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Abstract—The maim idea proposed in this paper is 
integrating sliding mode control (SMC) theory and cerebellar 
model articulation controller (CMAC) neural network into fuzzy 
controller design and the fuzzy control rules can be determined 
systematically by the sliding condition of the SMC. The 
advantages of using fuzzy model into CMAC are to improve 
function approximation accuracy in terms of the weighting 
coefficients of CMAC. The proposed slide-mode-based fuzzy 
CMAC (SFCMAC), which results from the direct adaptive 
approach, has the ability to tune the adaptation parameters in the 
THEN-part of each fuzzy rule during real-time operation. The 
weight-update law is derived using a Lyapunov stability analysis 
that guarantees the stability of the closed-loop system. Simulation 
results show a satisfactory performance of the proposed control 
scheme. 
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I. INTRODUCTION

The control of general nonlinear system has been a widely 
investigated problem because of its wide applications in 
practical systems. However, inevitably the constructed model 
comprises unmodeled nonlinearity and uncertain disturbance 
that conventional control strategies based on a mathematical 
model of the controlled system cannot be easily derived to deal 
with. Moreover, many practical systems may be so complex or, 
even, model-free that to construct a mathematical model or 
identify its parameters is difficult or even impossible. 

There has been considerable attention over the years on 
researches using neural networks (NNs) based on human 
heuristic and learning algorithms [1-3]. The cerebellar model 
articulation controller (CMAC), developed by Albus in the 
1970s [4,5], is a nonfully connected perceptron-like associative 
memory network that computes a nonlinear function by 
referring a look-up table over a domain of interest. Structurally, 
it is equivalent to a network architecture with three layers. The 
contents of these memory locations are referred as weights, and 
the output of this network is a linear combination of these 
weights in the memory addressed by the activated inputs [6]. 
Compared with the general multiplayer neural network with 
back-propagation algorithm, the CMAC has been applied to a 
wide variety of complex dynamical systems because of its 
simple computation, fast learning property and good 
generalization capability [7-9] 

The maim idea proposed in this paper is integrating sliding 
mode control (SMC) theory and CMAC neural network into 
fuzzy controller design and the fuzzy control rules can be 
determined systematically by the sliding condition of the SMC. 
The advantages of using fuzzy model into CMAC are to 
improve function approximation accuracy in terms of the 
weighting coefficients of CMAC. The proposed slide-mode-
based fuzzy CMAC (SFCMAC), which results from the direct 
adaptive approach, has the ability to tune the adaptation 
parameters in the THEN-part of each fuzzy rule during real-
time operation. Each fuzzy rule corresponds to a sub-CMAC. 
Then, the constructed SFCMAC is employed, such that the 
closed-loop stability is guaranteed. 

This paper will address the problem of controlling an 
unknown nonlinear affined system. First, a SFCMAC is used to 
approximate the equivalent control by using an on-line fuzzy 
adaptation scheme, and then the hitting control is appended to 
show that the proposed SFCMAC can result in a closed-loop 
system, which is stable. 

II. DESCRIPTION OF THE FCMAC NEURAL NETWORK

A. The basic CMAC model 

The basic idea of CMAC is to store learned data into 
overlapping regions in a way that the data can easily be recalled 
but use less storage space [10]. The action of storing weight 
information in the CMAC model is similar to that of the 
cerebellum in humans. Generally speaking, the CMAC can be 
viewed as a lookup table. In this technique, each state variable 
is quantized and the problem space is divided into discrete 
states. A vector of quantized input values specifies a discrete 
state and is used to generate addresses for retrieving 
information from memory for this state. Fig. 1 depicts the 
structure of a two-dimensional (2-D) CMAC. The input vector 
(or the so-called state) is defined by two state variables, v1 and 
v2, which are quantized and the state space is divided into three 
discrete regions, called blocks. It is noted that the width of the 
blocks affects the generalization capability of the CMAC. In 
this example, 7 locations are to be distinguished for each 
variable. For each state variable, three kinds of segmentation 
are used, the variable v1 is divided into blocks A, B and C, and 
the variable v2 is divided into blocks a, b and c. Then, the areas 
Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb and Cc are the addresses or the 
locations that store data which are often called hypercubes. 
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When each block is shifted by a small interval (call an element), 
different blocks will be obtained. For instance, blocks D, E and 
F in the second row for v1 and d, e and f in the second column 
for v2 are possible shifted regions. Then, Dd, De, Df, Ed, Ee, Ef, 
Fd, Fe and Ff are new hypercubes from the shifted regions. 
Similarly, hypercubes Gg, Gh, Gi, Hg, Hh, Hi, Ig, Ih and Ii are 
defined in the third layer. 
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 Figure 1.  Block division of a 2-D CMAC. 

Hypercubes in the pth layer are defined by the pth way of 
quantization of both variables. We restrict that hypercubes 
must be formed by the corresponding quantizations, e.g., the 
pth way of quantization (see Fig. 1) for v1 with the pth way of 
quantization for v2. Thus, the hypercubes, such as, Ad and Db, 
do not exist. With this kind of decomposition, one can imagine 
that there are Nh layers of hypercubes, where Ne is the number 
of elements in a complete block. Each state is covered by Nh

different hypercubes, one from each layer. The total number of 
blocks on an input and that of elements in a block determine 
the number of layers and the degree of generalization. The 
CMAC associates each hypercube to a physical memory 
element. 

CMAC uses a set of indices as an address in accordance 
with the current state to extract the stored data. Assume that Nn

is the number of hypercubes; this is the same as the memory 
size in the case. Using the CMAC technique, a stored data yi

can be mathematically expressed as 

∑
=

==
nN

j
jijii way

1

wa     (1)

where w indicates the column vector of memory contents and  
ai  is a memory element selection row vector that has Ne ones. 
Each hypercube is associated to an arbitrary but 
deterministic” physical memory address. In Fig. 1, there are 27 
hypercubes used to distinguish 49 different states in the 2-D 
CMAC. For example, let the hypercubes Bb, Ee, and Hh be 
addressed by the state )3,3(),( 21 =vv . Since each state 
addresses exactly Nn hypercubes, only these three hypercubes 
are set to 1, and the others are set to 0. Note that after the way 
of block division (see Fig. 1) is determined, the vector ai for a 
specific quantized state is fixed.

B. Fuzzy CMAC neural network 

A fuzzy CMAC (FCMAC) system can be controlled by the 
following linguistic rules 
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2
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where 
jj pi ,,2,1 L= , 2,1=j , and 

21iia is the memory element 

selection row vector, and w is the weighting column vector of 
the CMAC. The FCMAC system with center-average 
defuzzifier, product inference and singleton fuzzifier is defined 
as [11] 
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∏  is the membership function of fuzzy set 
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jB  and A is matrix constituted from the memory element 

selection vector 
21iia , and ) ,,,(

2121 ppφφφ L=φ   is a row vector 

whose proper dimension depends on the number of fuzzy rules 
with 

21iiφ  is defined as 
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III. DESIGN OF THE SFCMAC CONTROLLER

Consider a nonlinear system whose equation of motion can 
be governed by 

bufy n += )()( x     (5) 

where y and )(ny  denote the output and its derivative, 

respectively, u is the system input, Tnxxx ],,,[ )1( −= L&x
T

nxxx ],,,[ 21 L=  is the state vector, )(xf  is an unknown 
continuous function, and b is a positive constant. 

If we let dy  represents the known desired trajectory, the 
control aim is to determine a controller for the nonlinear system 
described by (5) so that the tracking error represented by 

Tneee ],,,[ )1( −= L&e     (6) 

With yye d −=  will be attenuated to an arbitrary small 
residual tracking error set. Further, we define a sliding surface 
in the error space passing through the origin to represent a 
sliding surface as follows: 
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and T
ncc ],,[ 11 −= Lc  be such that all roots of the characteristic 

polynomial describing the sliding surface 
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have negative real parts with desirable pole placement. 
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Since (8) guarantees (7) to satisfy the Hurwitz stability 
criterion, maintaining system states on sliding surface )(ts  for 

all 0>t  is equivalent to the tracking problem dyy = . The 
tracking control problem can be formulated by keeping the 
error vector e on the sliding surface defined as follows: 

∑ −
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1
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If the system state is outside the sliding surface s, the controller 
must be designed such that it can force the system states to 
approach the sliding surface and then move along the sliding 
surface to the origin. By choosing the Lyapunov function 

candidate ssV T
2
1= , an equivalent control is given first such 

that each state Lyapunov-like condition holds for system 
stability [12]: 

 0  ,)(
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dt
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Suppose that the control law is: 
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where η is a positive constant and )sgn(s  is defined as: 
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Thus, the sliding condition (10) can be easily verified. 

However, f is unknown, only estimation f̂  can be used to 
construct u. To solve this problem, we propose the adaptive 
scheme using the fuzzy CMAC system. The fuzzy CMAC is 
constructed from the following fuzzy system: 

IF x1 is 1
1
iB  and x2 is 2

2
iB ,  THEN  f  is wa

21ii   (13) 

where we allow weight vector w  to be adjustable. Furthermore, 
for the fuzzy CMAC neural network of (13), we assume that 

we have )|(ˆ)( wxx ff = . Then this estimated fuzzy CMAC 
can be expressed as: 

Awxφwx )()|(ˆ =f     (14) 

where )(xφ  is row vector of whose proper dimension depends 
on the number of fuzzy rules, A is matrixes constituted from 
the memory element selection ai, w  is the corresponding 
parameter of the memory contents. 

Motivated by the principle of SMC, the equivalent control 

equ  is estimated by using an adaptive mechanism that forces 

the system state to slide on the sliding surface and the hitting 
control hu  that drives the states toward the sliding surface. 
Thus overall control law can be represented as: 

  heq uuu +=     (15) 

where equ  and hu  are, respectively, yielded through fuzzy and 

non-fuzzy design modes. Note that the fuzzy CMAC neural 

network f̂  is used to construct the partially section of the 
control law: 
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IV. LEARNING ALGORITHM AND PERFORMANCE ANALYSIS

In this section, we show how to derive an adaptive law to 
adjust the weighting factor such that the estimated equivalent 
control equ  can be optimally approximated to the equivalent 

control of the SMC under the situations of unknown function f. 
Then, we construct the hitting control to guarantee system’s 
stability. 

We define the control heq uuu += . Suppose there exists 

constant optimal parameter for the weighting vector *w . Thus 
(9) can be rewritten as: 
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where *~ www −=  denotes the parameter estimation error, and 

the minimum approximation errors as )()|(ˆ * xwx ff −=ξ , 

with T
Nn

www ],,,[ 21 L=w . Our design objective is to specify 

the control and adaptive law for wi such the sliding condition 
(10) is guaranteed. 

Consider the Lyapunov function candidate 
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where 1r  is a positive constant. By the fact, ww && =~  and (17), 
we can obtain the time derivative of V as 
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We then have the following adaptation law 

Tsr )(~
1 φAww −== &&    (20) 

then  

hsbusssV −⋅−= )sgn(ηξ&   (21) 

To complete the SFCMAC design, it is necessary to 

show that the hitting control is enough to force the state 
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trajectory toward the sliding surface as well as to establish 

asymptotic convergence of the tracking error. Consider the 

Lyapunov function candidate 

2
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Taking the derivative of (22) and using (15), and (9), one has  
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To ensure that (23) is less than zero, the hitting control should 

be selected as 

|||||||[|)sgn(
1

1

)()(
max

1 ∑ −

=
− ++⋅+⋅⋅=

n

i

i
i

n
deqh ecyubfbsu  (24) 

This means that the inequality 0<= ssV &&  is obtained and the 
hitting control actually achieves a stable SFCMAC system. 

From the above discussion, we use a SFCMAC to 
estimate the equivalent control of the system. Conceptually, 
the equivalent control is desired when the state trajectory is 
near 0=s , while the hitting control is determined in the case 
of s 0 [13]. A fuzzy rule base is of the form 

If s is ZO,    Then u is equu =                                (25) 

If s is NZ,    Then u is heq uuu +=                         (26) 

where ZO and NZ denote zero and nonzero fuzzy sets, 
respectively, and input variable s is given in (7). The control 
law of the fuzzy controller is 
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where )(sZOμ  and )(sNZμ  is the membership functions of 

fuzzy sets ZO and NZ, respectively. The membership functions 
of fuzzy sets ZO and NZ are selected to overlap and be 
symmetric to satisfy 1)()( =+ ss NZZO μμ . 

If we choose the triangle membership functions as shown 
in Fig. 2 for the fuzzy sets ZO and NZ of s, the control law u
will be continuously adjusted by the use of the fuzzy logic 

depending on “ZO” layer 1s . When holding the condition 

1ss ≥ , it can be seen that the control law is the same as the 

proposed SFCMAC. However, the amount of hitting control in 

region 1ss <  is dominated by the grade of the membership 

function of NZ, that is, the hitting control could be attenuated 
by the grade of NZ. 

s
1s− 1s

μ

0

NZNZ
ZO

Figure 2.  The fuzzy membership functions of ZO and NZ

V. SIMULATION

In this section, the proposed SMC-based FCMAC control 
system will be applied to control a Duffing forced oscillation 
system [14]. The oscillation system has chaotic phenomena if 
the control input equals zero. The dynamic equation of a 
Duffing forced oscillation system can be described as follows: 

21 xx =&          

utxxx +++−= )cos(121.0 3
122&    (28)  

The trajectory to be followed is described by the linear 
system from (7), the desired coefficients are specified to be 

21 =c . The chaotic system is given by the following desired 

trajectory sin(t) with the initial states T)2,2( −=x  and weights 
are assigned as 0=w  for 27 discrete blocks. The fuzzy system 
for the proposed SFCMAC controller for system (28) is given 
by: 

wa
21
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where ,7,,2,1 L=ji   2 , 1=j , and 
21iia  is the memory element 

selection row vector, and w  is the weighting column vector of 

the CMAC. The membership functions of states 1x  and 2x  for 
the qualitative statements (N=72=49 regular rule partitions) are 
defined as {NB, NM, NS, ZE, PS, PM, PB} where 
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Consider the design parameters are given by 1.01 =r , 

01.0=η . 

Simulation results with the initial condition T)2,2( −=x
are given in Fig. 3. From these simulation results, the tracking 
error has been attenuated efficiently. Thus we see that the 
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proposed control scheme can control the system to follow the 
desired trajectory without using any linguistic information. 

(a) Tracking response 

(b) The state trajectory of the phase plane. 

(c) Tracking error 

Figure 3.  Simulation results with the initial condition T)2,2( −=x

VI. CONCLUSIONS

In this paper, a sliding-mode-based fuzzy CMAC is 
proposed for the trajectory tracking of unknown nonlinear 
dynamics. When matching with the model occurs, the overall 
control system is equivalent to a stable dynamic system. The 
bounds of the fuzzy modeling error are estimated adaptively 
using a learning algorithm and the global asymptotic stability 

of the algorithm is established via Lyapunov function. The 
overall robust adaptive scheme is shown to guarantee that the 
output tracking error can converge to a residual set ultimately. 
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