (6) as an optimisation problem for finding
F.

We introduce now
Compressibility assumption of semi-supervised learning:
Distributions of the coefficients a1, ...,an are heavy-tailed.
The vector (ay,...,an) should be sparse.

We know the learning function F only on the set X;. So, we
can write the known part of the decomposition F' = Zfil a; fi

as
Y1 N fi(z1)
P =D @)
7 =t fi(z)
with | << N. The problem (6) now become an {°-problem of
the type (2). More precisely, if @ = (ay,...,ax)? is any fixed
solution of (7), then the general solution of (7) is of the form
a— z, where z € L = KerA with

fi(1), .., fn(z)

A= : :
i), v (@)

and we need to minimise ||a@ — z||o over z € L.

Now the strategy of finding the learning function is as
follow:

1) Replace the [°-problem by the [!-problem, i.e.

min ||(az,...,an)|1
Y1 N fi(z1)
with : =3 a | :
i=1
U fi()

2) After finding such /*-minimiser a{, ..., a%;, the learning

function F' is
N
i=1

We would like to finish this section with the following
Conjecture: Many learning functions from real life have heavy-
tailed distributions of the coefficients ay,...,an .

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Semi-supervised learning and compressive sampling both
have a very similar goal: to recover a signal from a small
number of measurements. Graph-based methods in semi-super-
vised learning allow us to construct two sets of filters. The first
set of filters measure local fluctuations from being harmonic,
and the second set of filters measure coefficients in spectral
decompositions. If such filter responses have heavy-tailed
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(sparse) distributions then the problem of finding learning
functions becomes an optimisation problem of finding sparse
representations. Sparse distributions are defined as being more
likely than Gaussian of the same mean and variance to generate
values near zero and also more likely to generate values far
from zero. These occasional high values can convey substantial
information. In many cases we can replace these sparsity
problems by tractable [ -optimisation problems from the theory
of compressive sampling. As an example, we have looked into
the colourisation problem.

We have proposed several conjectures and assumptions in
semi-supervised learning. We are planning to check these spar-
sity and compressibility conjectures for different known classes
of learning function in supervised learning. It is also very
interesting to apply these sparsity/compressibility assumptions
to other problems of semi-supervised learning. We should
also to use iteratively re-weighted least squares minimisation
methods directly to the problem 2 with p < 1 as in [15].
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