
Sequential Auctions for Heterogeneous Task
Allocation in Multiagent Routing Domains

George Thomas
Department of Computer Science

University of Iowa
Iowa City, IA 52242

george-thomas@uiowa.edu

Andrew B. Williams
Department of Computer and Information Sciences

Spelman College
Atlanta, GA 30314

williams@spelman.edu

Abstract—Many realistic problem domains are composed of
heterogeneous tasks distributed in a physical environment. A
team of mobile agents has to autonomously allocate these tasks,
navigate to them and finally execute them. Recently auctions
have been used for task allocation among homogeneous agents.
Less studied is the case of allocation where both the tasks
and the agents are heterogeneous in nature. In this paper, we
investigate the market-based allocation of heterogeneous tasks
to heterogeneous agents in domains where the distribution of
the task heterogeneity is known a priori. We present a model of
task heterogeneity, and define a metric that allows us to assess
the fitness of a team for a particular task domain. We then
present a sequential, round-based, auction setup for allocating
heterogeneous tasks to heterogeneous teams and empirically
investigate the performance of three different allocation strategies.

Index Terms—Coordination, Task Allocation, Multiagent Sys-
tems, Robotics

I. INTRODUCTION

Many interesting problems can be solved better, faster or
more reliably by using a team of agents rather than just a
single agent. Today, there are many application domains that
envisage the use of teams of agents functioning autonomously
to coordinate, cooperate and efficiently perform various tasks
in those domains. In robotics, for example, it is envisaged
that in a few years, teams of autonomous robots will be used
in domains where it is difficult, hazardous or monotonous
for humans to work. Examples of such applications include
search and rescue [1], facility surveillance [2]and exploration
of unknown, distant terrain [3]. One of the major research
questions that arise in such applications is how to allocate the
individual tasks in the domain to individual agents such that
the tasks are accomplished optimally, or as efficiently as is
practical.

By nature, the various tasks in any realistic problem domain
are never all identical; rather, each individual task may require
a particular subset of skills for its successful execution. Tasks
may share particular skill requirements among each other but
they may also differ in some skill requirements too. Our focus
is on such heterogeneous task domains. Current allocation
techniques and methods have focused on teams composed of
homogeneous agents where every agent is endowed with all
the skills necessary to perform any task. Little work has been
done in exploring how the allocation is affected when the team

of agents is no longer homogeneous but rather heterogeneous,
as the tasks themselves. This is a significant consideration
because, in most applications, fully homogeneous teams are
impractical due to cost constraints. To equip every agent in a
team with the skills necessary to handle every kind of task it
may encounter is far more expensive than specializing specific
agents within that team to handle specific tasks, which brings
about a division of labor and lower cost in constructing that
team of specialized agents.

In this paper, we define a model of task heterogeneity
that captures how heterogeneity is reflected in real robotic
systems, when there is some knowledge of the distribution
of the heterogeneous tasks. We then define a metric that
measures how effective a heterogeneous team will be on a such
task domains and use it to direct our selection of randomly
generated heterogeneous teams. We then present a sequential,
single item auction for heterogeneous task allocation and
introduce three different strategies to guide the task allocation.
We extensively test our methods on a representative spectrum
of task sets.

Our heterogeneous task models are situated within the
context of multiagent routing task domains. These are domains
where a team of mobile agents have to navigate to various
locations within an environment and execute tasks at those
locations. Team performance is assessed by measuring the total
time taken to complete all the tasks in that domain, or the
maximum makespan of the set of tasks. For simplicity, we have
assumed that the tasks are known in advance, independent, of
small duration, and uniform randomly distributed within the
environment.

We organize this paper as follows: we present a brief
review of literature in this field, and we formally introduce our
allocation problem. We then describe our heterogeneous task
model and its various properties, and our team effectiveness
metric. We then extend an existing auction based allocation
mechanism originally designed to handle homogeneous agents
to handle heterogeneous agents, and present our allocation
strategies. We introduce a metric to measure how “good” a
heterogeneous team is and then describe the heterogeneous
teams we use. We end with extensive empirical analysis of
our methods and present some key findings.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2064



II. BACKGROUND

General research on heterogeneity in agents has focused on
diversity in behavior, exploring coevolution of robot controllers
based on differing levels of difficulty [4], and using social
entropy [5] or evolutionary fitness [6] to measure diversity in
robot teams. Our work differs from these in that we examine
the effect of heterogeneity in physical abilities on teams of
agents trying to perform heterogeneous tasks.

Using market systems to allocate tasks in multi-robot rout-
ing domains has recently become a popular method for task
allocation [7]–[9]. The theoretical nature of this problem is
similar to the kTRP problem [10], with heterogeneous tasks.
Previous work on agent heterogeneity has focused on robots
that can do particular tasks. We focus on a deeper level
of granularity where agents possess specific abilities, which
we have discretized for ease of representation. Tasks require
certain skills to be completed effectively, and these skills
are covered by specific abilities. This model more accurately
simulates how realistic robotic agents are designed.

III. FORMALIZATION

A. Problem Description

Let T = {t1, . . . , tn} be a set of n tasks. Each task t
has associated with it a skill vector St = (s1, s2, . . . , sK)
which describes which members of the superset of all possible
skills, of cardinality K, is required by t. The elements of St

are binary values and are interpreted as sj = 1 indicating
skill j is required for the task t, and sj = 0 indicating
skill j is not required for t, for j = 1 to K. An agent
team, R = {r1, . . . , rm}, of m agents has associated with
each agent an ability vector, also of size K, denoted by
Ar = (a1, a2, . . . , aK) composed of binary values indicating
which abilities the agent possesses. As before, aj = 1 indicates
agent r possesses the ability j, and aj = 0 indicates it does
not, for j = 1 to K.

An agent possessing a particular ability has the matching
skill that a task might require. Therefore, an agent r is qualified

for task t if

Ar − St ≥ 0 (1)

Our heterogeneous task allocation objective is to form a
partition, T , of the set of tasks T , where T = {T1, . . . Tm},
such that assigning the set of tasks Tr to agent r, where r is
qualified to perform all the tasks in Tr results in minimizing
the time taken to complete all the tasks, i.e minimizing the
maximum makespan across all agents. More precisely, if
PC(r, Tr) denotes the minimum path cost of agent r over
the tasks in Tr, then our objective is

minT maxr∈RPC(r, Tr) (2)

Note that PC(r, Tr) is the time taken for agent r to move
from its starting location, navigate to each of the tasks in Tr

and finish executing them.

B. Heterogeneous Task Model

We now describe our heterogeneous task model more for-
mally. A task class is a set of heterogeneous tasks that all have
identical skill vectors. The skill vector, thus, uniquely identifies
the task class. A set of n tasks, T , can be partitioned into a set
C = {c1, . . . , cN} of N disjoint subsets, with N ≤ n. Each
element of C is thus a task class based on its skill vector and
C is called the task classification of T . The cardinality, K, of
the universe of all possible skills for this task set T , is called
the dimension of T .

We restrict our investigation to task sets where the distri-
bution of tasks among the task classes C is known. So we
associate with each task set a probability table P where pi is
a rational representing the probability that a task belonging to
task class i appears in that set. If the exact number of tasks
belonging to each task class is known, then P is computed as
pi = |ci|/(

∑N
j=1 |cj |) with

∑N
i=1 pi = 1. Within a task set, we

assume that every skill is required by at least one task class;
otherwise that skill should not be part of the universe of skills
for that task set. Similarly, we also assume that the every task
class has at least one actual task belonging to it occurring in
the task set.

IV. HETEROGENEOUS TEAMS

When considering the allocation of heterogeneous tasks to
heterogeneous agent teams, the heterogeneity of the team plays
an important role. This heterogeneity is limited by the cost
of the individual abilities and the overall budget available to
construct that team. There are many metrics that could be used
to decide how well suited a team is for a task set. Teams can
be measured based on how good the resulting allocation is
in terms of absolute performance; or how robust a team is in
terms of the redundancy and failure tolerance it provides. We
chose the raw performance metric, biasing our team selection
method in favor of teams that complete the tasks in minimum
maximum makespan.

1) Heterogeneous Agent Construction Cost: Let vector
Q = (q1, . . . , qK) of real values be the construction costs
associated with including the corresponding ability in any
agent; then the cost of constructing agent r, with ability vector
Ar = (a1, . . . , aK), is given by Ccost(r) =

∑K
i=1 ai · qi. The

Team Construction Cost for constructing a team R is then given
by Ccost(R) =

∑
r∈R Ccost(r). If we had unlimited budget,

we would make every agent possess all possible skills. This is
never the case so the team construction cost has to be within
the available budget B; therefore, Ccost(R) ≤ B.

It can be argued that the makeup of a heterogeneous team
plays a bigger role in the performance of that team on a task set
than any other factor. Allocating a task set where many tasks
require a particular skill s to a team that has very few members
possessing the ability that satisfies s will result in a poor
overall minimum maximum makespan and bad performance.
On the other hand, a team in which many members possess
the abilities satisfying the most commonly required skills in a
task set will probably perform better on that task set. This gives
us an intuitive idea for a metric measuring the performance,

2065



with respect to overall minimum maximum makespan, of a
heterogeneous team on a heterogeneous task set. For every

task in a task set, maximize the number of agents on the team

qualified to execute it.
2) Task Coverage: Let R be a team of m agents that are

to be allocated to a task set T . Let

priority(ci) =
pi

|{R′ : r ∈ R and r is qualified for ci}|
where ci and pi are as previously defined. Then the task

coverage for R over T is

coverage(R, T ) =
1

m · ∑N
i=1 priority(ci)

(3)

This is a normalized value with a maximum of 1 for a team
of all homogeneous agents. Heterogeneous teams occupy the
range of [0, 1] with the higher the coverage, the better the
performance. In general, this is true but coverage can be
dominated by other factors so if the difference between the
coverages of two teams is minor, their performance differences
are in the same range.

V. METHODS

A. Sequential, Single-Item Auctions for Heterogeneous Task

Allocation

Lately, market-based mechanisms such as auctions have
been used to provide efficient solutions to some of these
problems. Auctions lend themselves to task allocation among
cooperative agents because they provide a good balance be-
tween a fully centralized and a fully distributed solution.
Sequential, single item auctions have been used extensively
in multiagent routing domains [8], [9], [11] because of their
tractability and good performance. The auction proceeds in
multiple rounds and only one task is up for sale in a round.
Agents bid for unsold tasks in every round and the task is
awarded to the agent with the lowest bid in each round. Only
after the sale is complete is the next task announced. Since
agents sequentially build up the set of tasks they are awarded,
some synergies can be taken into account; so while these
auctions still lead to sub-optimal allocations, they proceed fast
[12] and in some cases, the performance can be bounded with
respect to the optimal [13]. None of the implemented systems
have explicitly considered heterogeneity. We use a sequential,
single item auction(SSI) and bidding rules similar to those
in [8], [12], but we extend the auctions to explicitly handle
heterogeneous tasks. There is no central auctioneer but every
agent serves as auctioneer and bidder; allocations are computed
in distributed fashion by all the agents.

Let PC(r, T
′
) be the smallest cost for visiting and then

executing all tasks in T
′

from the current location of agent
r. Initially all tasks are unallocated. Every agent computes its
path cost for every unallocated task for which it is qualified,
and then bids for only one task - the task for which it has
the smallest overall path cost PC. This bid is sent to all other
agents. Every agent then finds the overall lowest bid, among
all received bids, and allocates that task to the agent that made

that lowest bid. The process continues until all tasks have been
allocated. Finally, agents compute their minimum cost paths to
visit and execute all their tasks and proceed to execute the tasks
they have been assigned.

A key issue is how individual agents should compute their
bids for tasks. Given auctions of this nature, the bidding
rules that should be followed have been analyzed in [8], [14].
The basic idea behind the bidding rule used for maximum
makespan is that agents bid on each task the marginal increase
in makespan for the entire team between the current allocation
of tasks to the team and the new allocation, if this task is won
by the bidding agent. Every agent, which can generate its bids
without knowing the location of the other agents, computes
these bids for all unawarded tasks and then broadcasts only
its overall lowest bid. Lagoudakis et al. [13] show that for
homogenous agents, this bidding rule can perform no worse
than twice the number of agents times the optimal cost solu-
tion, which is unfortunately not a constant factor guarantee.
No guarantees are known for the heterogeneous case.

To compute the path cost, PC, during bidding and for final
path construction, each agent has to solve a Traveling Salesman
Problem(TSP), which is NP-hard. As a matter of design, we
do not depend on any particular TSP solving techniques for
our auction method to work; but any appropriate TSP solution
method can be substituted, or plugged in. We chose to use a
combination of well-known TSP heuristics [15]. To create a
TSP tour, and thus compute PC, we incrementally add task
locations and build up an individual tour. We add each location
by inserting it through the cheapest-insertion heuristic and then
running 2-Opt to optimize the resulting tour. While this method
does not have any approximation factor guarantees, in practice,
the tours generated are very good.

We investigated three different allocation strategies within
SSI auctions:

1) FirstFit(FF): Our first method adopts a naive approach.
We use the bidding rule mentioned previously but only
qualified agents submit their first overall lowest bid for
a task and tasks are allocated to the agent that submits
the first, lowest bid ; hence it is a form of first-fit.

2) BestFit(BF): Here, each agent computes a 2-tuple bid
for each qualified task. The first component is again the
path cost. The second component is the degree of over-
qualification the agent has for this task; basically, how
many abilities of this agent are not utilized in executing
the task. Agents determine both which single best-fit bid
to submit per round, and, during winner determination,
which best-fit bid will win a round as follows: if the path
cost component is less than path costs of other bids by
ε1% , then that is the winning bid. If the path cost is
within ε1% of x other bids, then the winning bid is the
one from the set of x bids which has its over-qualification
component less than other bids in x by ε2%. If no other
over-qualification bids are within ε2%, then the winning
bid is simply the bid from the set of x with overall lowest
path cost. So, we still give first preference to path cost,
but if these bids are close, we try to “best fit” the agent

2066



to the task it is bidding for. We chose values for ε1 =
4% and ε2 = 1%. But the method was fairly sensitive
to these values and it was difficult to adopt consistent
values.

3) TeamFit(TF):One of the drawbacks of the FF and BF
methods is that an agent may win tasks in the initial
rounds, for which there are other qualified bidders, only
to find out it is the sole bidder for some other distant
task for which only it is qualified. This will likely
lead to a bad allocation and so we seek to avoid this
by incorporating some knowledge of the agent team
into the bids that are made. Agents, being part of a
team, can have knowledge of the abilities of other team
members. This information can be provided once at team
creation as abilities do not change. The goal here is
to allocate tasks based on how “hard” it will be to
allocate them to the team. If there are many tasks of
a particular type and only a few agents qualified to do
them, we auction and allocate those tasks first so that
hill climbing can proceed on that basis. The TeamFit
algorithm proceeds as follows: Before the auction begins,
each robot computes the priority(ci) for all task classes
in the domain and places them in a list. If any task class
has only one agent qualified to execute it, its priority
is set to the maximum value in this list, and the list is
then sorted in descending order. The idea here is that if
any task class has only one agent available to execute, it
should be allocated to that agent in the first rounds itself.
During the auction process now, tasks are announced
for bidding in order of the priority of their associated
task class. All the tasks in task classes that have the
same priority are released simultaneously, starting from
the head of the list. Only after all tasks with a higher
priority have been auctioned and awarded, are lower
priority tasks released for auction. Each robot now bids
only for the currently released tasks, and bids its path
cost. Winners are assigned on the basis of the first, lowest
path cost value. The auction still has the same number of
rounds as before but the rounds move in stages according
to the priority relationship among the tasks. The intuitive
idea here is that by using the priorities, the team is
automatically being “best fit” for the tasks.

B. Optimal Solution to Heterogeneous Task Allocation

Computing the path cost for our problem can be mapped
into solving multiple traveling repairmen problems and is
thus NP-complete. Consequently, computing the minimum
makespan for our problem involves solving multiple NP-hard
instances. We modeled this problem as an integer program(IP),
which we have to omit due to space constraints. We coded the
IP using ZIMPL [16] and ran it in SCIP [17] but we could
only solve very small problem instances (3 agents, 10 tasks).
Hence, we focused on finding faster, sub-optimal solutions.

C. Random Generation of Good Teams

To test our allocation methods, we needed a consistent
method of generating heterogeneous teams. Three random

teams of m agents were selected as follows: we randomly
generate the skills for m agents, ensuring that the team cost
is within budget B, every agent is qualified for some task,
and all tasks in the task set have at least one agent qualified
to execute them. For every team so generated, we compute
its task coverage and store it sorted according to its coverage.
We then select the set of three teams from this sorted list
that had coverages distributed uniformly through the coverage
spectrum, the lowest, median and highest coverages generated.
We call these teams RW, R50 and RB respectively. Depending
on the particular task set, required team size and budget
constraints, we may have to reject many random teams to
arrive at a single valid team. So our process was equipped
with a timeout of 5 minutes to generate a maximum of 10, 000
teams, or return with whatever had been created within the
allotted time. Clearly, the more teams we generate, the better
the maximum coverage team generated.

VI. EVALUATION

We envisage our allocation methods to be applied to task
sets with dimensions K ≤ 20, as in the lunar task set of
[18]. Here there were 8 task classes and a dimension of 7.
We, therefore, generated representative task sets, selected the
teams we want to test on the task sets, and used our allocation
mechanisms to perform task allocation, analyzing the results.

A. Task Set Selection

We created task sets with N = 8, K = 7 and each class
requiring 1− 3 skills as in [18]. The skills were distributed to
task classes uniform randomly, and every skill had unit cost.
We then created a group of 9 sets, for which we distributed
the probabilities of task frequencies among the classes in the
following way:

1) Zipf: We used a zipf-like distribution among the various
classes. We generated 3 such sets Z1, Z2 and Z3.

2) Normal: We used a normal-like distribution among the
various classes. We generated 3 such sets N1, N2 and
N3.

3) Uniform: We used a uniform distribution among the
classes. We generated 3 such sets U1, U2 and U3.

The justification for these choices was to cover a wide spec-
trum of possible task distributions among the classes. Zipf
distributions ensure that one class has many tasks while the
rest have progressively smaller frequencies. Uniform distribu-
tion was at the other end of the spectrum, with the normal
distribution in between.

B. Experimental Setup

We implemented our system using an extended version of
the Teambots simulator [19]. The environment was a 51 by 51
cell environment, similar to the setup of [8], had walls, was
fully known, and distances were computed on a four-way grid
movement setup. A single experiment was an allocation of a
task set to a team using a particular allocation mechanism.
For every experiment, we geographically dispersed the tasks
uniform randomly throughout the environment; each task had

2067



a small, identical duration, and agents were always distributed
uniform randomly through the environment. We also geograph-
ically dispersed the agents uniform randomly throughout the
environment. We conducted 20 iterations of every experiment,
with different geographic dispersions of the exact same tasks
and agents to eliminate that as a factor. Thus, every value
reported in the results is the average of 20 iterations. The teams
RW, R50 and RB were generated for two team sizes - 5 agents
and 10 agents - for a total of six teams. We tested them on
task sets Z1-U3 using the three SSI methods - FF, BF and TF -
and a simultaneous parallel auction (P), in which all tasks are
announced, bid for and allocated to the overall lowest bidder
(for each task) simultaneously in one round. Parallel auctions
are simple and fast, but do not take any synergies between
tasks into account.

C. Results

The results are shown in figures 1-6 for the six teams.
The results show that for the high and median coverage
teams, RB and R50, sequential auctions methods (FF,BF and
TF) vastly outperform the corresponding parallel auctions.
For the lowest coverage teams RW(5) and RW(10), there is
no significant difference in performance between any of the
allocation methods, though TF outperforms the other methods
slightly. For the high coverage teams, RB(5) and RB(10),
there is no significant difference in performance between the
three SSI methods, FF, BF and TF, except for the last three
task sets( that have uniform distribution), U1-U3, where TF
outperforms the other two methods. For the median coverage
teams R50(5) and R50(10), TF significantly outperforms FF
and BF across all task sets. In further analysis, we used the

Fig. 1. Maximum Makespan vs. Task Set for RB Team of 5 agents

Fig. 2. Maximum Makespan vs. Task Set for RB Team of 10 agents

Fig. 3. Maximum Makespan vs. Task Set for R50 Team of 5 agents

Fig. 4. Maximum Makespan vs. Task Set for R50 Team of 10 agents

Fig. 5. Maximum Makespan vs. Task Set for RW Team of 5 agents

Fig. 6. Maximum Makespan vs. Task Set for RW Team of 10 agents

2068



Wilcoxon Matched-Pair Signed-Rank test to ascertain various
hypotheses. We tested the null hypotheses that FF auctions
perform better than or as well as TF auctions, across all teams
of both sizes 5 and 10 agents. This null hypotheses was rejected
(p < .000 for RB, R50; p < .001 for RW). We also tested the
null hypotheses that BF auctions perform better than or as well
as TF auctions, across all teams of both sizes 5 and 10 agents.
This null hypotheses was rejected (p < .000 for RB, R50;
p < .008 for RW) as well.

VII. DISCUSSION

From the results, it is clear that SSI auctions vastly out-
perform parallel auctions in general, because some synergies
between tasks can be taken into account. For the RW team, the
difference was less between SSI and parallel auctions. This is
due to the fact that the RW teams were so ill suited for the tasks
in terms of qualifications matching the task skill requirements
that there were effectively only a few ways to allocate the
tasks. The qualification matrix imposed a highly constrained
allocation that could not be greatly improved by any method.

In general, TF outperformed FF and BF for all teams
by statistically significant margins. For the R50 teams, TF
outperformed FF and BF significantly because the method
was able to organize the auctions according to priority. For
the RB teams, there was not a great difference between TF
and FF or BF. This is the opposite case of RW. Here, RB
teams are so well-matched in terms of qualifications for the
skill requirements of the task sets that they were automatically
“team-fit” for the tasks by way of their inherent team makeup.
So TF did not significantly improve allocation. TF did improve
performance for RB(5) and, to a lesser degree, RB(10) for the
uniformly distributed task sets U1-U3. This follows from the
fact that TF works best when there are many choices to choose
from in allocating a task, and so it allocates by priority. In
zipf and normal distribution sets Z1-N3, the distribution again
imposed an inherent allocation process.

Looking at absolute values in the figures, it is clear that
RB teams performed much better than R50 teams, which
in turn performed much better than RW teams. So using
coverage as a team metric is effective. Finally, there was
no difference between the FF and BF methods; myopically
matching qualifications does not improve allocation when there
is a large task horizon.

A key insight from these results is that, when we have a
badly designed team, the specific allocation methods make
little difference. When we have average teams, TF is the
best choice. When we have well-designed teams, any SSI
auction can perform well. So, if we have no control over the
heterogeneous team we use, TeamFit auctions will provide the
best results. If we can design teams of good coverage, then they
virtually become independent of the specific SSI allocation
method used.

VIII. CONCLUSION

We have presented a heterogeneous task model and a met-
ric, task coverage, for generating good heterogeneous teams.

We then compared various auction allocation mechanisms,
specifically focusing on sequential, single item auctions for
heterogeneous tasks. We tested three different bidding mecha-
nisms, FirstFit, BestFit and TeamFit and show that sequential
auctions perform well, and our TeamFit method works well
for most teams. We intend to further research auctions for
heterogeneous task allocation, including exploring solutions
that approach the optimal solutions provided by combinatorial
auctions.

REFERENCES

[1] R. Murphy, “Trial by fire [rescue robots],” Robotics & Automation
Magazine, IEEE, vol. 11, no. 3, pp. 50– 61, Sept 2004.

[2] P. E. Rybski, S. A. Stoeter, M. D. Erickson, M. Gini, D. F. Hougen, and
N. Papanikolopoulos, “A team of robotic agents for surveillance,” in In
Proc. of the Int’l Conf. on Autonomous Agents, 2000, pp. 9–16.

[3] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, and E. T. Baumgartner,
“Planetary rover developments supporting mars exploration, sample
return and future human-robotic colonization,” in Autonomous Robots,
vol. 14, 2003, pp. 103–126.

[4] M. A. Potter, L. Meeden, and A. C. Schultz, “Heterogeneity in the
coevolved behaviors of mobile robots: The emergence of specialists.”
in IJCAI, 2001, pp. 1337–1343.

[5] T. Balch, “Measuring robot group diversity,” in Robot Teams: From
Diversity to Polymorphism, T. Balch and L. E. Parker, Eds. Natick,
Massachussetts.: A.K. Peters, 2002.

[6] J. C. Bongard, “The legion system: A novel approach to evolving
heterogeneity for collective problem solving.” in EuroGP, 2000, pp. 16–
28.

[7] B. P. Gerkey and M. J. Mataric, “Murdoch: Publish/subscribe task
allocation for heterogeneous agents,” in Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference
on on Innovative Applications of Artificial Intelligence, July 30 - August
3, 2000, Austin, Texas, USA, 2000, p. 1070.

[8] C. Tovey, M. G. Lagoudakis, S. Jain, and S. Koenig, “The generation
of automatic bidding rules for auction-based robot coordination.” in
Multi-Robot Systems: From Swarms to Intelligent Automata, L.E.Parker,
F. Schneider, and A.Schultz, Eds. Springer, 2005, pp. 3–14.

[9] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer, “Multi-robot exploration
controlled by a market economy.” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2002, pp. 3016–
3023.

[10] J. Fakcharoenphol, C. Harrelson, and S. Rao, “The k-traveling repairman
problem,” in SODA, 2003, pp. 655–664.

[11] S. C. Botelho and R. Alami, “M+ : a scheme for multi-robot coopertaion
through negotiated task allocation and achievement,” in ICRA, IEEE,
Detroit, Michigan, 1999.

[12] S. Koenig, C. A. Tovey, M. G. Lagoudakis, E. Markakis, D. Kempe,
P. Keskinocak, A. J. Kleywegt, A. Meyerson, and S. Jain, “The power of
sequential single-item auctions for agent coordination,” in Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), 2006, pp. 1625–
1629.

[13] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” in Proceedings of Robotics: Science and Systems, June
2005.

[14] R. Zlot, “An auction-based approach to complex task allocation for
multirobot teams,” Ph.D. dissertation, Carnegie Mellon University, 2006.

[15] D. S. Johnson and L. McGeoch, “Experimental analysis of heuristics for
the stsp,” in The Traveling Salesman Problem and its Variations, Gutin
and Punnen, Eds. Kluwer Academic Publishers, 2002, pp. 369–443.

[16] T. Koch, “Rapid mathematical programming,” Ph.D. dissertation, Tech-
nische Universität Berlin, 2004, zIB-Report 04-58.

[17] T. Achterberg, “Constraint Integer Programming,” Ph.D. dissertation,
Technische Universität Berlin, 2007.

[18] G. Thomas, A. Howard, A. B. Williams, and A. Moore-Alston, “Multi-
robot task allocation in lunar mission construction scenarios,” in Pro-
ceedings of the IEEE Intl. Conf. on Systems, Man and Cybernetics, 2005.

[19] T. Balch, “Teambots,” in http://www.teambots.org, 2000.

2069



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


