Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

Secured Networking by Sandboxing LINUX 2.6

Hrushikesha Mohanty*, M. VenkataSwamy*, P. Thilak*, Srini Ramaswamy'
*Department of Computer and Information Sciences,
University of Hyderabad, Hyderabad, India 500 046
hmces_hcu@yahoo.com
tDept. of Computer Science
University of Arkansas at Little Rock, Little Rock , USA
srini@acm.org

Abstract—From system security point of view, system calls are
vulnerable as they operate in kernel space. Hence monitoring
of system call patterns performed by an application has been
extensively studied for the development of Intrusion Detection
Systems(IDS), which have to respond immediately to abnormal
behaviors. However these IDSs have limitations in detecting new
types of attacks. Policy driven IDSs have the ability to detect novel
attacks based on policies written for system activities. In this
paper we propose a hybrid architecture for IDSs, that combines
the features of both policy driven IDS and system call based IDS
and the idea is experimented for sandboxing Linux 2.6.

Index Terms—Intrusion, Linux Kernel, Sandboxing.

I. INTRODUCTION

Any unauthorized attempts to access, manipulate, modify,
or destroy information or to render a system unreliable or
unusable is defined as intrusion [1]. An intrusion takes place
for variety of reasons like accessing system resources using
a backdoor - unregulated system entry point. This happens
when a system is wrongly configured to allow direct or indirect
access to unauthorized users. This may also happen due to
execution of a piece of malicious software. A system whose
resources are successfully exploited by intruders is considered
as ‘compromised’. A system may go to compromised state
without knowledge of the system users and so the danger
involved. And the detection of intrusions has been always a
challenging problem. A continuous watch on system perfor-
mance is necessary to detect an intrusion at right time before
it makes an irreparable damage[2]. Such a system is termed as
“Intrusion Detection System (IDS)”. A successful ids should
provide the following services:[3]

« Monitoring of users activities as well as system perfor-

mances

¢ Guarding system configuration

o Maintaining integrity of the system data files

« Identifying attack patterns

o Deriving new attack pattern
As most of the systems are currently networked, intrusion
detection system for an installation needs to be vigilant of
activities at a system as well as its network. Usually, a firewall
around a system keeps it isolated from intrusions through its
network. Based on its implementation, we categorize detection
systems as host-based ids and network-based ids [4]. The
standard procedures for such a system is to identify a pattern
in system / user behavior and match the pattern with known

attack patterns or signatures. A detection system may commit
errors at pattern identification or matching a pattern to the
identified patterns. Due to such an error an identification
system may either fail to identify or wrongly identify an
intrusion. The research in this field aims to reduce errors in
detecting intrusions. Some of the important methods include
the following.

o« Anomaly Detection: is a method that works in two
phases. One deals with identification of normal behavior
of an authenticated user. This identification process is
automated and the techniques for the purpose ranges from
statistical methods to machine intelligence including soft
computing techniques. Using any of these techniques,
an intrusion detection makes a repository of normal
behaviors for users. And then, when an user is in session
with an system, its intrusion detection system goes into
monitor mode to identify behavior patterns for the users.
And then the detection system matches a deduced pattern
to the stored patterns defined by a statistical profile of
normal behavior. A pattern that deviates significantly
from the normal profile is considered an attack. [5], [6]
Anomaly detection technique defines the baseline of the
normal behavior on a system and detects intrusions using
deviations from this baseline. The method can detect new
attacks against systems by comparing current activities
against statistical models of past behavior. However, the
system may generate too many false alarms (False
Positives) by narrowly defining the baseline of normal
behaviors. [1]

o Attack Detection: technique intends to identify attacks
that may lead to disruption of services, denial of services
or even damage to system e.g. deletion of crucial files,
theft of important data. The technique crucially depends
on intrusion awareness of a detection system. An IDS
system should have a library of a Hack signatures and
the system should also be capable of identifying an attack
by deriving an attack pattern and matching that pattern
with the available repository of attack signatures[7], [8].
Though this technique is widely practiced still has serious
limitation that constrains the capability of an IDS to
identify attacks that are only listed. Such an IDS turns
blind to new variety of attacks.

o Policy-driven Intrusion Detection: technique intends to

3769

978-1-4244-2794-9/09/$25.00 ©2009 IEEE

remove such limitation by providing facility to system
administrator for providing new policies that are useful at
present scenario to defend a computing system. Usually
such approach is being used for access control. Users
and even processes are characterized by their roles and
for each role policy(ies) is(are) specified. Based on these
policies users/processes are allowed to access resources
of a computing system[12]. Again this technique is
constrained to the efficiency of policies. Another policy
driven IDS is reported in [9]. This method makes use
of Linux resource access structures and looks for fields
in structures to test the permissibility of user. Thus, the
policy lacks clarity being very close to system syntax.
Also, policies do not specify different scenarios evolving
due to states of computation. Policies are successfully
used to specify scenarios enabling users to access system
i.e. access control system. Such uses are not found in
IDS. However, the policies for user accesses are for-
mulated considering organizational practices and those
for a process are formulated considering its states. For
both the cases the higher level abstractions are required
in formulating policies. But, this kind of abstractions
is prone to lapses as certain aspects (with respect to
organization / system states) can be overlooked.

Considering the limitation we propose to define policies at
each resource level i.e. at the lowest level. Each resource is an
atomic entity and it passes through certain defined states while
the entity is being used during computation. Considering its
dynamic behavior, we propose to define policies and while the
entity is in use these policies are evaluated and in case of any
violation alarm is raised indicating a possible intrusion. This
approach is popularly known as sandboxing and the concept
is discussed in the next section.

II. SANDBOXING

The idea behind sandboxing is to provide an all-time
safeguard to computing resources like files, memory etc. by
defining policies for detecting their misuses. This is a conser-
vative approach as it processes each request before entertaining
any access to a resource. While other approaches, detects an
intrusion after it happens thus making the computing system
vulnerable. Thus, the proposed approach is almost successful
in detecting attacks that are harmful to system.The basic
operations on any resource includes access, read and write.
A state diagram depicting life cycle of a resource usage is
presented by the following state diagram (figure:1).

Fig. 1.

Resource Usage State Diagram

A process intending to use a resource, access the resource
and then either may read or/and write before quitting the
resource. Then the usage of the resource comes to an end. In
order to provide security we can specify policies of each state
for legal usage of the resource. For an example, a process in
supervisory state can only access the password file for read and
write. An process may have permission only to read the file but
not to write. A process may be allowed to acquire a specified
amount of memory. These issues can be written as policies and
attached to a resource state. Just before a resource reaches a
state the corresponding policies are invoked for enforcement.
This basic principle is followed in this paper to safeguard a
resource.

A policy abstractly can be specified as a rule in the form of
if-then statement as listed in Listing:1

Listing 1
PoLiCcY FORMAT

Policy :: if {< condition >} then {< action >}
condition:: < operand > < op > [< operand >]
action :: < procedure > | < operand = operand >

A policy has two components viz. condition and action,
the first component is composed of predicates and the second
has procedures primarily for restoration of system status and
issuing warning message to alert system administrators.
Policies are incorporated at operating system level as plug-in
components to Linux Kernel 2.6. Many policy based security
systems enforce polices at application level and some at middle
ware level[10]. The first approach we feel not useful to provide
a secured system as there could be lapses at application design-
ers. Offloading responsibility to users is not a wise decision.
Putting responsibility on middle ware interfacing applications
and operating system is operationally sometimes not feasible
for accessing attributes of system resources e.g. task control
block, system call routines and associated data structures.
so, we have decided to enforce policies at operating system
kernel level. We have developed a software that translates a
policy to a ’C’ program. Such a ’C’ program is added to
Linux 2.6 kernel. As we have told a policy is meant for
enforcement at certain states of resource usage, so the 'C’
program corresponding to the policy is to be executed at
associated states. Usually making a system call for system
resource usage, the corresponding interrupt service routine is
executed.

H

System call IDS —E—}System call Code

H
H

i

H

H

T userjkernel

USER SPACE KERNEL SPACE

Fig. 2. Positioning IDS

3770

A system call is generated at user space but the call is
processed at the kernel level. The proposed IDS essentially
executes 'C’ routines implementing policies corresponding to
system calls. The routines are located at kernel space and
interfaced to respective system calls and the corresponding call
service codes as shown in figure:2.

Thus IDS has become a part of the kernel. The steps leading
to policy execution is shown in the following sequence diagram
(figure:3)

User space Kernel space
Application oS SCI
System call enforce policy
| }3
s calliermror 1< execute seryifes
Ipohcygfalled] [policy passed]
i deliver ervice
2 i
-~ ¥
Fig. 3. Policy enforcement process

First, a system call issued by an application is caught by
IDS and the policy in C’ corresponding to the call is executed.
If the policy succeeds then the system is allowed to avail
the resource and subsequently the call service is delivered to
the application. In case the policy fails then the call is not
allowed for service and the execution control returns to the
application. Thus on deploying IDS, the sand boxing of an
operating system is achieved. Though, the concept is simple,
its implementation is tricky for that needs tinkering of internals
of operating system. In the next section we present a method
of sandboxing of Linux Kernel 2.6.

III. SANDBOXING LINUX

Like any other operating system, GNU/Linux has multi-
layered architecture as shown in figure:4 comprising major
subsystems including process management, memory manage-
ment, virtual filesystem, network management, device drivers
etc. At the top, SCI (System Call Interface) provides a way
for applications to gain access to kernel for accessing system
resources through kernel services.

An application on making a system call invokes SCI using
Interrupt Service Routine (ISR) at 0x80. The routine decodes
a call requirement i.e. the service and looks for the routine that
can provide the service. The array sys_call_table[] keeps the
address of kernel service routines. For a service requested by a
system call, the address of the call processing routine is found
and then the routine is invokes. In Listing:2, we present a set
of system calls, structures of sys_call_table and call processing
routine.

User application |

GNU C Library(glibc)

} User space
’ Kernel space

System call Interface(SCl)

I I
| Kernel |
| Architecture Dependent Kem el Code |
| I

Hardware Platform

Fig. 4. GNU/Linux Architecture

Linux v2.6 provides a set of system calls approximately
counting more than 321. These calls are mainly for open, close,
read, and write operations on each resource like files, sockets,
etc.

Listing 2
SOME SYSTEM CALLS

long sys_restart_syscall(void);

long sys_exit(int error_code);

int sys_fork();

ssize_t sys_read (unsigned int fd, char
buf, size_t count);

_user

These system calls are specified in “/include/lin-
ux/syscalls.h”. Listing:3 presents a structure specifying
sys_call_table.

Listing 3
SYS_CALL_TABLE STRUCTURE

// for each system call one entry in table
ENTRY(sys_call_table)

.long sys_restart_syscall

.long sys_exit

.long sys_fork

.long sys_read

.long sys_write

.long sys_open

Once a system call is made (usually at user space)
the interrupt handler at 0x80 before invoking the intended
system call, it saves all registers before system enters to
the kernel space. It also checks whether the made call is
a valid call. That is if the requested system call id (iden-
tification) number is not in the defined range (available at
/arch/x86/kernel/sys_call_table_32.S) then the call is aborted.
Else *sys_call_table(id) is called to invoke the target system
call on picking up its address from sys_call_table. It may be
recalled here that the table is an array of long integers and
each of those has an address to a particular system call.

Sandboxing of a system call is performed just before the
routine *sys_call_table() is invoked by the system call interrupt
(SCI) handler. We position sandboxing routines in between

3771

SCI and *sys_call_table(). A sandboxing routine implements
a policy that detects a system call posing a potential threat for
the resource it uses. A policy specified in XML is translated
to assembly language for Linux v2.6 on particular platform.
In an another paper we propose a method to translate poli-
cies in XML form to an executable form. For sandboxing,
sys_call_table datastructure is modified. Each of its nodes now
stores address of an executable policy. As before nodes in the
table are mapped to policies meant to verify system calls. On
modification of the table, the sequence of activities for interrupt
handling changes. On initiation of a system call, its interrupt
handler access the table to call the routine that executes the
policy corresponding to the call. If the call is vested by the
policy then the routine that processes the call is invoked. The
original sequence of activities and the modified are shown in
figure:5(a),5(b) respectively.

int 80h Kernel Space
User Space Interrupt Handler
socket() | + Save Registers -,-l sys_socket() |

* Change Address
Space boundaries
* Look up system call
* Check system call
parameters for errors
* Miscelleneous
other checks

(a) Original sequence

int 80h
Interrupt Handler

| socket() l—* * Save Registers

* Change Address
Space boundaries
* Look up system call
* Check system call
parameters for errors
* Miscelleneous
other checks

User Space Kernel Space

* verify the System call
* Update log
* Call original functien

y
| sys socket()

¥

(b) Modified sequence

Fig. 5. Sequence of control flow

In order to intercept system calls following the methods
as discussed in the previous section, Linux kernel is to be
modified. The kernel needs to export sys_call_table for further
use. Besides this, it should make the table array writable data
section. So to export the table and to make it writable the
following patch (Listing:4)is added to the kernel and it also
needs to be recompiled.

After recompiling the kernel and booting the machine from
the new kernel, we are all set to have host based intrusion
detection system. The updated Linux kernel allows intrusion
detection system (i.e. that executes policies) to run in kernel

Listing 4
KERNEL PATCH

arch/i386/kernel/i386_ksyms.c
+extern void x sys_call_table;
+EXPORT_SYMBOL (sys_call_table);

arch/i386/kernel/entry .S

2 0

—.section .rodata, “a

5 ”»

+.section .data, “aw

space thus avoids context switching for policy execution in
contrast to the recent one reported in [13]. In next section we
will present an application of our method to monitor network
system calls.

IV. SANDBOXING NETWORK SYSTEM CALLS

In this section we discuss on implementation of the pro-
posed scheme for sandboxing system network calls. Linux uses
one sys_socketcall for all network operations like open, close,
bind network ports. Usually the call takes an integer as an input
parameter and a switch statement operates on integer to invoke
the intended network system call operation. This can be viewed
from the following skeletal code (Listing:5) for sys_socketcall
(at /net/socket.c)

Listing 5
ORIGINAL SYS_SOCKETCALL CODE

asmlinkage long sys_socketcall (int call,
unsigned long __user xargs)

if (call <1 || call > SYS_PACCEPT)
return —EINVAL;
switch(call) {
case SYS_SOCKET:
sys_socket(a[0], a[l], &a[2])

break ;
case SYS_BIND:

break ;

} // end of sys_socketcall

Then for each of the cases corresponding routines like
asmlinkage long sys_socket(int family, int type, int protocol)
etc. are defined.

For sandboxing network calls we have modified the 102th
entry of sys_call_table by putting the address of a routine say
policy_sys_socketcall. This routine implements the policy for
network call verification and then the routine calls the original
sys_socketcall shown in Listing:5. In Listing:6, we present a
framework of the sandboxing routine policy_sys_socketcall.

In the above routine (Listing:6) for SYS_SOCKET case the
policy for not allowing more than hundred sockets to open, is
implemented. Upon confirming the compliance of the policy

3772

Listing 6
POLICY_SYS_SOCKETCALL CODE

asmlinkage long policy_sys_socketcall(int call,
unsigned long __user xargs)

switch(call) {
case SYS_SOCKET:
no_of_sockets_opened++; // does not allow
more than 100 sockets to open}

if (no_of_sockets_opened > 100)
return —1;

else
return sys_socketcall(call, args);

break;
case SYS_BIND:

break;

Y /7 end of policy_sys_socketcall

the original routine sys_socketcall is invoked. In case of non
compliance of the policy the processing of the network call is
aborted. We have performed an experiment to demonstrate the
efficacy of our method of sandboxing at kernel level. Next we
present the experiment.

A. Experiment

We have designed an experiment for sandboxing of network
system calls. The objectives of the experiment are to 1.
check the possibility of intercepting a system call and in
prior to execution of the call invoking a policy to judge that
the call uses permissible resources 2. measure the overhead
incurred due to policy evaluation. As described in the previous
sections, we begin with the patching of Linux 2.6 kernel with
the patch given in (Listing:4); then compiling and installing
the kernel. The newly installed kernel allows us to modify
the sys_call_table array. A system call viz. sys_socketcall is
responsible for all the network operations via the socket in-
terface. So we write a kernel module sandbox_linux which on
initialization changes the address at offset _ NR_socketcall of
sys_call_table array. The initialization code listed in Listing:7

Listing 7
SANDBOX_LINUX MODULE INITIALIZATION CODE

static int sandbox_linux_init (void)

old_sys_socketcall = sys_call_table|[
__NR_socketcall];

sys_call_table[__NR_socketcall] =
policy_sys_socketcall;

return 0;

}

At offset _ NR_socketcall of sys_call_table, a pointer
points to sys_socketcall. Then, for sandboxing, we redirect
the pointer to a procedure that implements the policy for safe

execution of network calls. On execution of the procedure the
control of execution moves for execution of network system
calls. In order to achieve the said changes we have proposed
two add-ons to the kernel given in Listing:7 and Listing:8.
The Listing:7 reorients pointer to policy_sys_socketcall and
the Listing:8 sets the pointer back to sys_socketcall.

As and when Linux kernel receives a call for network opera-
tion, the add-on policy_sys_socketcall (Listing:6) is executed.
This procedure is expected to implement all the checks re-
quired to be done to safe guard system resources as defined by
security policy specification. For an example, we have defined
a policy to ensure that at any time not more than hundred
connections to be opened. In case this situation occurs, the
system would take action as it is directed to do in policy
specification. In this case, it may be seen that in case of
violation an error condition is returned.

Listing 8
SANDBOX_LINUX MODULE EXIT CODE

static void sandbox_linux_exit (void)

/x Return the system call back to normal x/
sys_call_table[__NR_socketcall] =
old_sys_socketcall;

The routine policy_sys_socketcall shown in Listing:6, ini-
tialization and exit module codes presented in Listing:7 and
Listing:8 are added to Linux 2.6 by making use of insmod
utility , thereby making the sandbox_linux ready for deploy-
ment. On inserting the module into kernel, all the network
system calls are bypassed through the policy implemented
routine(policy_sys_socketcall). Thus the kernel is augmented
for sandboxing network system calls.

Linux kemel/f
sandbox_linux

CallGenMod
1

{loop1

|
I
record time —

loop 2]

-
invoke syscall ©

retum syscall

record time

calculate
exectuion
time/cal »l

Fig. 6. Sequence diagram for experiment

Now, we are ready to evaluate the augmented kernel with
respect to the desired objectives. Experiment includes
CallGenMod a call generation module and a Linux module.

3773

The experiment is carried out in two phases. First phase uses
Linux2.6 module and the second phase uses sandbox_linux.
A sequence diagram in Figure:6 shows the dynamic behavior
of the modules in the second phase. Each phase, has several
checkpoints (loop-1 in Figure:6) and at each point, the Linux
kernel is subjected to several network system calls (loop-2 in
Figure:6) in burst mode ranging from zero to 30,000 calls.
Thus, at a given time the system is made to respond to a
multiple of thousand network system calls. And for every
completion of loop-2,system response time is read.

The time of execution and overhead in sandbox_linux
against number of sys_socketcall is plotted and resulting graph
is shown in figure:7.

2.500
—Without IDS
—With IDS
Overhead
2.000
w
£
£1.500
a
E
=
=
51.000
@
e
i}
0.500
0.000

8000 16000 24000
4000 12000 20000 28000
Mo of Systerm calls

Fig. 7. Time of execution vs no of system calls

As we found from the above results (figure:7), the overhead
time in intercepting a system call is about 0.01msec (approx).
We also observed that the test program resulting error condition
while it is violating the policy of limiting number of opened
sockets. From these errors, we concluded that the system
functions reliably depends on stated policies.

V. CONCLUSION

System call based IDS is found efficient as it works at
kernel space and so avoids context switching that is found in
intrusion detection systems operating at user level.However,
this kind of IDS monitors each system call in isolation. It
only checks the correctness of a system call considering it as
an atomic operation. The correctness of complex computing
scenarios emerging due to computations can not be verified by
checking individual system calls only. Policies are found useful
for abstraction of such complex scenario. The research on
policy based approach for access control of complex systems is
being currently pursued[14]. Policy based IDSs are proposed
in [9],[13]. But, these systems have limitations like shallow
use of policy[9] and execution of policies in user space[13].
In this work, we have proposed a hybrid method that combines

both system call based IDS and policy based IDS techniques.
And also, our approach overcomes the limitations observed in
[9], [13]. In our scheme policies can be defined at higher level
in if-then-else scheme that allows a policy to comprehend and
specify a security scenario at higher level. We describe policies
as combination of condition(s) and action(s) and implement it
in C. For sandboxing a system resource, policies associated
to its different states are executed in kernel mode. In an
experiment for sandboxing network calls in Linux2.6, we have
shown that on an average, overhead for the purpose is limited
to 0.01msec for a system call. So, the proposed system is time
efficient as it is running in kernel space instead of user space.
The approach allows a high degree of flexibility for a security
administrator to form and deploy context-specific policies
on permissible usability of system resources. Currently, we
are developing a tool for security administrator to generate
executable C code from XML based policy specification and
to plug these codes to Linux 2.6 kernel on-the-fly.

ACKNOWLEDGMENT

The work is supported by University Grants Commis-
sion,INDIA for the project titled “Investigation on Model
Based Intrusion Detection System for University Resources”
as major research project.

REFERENCES

[1] Anup K. Ghosh, Aaron Schwartzbard: A study in IDS using neural
networks for anomaly and misuse detection. In proceedings of the 8th
USENIX security symposium, Washington D.C. USA, August 23-26
(1999)

[2] Introduction to Intrusion Detection -ISCA Publications, Prepared by
RebekoBag.

[3] A.G.Gonek, T.A.Corbi: The Dawning of the autonomic computing Era.
IBM Systems Journal, Vol.42 No.1 (2003)

[4] "IDS Today and Tomorrow”, SANS Reading room by Thomas Goeldenitz
January 22, 2002

[5] HalJatz and Alfouso Valdes. The NIDES statistical component description
and justification, Technical report, Computer Science Laboratory, SRI
international, Menlo Park, California, USA, March 1994

[6] Debra Anderson, Teresa F. Lunt, Harold Janitz, Ann Tamorn and Alfonso
Valdes: SAFEGUARD FINAL REPORT: Detecting Unusual Program Be-
havior using the NIDS statistical component. Technical report, Computer
Science Laboratory, SRI international, Menlo Park, California, USA, Dec
1993

[7] Kathlecn A. Jackson. INTRUSION DETECTION SYSTEM Product re-
view IBM International confidential document, IBM Research Division,
Zurich Research Labs, April 1999

[8] VanPaxson Bro: A System for Detecting Network intruders in Real time.
In the 7th USENIX Security Symposium, 1998

[9]1 Suresh N. Chari, Pau-Chen Cheng: BlueBox: A policy-driven Host-Based
IDS, ACM Transactions on Information and System Security (TISSEC),
Vol. 6, .2 (2003)

[10] Harne Debar, Marc Dacier, Mehdi Nassehi, and Andreas Wespi: Fixed
vs. Variable-length Patterns for detecting suspicious process behavior,
Research Report, No RZ 3012, IBM Research Division, Zurich Research
Lab, April 1998

[11] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
LongStaff: A sense of self for UNIX process. In IEEE symposium on
security and privacy, 1996

[12] Sihn-Hye Park, WonilKim, and Dong-KyooKim: Autonomic Protection
System Using Adoptive Security Policy

[13] ”On Run-Time Enforcement of Policies” by Harshit Shah and R. K.
Shyamasundar, Advances in Computer Science ASIAN 2007

[14] ”Infrastructural Support for Enforcing and Managing Distributed
ApplicationLevel Policies by Tom Goovaerts,Bart De Win, Wouter Joosen,
in Electronic Notes in Theoritical Computer Science 197(2008)31-43

3774

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

