
978-1-4244-2794-9/09/$25.00 .2009 IEEE       SMC 2009 

Ant Colony Optimization Algorithm for Reactive 
Production Scheduling Problem in the Job Shop 

System 
E. R. R. Kato, O. Morandin, Jr., M. A. S. Fonseca 

Department of Computer Science 
Federal University of São Carlos (UFSCar)  

São Carlos, SP, Brazil  
 

kato@dc.ufscar.br; orides@dc.ufscar.br; marcos_abraao@dc.ufscar.br 
 

Abstract—The response time for solution scheduling problem 
is a import criteria of consider in real manufacturing systems 
where large-scale scenarios must be evaluated since as 
unexpected events arise. This work describes a proposed 
modeling and analyses for the production reactive scheduling 
problem in a job shop system. The scheduling problem, generally, 
consists in allocate the production operations with the aim of 
minimizing the makespan. For that, it was employed an Ant 
Colony Optimization algorithm applied in a matrix of the feasible 
solution space problem representation. In the case of a reactive 
system, the approach should provide good solutions in a short 
execution time, allowing the analysis of large scenarios in habile 
times. The results of this paper were compared with the results of 
other approaches in small and large scenarios.  

Keywords—ACO, graph representation, job shop scheduling 
problem, reactive scheduling. 

I. INTRODUCTION 

 
Among the main components that compound the 

performance of an enterprise such as quality, speed, reliability, 
flexibility and cost, one of the factors more emerging in 
productive systems is the flexibility that the system can provide 
in terms of switching of products and processing of its 
operations. In order to obtain a competitive advantage, the 
flexibility of job shop system considers it, since trying produce 
according to customer expectations and requirements of. 

However, since this degree of flexibility rises, production 
systems become increasingly complex and difficult to solve for 
professionals in the planning and control of production, which 
have motivated various research work in both fields. In this 
context, focusing on the area of planning, the commonly 
problems dealt in the literature are found to the scheduling and 
scheduling production. 

In real manufacturing systems, the production is subject to 
failures and some events as machines breaking, missing 
resources make the system unworkable. This aspect must be 
considered, what defines a reactive system, and a re-scheduling 
or re-sequencing production becomes necessary in a short time 
allowing the system resumption. The job shop scheduling and 
sequencing production is the class of NP-Hard problem, 

justifying the use of various types of heuristics and artificial 
intelligence (AI) techniques with the objective of finding near-
optimal solutions. In literature various studies have been 
proposed using different methods like Genetic Algorithms 
(GA) [1], hybrid algorithms with GA and Local Search [2] [3], 
other heuristics [4] and recently Ant Colony Optimization for 
combinatorial optimization problems [5].  

In [6] and [7] are presented two approaches to the problem 
of flexible job shop scheduling (FJSP). Both deal with the 
problem upon two perspectives, according to the model and 
according to the method of search for solution of the problem. 
[6] provide a description of the problem in disjunctive graphs, 
which include the restrictions considered in the problem as the 
setup time, transportation time, due date and processing time. 
In the aspect of finding solution is used a meta-heuristic of ant 
colony optimization (ACO). The results, achieved by applying 
the method by using benchmarks, shows that the approach is 
efficient when compared to other heuristics and techniques 
such as Genetic Algorithms and Tabu Search (TS).  

Liouane et al [7] use a graph model which it is derived from 
a matrix representation. The method, based in ACO for finding 
the solution, is applied to matrix that represents the solution 
space. After construct the solution by the ACO algorithm, a 
local search method is applied to improve the solution. 
According to conclusions of the authors, the approach gives 
efficient results for the experiments evaluated.  

Benbouzid et al [8] apply the ACO approach to another 
class of manufacturing systems. The algorithm is used to 
determine the sequencing of production in a flow shop system, 
which consists of a permutation of tasks to be allocated on the 
machines such that minimize the total production time (or 
makespan). The construction of the path traveled by the ants 
determines the solution to the sequence production problem, 
which can be further enhanced by a local search based on 
insertion movements. To the problem, is still considered the 
preventive maintenance which occurs in a given interval of 
time. The experimental results show that the proposed 
approach is better than other approach that use GA algorithm. 
However, when inserting the preventive maintenance in the 
solution, the results are lower than the approach with GA. 
According to Ruiz, R. et al [9] many studies show this feature, 
to consider the preventive maintenance on a disjoint in the 
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solution of the problem, in such a way entering the tasks of 
maintenance after the choice of scheduling operations. In the 
work, [9] analyze the behavior of different approaches to the 
integration of preventive maintenance with the solution of the 
problem. The results show that the GA and ACO approaches 
obtained the best solutions for the scheduling production jointly 
preventive maintenance. 

Based on research described previously, this work presents 
the modeling and analysis of a specific manufacturing system, 
included in the class of job shop, with the aim deal the reactive 
production scheduling problem, minimizing the makespan 
value in short time to solution response became in this case the 
performance a critical factor considered in this work. The 
problem is formally described in session 2 as well as with the 
restrictions considered. Session 3 describes the modeling used 
to represent the problem by making it accessible to the 
mapping and analysis computational. The ACO approach 
proposed in this work is described in Session 4. Session 5 
presents the results achieved with the approach. And finally, 
Session 6 presents the main conclusions and considerations on 
the results achieved. 

II. PROBLEM FORMULATION 

 
The job shop may be described as follows. Consider a set of 

N jobs J1, J2... JN, which must be processing by K machines M1, 
M2... MK. Each job Ji consists of a sequence of operations 
defined by Oij representing the execution order. The processing 
times Oij of job Ji in machine Mk are pre-defined and 
represented by Pijk , where i is the index of the job, j is the 
operation index and k the index that indicates the machine has 
been allocated to operation. Table I, illustrates an example of 
this description considering i = 2 k = 3. 

TABLE I. EXEMPLE OF PROCESSING TIME OPERATIONS 

M1 M2 M3

J1 O11 1.5 0.9 1.1 
O12 2.2 2.1 1.4 

J2 O21 0.1 2.3 1.3 
O22 1.7 1.85 1.5 

 

Each operation Oij has a processing start time, denoted as Tij

and a processing completion time TFij . STij represents the setup 
time for machine k to perform operation Oij. The following 
restrictions are also considered for the problem: 

• Each machine performs only one operation at a 
time. 

• The operations are not preemptable. 

• All machines are available at time t = 0. 

• The machines do not break. 

• The transportation time of a resource for the 
machine Mk is not considered. 

• The setup time is the same for all machines. 

• The execution order of operations of each job is 
fixed and cannot be changed. 

The problem is to allocate all operations to the machine 
which consequently allows us to determine the sequence of 
execution of each job according to an objective function. The 
objective function used in this work is the makespan, denoted 
by: 

 
(1) 

 
where CMax denotes the value of the last operation i of last job j. 
TFij is processing completion time. 
 

III. PROBLEM MODELLING 

 
The problem representation follows the characteristics 

inherent of the ACO meta-heuristic. Thus, the solution of the 
scheduling production problem, which is consequent the path 
built by artificial ants, denotes the order of products and their 
respective routes of production. A manufacturing route is a 
sequence of operations that must be followed in a defined order 
and production can be defined by JiRk where Ji is the i-th job 
and Rk the k-th route of the job Ji.. Information on the routes 
are known and previously acquired as illustrated in Table II. 

TABLE II. EXEMPLE OF ROUTES OPERATIONS OF THE JOBS J1 J2 J3 

J1 M1 M2 M3 - 
M2 M3 - -

J2 M2 M3 M4 -
M1 M2 M3 M4 

J3 M1 M2 M4 - 
 

In this example the jobs J1 and J2 has each of two different 
routes and only one task J3. As the table indicates, the job J1 is 
complete after the execution of its operations on the machines 
M1, M2 and M3 or M2 and M3. From this information, the 
matrix of Table III is constructed, where each value shown 
represents the index of the machine in the route. For example, 
the values 1, 2 and 3 of the job J1 represents the machines M1, 
M2 and M3 in Table II and value 0 indicates the absence of 
other machines for this route. This value 0 is necessary because 
the number of elements in the route of the job J2 in his second 
route, since a matrix must respect the values of their 
dimensions. 

TABLE III. REPRESENTATION OF PRODUCTION ROUTE OF JOBS J1 J2 J3 

J1 1 2 3 0 
2 3 0 0 

J2 2 3 4 0 
1 2 3 4 

J3 1 2 4 0 
 

According to the considerations on the routes listed, the 
space of solutions to the problem can be represented by a graph 
G = (V, A), where V denotes the set of vertices whose values 
indicate the pair JiRk defined above and A the set of edges 
connecting the vertices for the construction of feasible 
solutions. A feasible solution indicates that a sequence of 
vertices J1R1, J1R2 and J2R1, as in Figure 1 is not permitted, 
since the solution is a permutation of jobs (i.e. the same job Ji 

ijMax TFC =
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must not contain more a time in sequence). For each edge is 
associated a value that corresponds to the weight to go from 
node i to node i +1. The weight is given by (1), i. e. the value 
of total production time of job Ji with the route Rk for the job Jt 
with the route Rs. The Figure 2 represents the values associated 
to each edge and also indicates a plausible solution given by 
J1R2, J2R1 and J3R1. 

 

 

 

 

 

 

 
Figure 1. Incorrect jobs sequence 

. 
 

Figure 2. Graph for problem representation. 
 

IV. THE PROPOSED ANT COLONY OPTIMISATION  

 
The ACO meta-heuristic was established from observations 

of the behavior of real ants in a colony. Its main feature is that 
comes from communication between the ants via a substance 
called pheromone. Insofar as the ants will explore the 
environment through the identification of food, the pheromone 
is deposited on the traveled path, influencing in turn the other 
ants to follow the same path. Over time the convergence of the 
path becomes clear, indicating to light a path which in turn, is 
the shortest path between the nest and food. The fundamental 
work was developed by [10] and then became a meta-heuristic 
in the work presented in [11]. The following flowchart (Figure 
3) illustrates the general flow of the algorithm outlining its 
main points [5]. 

Initially the ants are randomly distributed through the space 
of solutions, represented by Figure 2 in order to build the 
individual solution to the problem. The number of ants is 
informed as a parameter to the algorithm and can change 
according to the modeling and the problem treated. The 
probability of choosing the next element that composes the 
solution of the problem is given by the following (2). 

if ,k
iNj ∈      (2) 

 

 

where (τij)
α is the amount of pheromone deposited on the edge 

(i, j). α is the parameter that determines how influential will be 
the value of pheromone. (ηij) is the heuristic value given by 
1/dij, where dij is the value obtained in (1). β is the parameter 
that determines how influential will be the value of the 
heuristic used. Ni

k is the feasible neighborhood of ant k (i. e. the 
set of nodes not yet explored by ant k). 

 

 

Figure 3. Flow chart of Ant Colony Optimisation. 

The construction of the solution is based on the choice of 
the nodes following a number of interactions give by the 
solution representation. The information such as nodes already 
visited and sum of the objective function values are save in 
artificial ants to each interaction. After the construction of 
possible solutions, given by each of the ants, the value obtained 
by the best ant, that is the best solution, is save. The trail is 
updated by the following expression, proposed in [12]: 

 

 

(3) 

 

 

where (1 – ρ) τij define the evaporation of the trail (i, j), and the 
parameter ρ [0 < ρ ≤ 1] is the evaporation rate applied to the 
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value of pheromone τij. σ is the number of elite ants and μ 
ranking of the μ-th ant elite. Q/Lμ represents the pheromone 
update on the edge belonging to the path of σ elite ants. Q is a 
constant and Q/Lbs represent the pheromone update on the edge 
belonging to the path of the best ant (best-so-far ant). The 
algorithm follows the flow shown in Figure 3 until the number 
of cycles, defined as a parameter, is reached. After the second 
interaction the pheromone values begin to act on the edges of 
the search space and, consequently, the choice of the nodes that 
comprise the solution. In order to avoid stagnation, (i. e. all ants 
converge to the same route) a process of evaporation is first 
applied by reducing the values of the pheromone trails and then 
the deposit of pheromone is employed. 

A. Mapping of the Representation 

The mapping of the representation corresponds to a 
computational transcript of the model presented in Session 3 
jointly with the restrictions of the problem defined in Session 2. 

As mentioned, each node of the representative model 
corresponds of juxtaposed pairs of jobs/routes JiRk. The 
construction of a feasible solution is to establish a coherent 
order of nodes such that it minimizes the total time of 
production in a habile execution time. From this information 
and the problem restrictions, the matrix of Table IV can be 
defined in order to map the details of the model. 

TABLE IV. MAPPING CONSIDERING MODEL AND PROBLEM RESTRICTION 

 J1R1 J1R2 J2R1 J2R2 J3R1 

J1R1 0 0 1 1 1 
J1R2 0 0 1 1 1 
J2R1 1 1 0 0 1 
J2R2 1 1 0 0 1 
J3R1 1 1 1 1 0 

 
The matrix consists in N +1 lines by N +1 columns whose 

values of the first row and N columns indicate the N pairs of 
job/route obtained by the representation illustrated in Figure 2. 
Similarly, the values of the first column with the N lines also 
indicate the N pairs of job/route. The zero values of the matrix 
lead to a consistency restriction with the problem solution 
which is not necessary to calculate the makespan for identical 
jobs but with different routes. Thus, given the matrix of table 
IV, the calculation of weight to the edges of Figure 2 can be 
made from these considerations. Figure 5 illustrates this 
principle. 

 

 

 

 

 

 

Figure 4. Makespan value considerations 

Once defined the values for the weights of the edges, the 
search method can be applied on the solutions space matrix by 
the approach described in the following session. 

 J1R1 J1R2 J2R1 J2R2 J3R1 

J1R1 0 0 1 1 1 
J1R2 0 0 1 1 1 
J2R1 1 1 0 0 1 
J2R2 1 1 0 0 1 
J3R1 1 1 1 1 0 

 

 

 J1R1 J1R2 J2R1 J2R2 J3R1 

J1R1 0 0 3.8 4.7 4.9 
J1R2 0 0 3.7 3.9 4.1 
J2R1 3.8 3.7 0 0 4.5 
J2R2 4.7 3.9 0 0 4.3 
J3R1 4.9 4.1 4.5 4.3 0 

Figure 5. Matrix representing the weights of the edges. 

B. ACO for production reative scheduling problem with 
flexible routes 

The algorithm proposed in this paper follows the structure 
presented in Session 4. The coding of the algorithm was 
developed using the resources of the software Matlab (The 
MathWorks, Inc.). The main reasons for choosing the tool is in 
its robustness, and offer ease of handling of matrices and 
vectors. 

Initially the ants are distributed taking as beginning point 
the first column and one of the lines of the search space matrix. 
The choice of the next node, given by (2), keeps on iteratively 
until all the ants complete the journey. After the construction of 
the solutions, given by each ant individually, the values of the 
pheromone matrix are updated using the expression (3).  These 
procedures are performed until the specified number of cycles 
is reached as shown in the flow of the algorithm in Figure 3. 

Among the information saved for each ant, are the 
concatenation of the values of the vertices of the path traveled 
and the sum of the makespan value.  This sum of the makespan 
values does not match with the actual time of production since 
the calculation is done considering only one pair of jobs. Thus, 
after building the solution the calculation of makespan is 
repeated considering all jobs to be performed in the production 
system given for the sequence save in ants (see Figure 4). 

The following session describes the parameters used in the 
algorithm for the tests as well as some important considerations 
about the solution prepared by each ant. 

V. EXPERIMENTAL RESULTS 

 
As a way of evaluating the proposal, this approach was 

compared to another approach that uses the genetic algorithms 
(GA) technique for production reactive scheduling problem 
[13]. For each scenario were performed 35 tests (i. e. 35 runs 
for the same problem) on a Core 2 Duo 3.0 GHz with 2GB of 
RAM and Windows XP operating system. 

 calculation of 
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The scenarios proposed in this work corresponds a two 
instances of problem, one with three jobs and six machines and 
another instance with nine jobs and nine machines. In the first 
instance of the problem exists at least one possible rote for each 
job with three to five machines each as illustrated in Table V. 
In the second instance, each job has two possible routes with 
five to seven machines each (see Table VI). Both scenarios 
were generate randomly  

TABLE V. PRODUCTION ROUTES FOR FIRST INSTANCE 

Jobs  Routes 

J1 R11  M1 M2 M3 M4 M5 

R12 M1 M2 M3 M6 

J2 R21 M1 M4 M5 M6 

R22 M2 M4 M5 M6 

 R23 M3 M4 M5 M6 

J3 R31 M1 M5 M6 

R32 M2 M5 M6 

 R33 M3 M4 M5 M6 

 

The products routes were randomly generated, as well as 
operation times, which ranged between 400 and 500 time units 
(TU).  

TABLE VI. PRODUCTION ROUTES FOR SECOND INSTANCE 

Jobs  Routes 

J1 R11  M1 M2 M4 M5 M7 M9 

R12 M3 M4 M5 M6 M8 M9 

J2 R21 M1 M2 M3 M4 M5 M6 M7 

R22 M2 M3 M5 M7 M8 M9 

J3 R31 M4 M5 M6 M7 M8 

R32 M2 M3 M7 M8 M9 

J4 R41 M2 M3 M4 M5 M6 M7 

R42 M1 M5 M6 M8 M9 

J5 R51 M4 M5 M6 M8 M9 

R52 M1 M2 M3 M5 M6 

J6 R61 M2 M4 M5 M6 M7 M8 M9 

R62 M1 M3 M6 M7 M8 M9 

J7 R71 M1 M2 M4 M5 M6 M9 

R72 M1 M2 M3 M7 M8 M9 

J8 R81 M4 M5  M6 M7 M8 M9 

R82 M3 M4 M5 M7 M8 M9 

J9 R91 M3 M5 M6 M7 M8 M9 

R92 M2 M4 M6 M7 M8 M9 

 

For the tests with the GA approach, the following values 
were used  for  the parameters of  the genetic algorithm:  size of 
the  population  =  30,  crossing  rate  =  0,8  (80%) mutation  
rate  =  0,05  (5%) and generations = 100. These values were 
obtained in [13].  The 35 tests for the second instance can be 

seen at Table VII. The first column indicates the test number 
(from 1 to 35). The next columns represent the obtained 
makespan value by proposal and by GA. The makespan were  
counted  in  time  units  (TU),  and  the  response  obtaining  
time  calculated  in seconds  for each  test,  respectively. 

TABLE VII. OBTAINED RESULTS 

# Proposal 
Makespan 

Proposal 
Time 

GA 
Makespan 

GA 
Time 

1 6051 2.15 4686 3.25 

2 5809 1.95 5188 3.30 

3 5612 2.01 4676 3.14 

4 5914 1.98 5122 3.27 

5 5770 2.02 5363 3.33 

6 6268 1.97 4676 3.13 

7 5760 1.99 5082 3.23 

8 5809 2.01 4673 3.14 

9 5848 1.98 4962 3.23 

10 5760 2.05 5096 3.30 

11 5888 2.07 4673 3.08 

12 5821 1.99 5123 3.14 

13 5760 2.00 5123 3.33 

14 6010 1.98 4780 3.18 

15 6051 1.99 5115 3.25 

16 6096 2.04 5542 3.25 

17 6026 2.01 5057 3.34 

18 5591 2.04 4924 3.17 

19 5613 2.05 5694 3.24 

20 6179 1.97 4902 3.13 

21 5693 2.00 5172 3.25 

22 4613 2.05 4768 3.27 

23 6236 2.01 4901 3.23 

24 5821 1.99 5120 3.39 

25 5878 1.98 5224 3.26 

26 6056 2.09 5181 3.18 

27 5616 1.98 5006 3.13 

28 6005 2.06 5432 3.26 

29 5952 1.98 5053 3.36 

30 5788 2.06 5042 3.20 

31 5760 1.97 5122 3.20 

32 5632 2.01 5096 3.22 

33 5850 2.05 5115 3.19 

34 5856 2.03 4901 3.19 

35 5914 1.97 4930 3.27 

Average 5837 2,08 5043 3,23 
 

The Table VIII joins the results for both scenarios. The first 
column indicates the scenario length and the next columns 
represent the approaches with their respective results and the 
response obtaining time calculated in seconds. For the ACO 
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approach, the parameters used were: N = 15 (size of ants), α = 5 
and β = 0.7 (pheromone and heuristic influence), ρ = 0.07 
(evaporation rate) and σ = 3 (elite number). The results of 
Table VIII shows that the ACO were not better than the GA 
consider the average of makespan value however, the average 
of execution time of the proposed method was 2.08 seconds for 
the large scenario. Other evaluation consisted of new 
parameters configuration of the ACO approach. 

TABLE VIII. OBTAINED RESULTS BY THE ACO AND GA 

Scenario Proposal Makespan Time  

3x6 
GA 2202 0.49 

ACO 2198 0.28 

9x9 
GA 5043 3.23 

ACO 5837 2.08 

 

The Table IX demonstrates other parameters evaluated. The 
parameters used were: N = 20 (size of ants), α = 1 and β = 0.7 
(pheromone and heuristic influence), ρ = 0.1 (evaporation rate) 
and σ = 3 (elite number). With this results it was noted that 
establishing a low influence of pheromone with a rapid 
evaporation, the results tend to improve and approaching the 
results obtained by GA. 

TABLE IX. OBTAINED RESULTS BY THE ACO AND GA 

Scenario Proposal Makespan Time  

3x6 
GA 2202 0.49 

ACO 2198 0.28 

9x9 
GA 5043 3.29 

ACO 5659 1.54
 

Although the proposal only approximate of results obtained 
of the GA approach, one of the objectives of this work could be 
achieved by reducing the response time for large-scale 
scenarios which is an advantage in real problems. 

VI. CONCLUSION 

 
This paper proposes an Ant Colony Optimization (ACO) 

algorithm for reactive production scheduling problem in a job 
shop system with flexible routes. The problem is dealt on two 
perspectives, on the modeling and to the method of finding the 
solution. Although the proposed approach models the problem 
in a comprehensive manner so as to facilitate the computational 
analysis, the results only were close of objective function value 
obtained by other approach. The makespan value and solution 
response time were compared with results of other method that 
used Genetic Algorithm (GA) technique for production reactive 
scheduling. Both approaches consider a production reactive 
system, which leads to a short time to get the results, putting 
the response time as a critical factor. In this case the ACO 
approach was better than GA since the response obtaining time 
was short for large scale scenarios, reflecting real cases in 
manufacturing system.  

One suggestion for improving the makespan value results 
consists of applying a local search method for the solution 
found by the ACO algorithm. As shown by the work of [7] and 
[8] this combination presents significant improvements. 
However, taking care to the system not lose performance in 
response time. 

Another suggestion would be on the modeling of the 
proposed heuristic, so as to establish besides a partial evaluated 
(i. e. makespan between two jobs), a vision of the problem as a 
whole. Thus, the classification of the routes would be found on 
the improved real of problem solution and not only on the sum 
of makespan between two jobs. 
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