
978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

Algorithm Optimizations for Low-Complexity Eye
Tracking

Shinji Yamamoto and Vasily G.Moshnyaga
Department of Electronics Engineering and Computer Science, Fukuoka University

8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan

Abstract—This paper investigates techniques for reducing
computational complexity of tracking eyes of computer user. By
empirical evaluation of a number of techniques we define a
technology capable of monitoring eyes of computer user in real
time with high accuracy and very low computational overhead.

Keywords—eye tracking, algorithm, complexity, optimization

I. INTRODUCTION

A. Motivation
With the wide popularity of user centric applications, the role
of smart and intelligent devices, capable of monitoring human
eyes is increasing. In addition to “traditional” applications,
such as human-computer interface, security, health care and
commercial applications, eye tracking has been applied to new
fields, such as of drowsy-driver detection [1], display energy
management [2]. Up to date, all above mentioned applications,
but the last one, have not been constrained by energy
consumption. Therefore research efforts have been focused on
delivering accurate eye-tracing in real-time. However, as
demands to make the eye-tracking ubiquitous or embedded in
portable devices grow, the needs to reduce energy
consumption become very important.

Although it is easy for a human to detect and track eyes,
performing it on hardware requires complex algorithms and
many computations. Because each computation burns energy,
lowering the computation complexity is considered to be one
of the simplest and effective ways to reduce energy
consumption.

This paper focuses on minimizing complexity of detecting
and tracking eyes of PC user by a single camera. Based on
application features [2], we derive optimizations, capable of
reducing complexity of original eye-tracking algorithm by 84%
while maintaining the same accuracy. Though we target a
particular application, the techniques presented here are general
and can be used in other applications.

B. Related Research
The techniques proposed so far for eye-tracking may be

grouped into two categories. The first one makes use of
infrared (IR) devices and exploits the reflective properties of
pupils [3-4]. Since pupils become bright under IR-illumination,
the eye tracking is accomplished by detecting and tracking
pupils using the differential IR lighting scheme. The approach
is simple and accurate but requires additional resources in the
form of multiple IR sources and sensors.

The second approach attempts to track eyes with the aid of
“ordinary” camera in the absence of any kind of IR devices.
The techniques can be broadly classified into three groups:
template matching, appearance-based and feature-based. The
template-based techniques [5-6] are based on generic eye
models and their recursive positioning, translation, rotation,
and deformation to best fit the eye representation in the image.
While these techniques can detect eyes accurately, they require
good image contrast to converge correctly and are
computationally expensive.

The appearance-based techniques [7-8] detect eyes based on
their photometric appearance. These techniques usually
employ large amount of training data representing the eyes of
different subjects under different face orientations and
illumination conditions. These data are used to train a
classifier such as neural networks (NN) or support vector
machine (SVM) and detection is achieved via classification.
Since NN treat each frame independently, many redundant
data have to be processed.

The feature-based techniques identify eyes by exploring
their distinctive features, such as eye-corner points [9], color
distribution of the eyes [10], edge and intensity of iris [11],
intensity variation around the eyes [12], etc). Amid large
variety of features available, the between-the-eyes point (BTE)
[12,13] does not depend on illumination, face occlusion, eye
closure and hence is considered as the most stable and robust.
When the BTE point is found, the eyes can be easily located as
two small darkest points on each side of the point. To detect
the BTE point based on circle-frequency filter [12], however,
is very computationally intensive. To accelerate the search,
Kawato et al [13] proposed to use a less complex Six-Segment
Rectangular (SSR) filter that reflects the bright-dark relations
in between-the-eyes region of the image. However, even with
this filter, the algorithm runs over 28Million operations, such
as addition or subtraction per frame (640x480 pixels frame
size). In the rest of the paper we address complexity reduction
of this eye-tracking algorithm.

C. Related Research
The contribution of this paper is two-fold. First, we

empirically analyze the complexity of eye detection and
tracking algorithm [13] and present solutions capable of
lowering it without affecting the accuracy of results. Second,
we propose a modified algorithm that, as experiments show,
achieves same accuracy as [13] while reducing the number of
computations by 84%.

The work was sponsored by The Ministry of Education, Culture, Sports,
Science and Technology of Japan under the Knowledge Cluster Initiative (The
Second Stage) and Grant-in-Aid for Scientific Research (C) No.21500063

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
18

 SMC 2009

The paper is organized as follows. In the next section we
discuss original eye-tracking algorithm. Section 3 presents
algorithmic optimizations and outlines the modified algorithm.
Section 4 summarizes our findings and the future work.

II. THE ORIGINAL EYE DETECTION ALGORITHM

Before you begin to format your paper, first write and save
the Fig. 1 shows the original face detection/tracing algorithm
[13]. The system captures RGB video sequence and transforms
the green component of each image frame i(x,y) into the
integral image representation I(x,y) as follows:

S(x,y)=S(x,y-1) +i(x,y) (1)

I(x,y)=I(x-1,y)+S(x,y), (2)

where S(x,y) is the cumulative row sum, S(x,-1)=0, I(-1,y)=0.
 The integral image is then scanned (pixel by pixel) by a six-
segment rectangle (Fig.2), computing the sums of pixel values
in each segment. For instance, the sum of pixels within
rectangle 5 is defined as: Sum(5)=I(x2,y2)+I(x1,y1)-I(x2,y1)-
I(x1,y2)
The SSR filter then compares the computed sums of the
segments as follows:

Sum(1) < Sum(2) and Sum(1) < Sum(4) (3)

Sum(3) <Sum(2) and Sum(3)<Sum(6) (4)

If the above criteria (3)(4) are satisfied, the SSR is
considered to be a candidate for Between-The-Eyes (BTE)
pattern and two local minimum (i.e. dark) points each are
extracted from the regions 1,4 and 3,6 of the SSR for left and
right eye candidates. As the eye candidates are selected, the

BTE pattern is normalized by scaling, rotation and histogram
equalization and then fed to Support Vector Machine (SVM)
for confirmation. Thus for one face candidate, at most 4
patterns are tested.
 The search is then repeated for 6 other SSR filter sizes
(120x72, 80x48, 60x36, 40x24, 30x18 and 20x12) in order to
extract eyes of smaller faces if any. For the next frame, the
BTE location is predicted as xp=2x1-x2, where xp is the
predicted position, x1 and x2 are its positions in the most and
the second most previous frames, respectively. Any incorrect
prediction starts the full search.

We implemented the algorithm in software and used
specific instructions to count the number of computations
performed. As results (Table 1) show, the face candidate
extraction (see Fig.1, right side) accounts for most of
computational load. Because the face/eyes detection is general
(no restriction on the number of faces, face size, motion, and
rotation), it implies the following:

1. Full SSR filter scan over the whole image frame.
2. Repeats the scan six times (for all filter sizes).
Although this full search is necessary to find multiple faces

in an image in general case, it might be redundant in particular
applications. Taking into account features of target application
is the only way to reduce complexity of the task.

III. COMPLEXITY REDUCTION TECHNIQUES

A. Assumptions
In this study we focus on application [2] that uses eye-

tracking to monitor gaze of computer user and lower the
power consumption of computer display whenever the user
detracts his/her eyes from its screen. In contrast to a general
case, we assume that
1. The target object is a single PC user. The user sits in front
of PC at a relatively close distance (50-70cm).
2. The camera is located at the top of display. When the user
looks at display it faces the camera frontally.
4. The user’s motion is slow relatively to the frame rate.
5. The background is stable and constant.
Based on the assumptions, we explore several optimizations.

B. Filter Size Optimization
First we studied the influence of the filter size optimization

on the detection rate and complexity. If we consider images of
a person, which were taken by same camera from various
distances, the interval between his/her eyes changes with the
distance, as shown in Fig.3. Namely, the closer the camera, the
larger is the interval. When the distance is about 50-70cm, the
interval is about is 45-58 pixels. From experiments, we found
for this distance range, the BTE of 55 pixels ensures almost
100% detection rate.

Image size Function 320x240 640x480
Integral image computation 76.2 306.1

Face candidate extraction 5867.6 27869
Eye confirmation by SVM 82.9 147.3

Table 1: Number of computations per frame (x103)

Fig.1. Flowchart of original eye tracking algorithm

Next frame

Select SSR filter size

Locate the eyes

Confirm by SVM

Save BTE, eye locations
Tracking resolution

Positive
yes

no

Compute Integral image

Run SSR filter
no

yes

Extract face candidates

no

yesno

Save location, SSR size

no

Next face candidate

0ther candidates?yes

0ther sizes?

Run complete?

Face candidate?

Next frame

Select SSR filter size

Locate the eyes

Confirm by SVM

Save BTE, eye locations
Tracking resolution

Positive
yes

no

Compute Integral image

Run SSR filter
no

yes

Extract face candidates

no

yesno

Save location, SSR size

no

Next face candidate

0ther candidates?yes

0ther sizes?

Run complete?

Face candidate?

Fig.2. Illustration of the SSR filter.

1 32

4 65

(x1,y1) (x2,y1)

(x1,y2) (x2,y2)

(x0,y0)

1 32

4 65

(x1,y1) (x2,y1)

(x1,y2) (x2,y2)

(x0,y0)

19

 SMC 2009

Next, we empirically estimated the most suitable SSR filter
size ratio (R=Height/Width) for the selected BTE. We used
180 facial images (92x116 pixels, 256 gray levels) from
FERET data base, re-sized when necessary to have the BTE
interval in 45-58 pixel range. For each filter size we manually
checked whether it covered two eyes, two eyebrows and
cheekbone area, including nose. The ratio of the positive cases
to the total number of tasted cases represented the detection
ratio. Fig.4 shows the results obtained for different values of R.
Clearly, the filter ratio (R=2:3) ensures minimal complexity at
the highest detection rate. The equations are an exception to
the prescribed specifications of this template. You will need to
determine whether or not your equation should be typed using
either the Times New Roman or the Symbol font (please no
other font). To create multileveled equations, it may be
necessary to treat the equation as a graphic and insert it into
the text after your paper is styled.

C. Enlarging the SSR displacement
In the original algorithm (Fig.1), the SSR filter is scanned

over the image in the raster-scan mode pixel by pixel, i.e. with
the displacement (D) between two consequent SSR locations
of 1 pixel. If we increase the distance (D), the detection rate
almost does not change while the number of operations
decreases significantly, as shown in Table 2. In this table, the
detection rate shows the ratio of the number of times the eyes
were detected in regions 1 and 3 of SSR to the total number of
trials. We observe that the computational complexity
decreases by a factor of 3 for D=2, and by a factor of 4.5 for
D=3 without affecting the detection rate of the original (full
scan) algorithm.

D. Background Subtraction
Background subtraction is a commonly used class of

techniques for segmenting out objects of interest. The main

goal is given a frame sequence (f1 f2, f3,…,fn) from a fixed
camera, detect the foreground object with highest accuracy
and minimum number of computations. Because in our target
application, the object (i.e. the PC user) is not moving fast, the
simplest solution to detect foreground is to find the difference
between the current frame ft and the previous frame ft+1 that is
larger than a threshold (T) [14], i.e. | ft - ft-1 | >T.

Fig. 5 shows variation of the detection rate and complexity
normalized to the full search, empirically evaluated for
different threshold values. The tests revealed that when T<20,
the search area expanded almost over the whole frame because
most of pixels were treated as foreground. This large search
leads to 100% detection rate but costs many redundant
operations. As the threshold increases, the search area shrinks,
because fewer pixels belong to foreground. This reduces
computational load of the algorithm but lowers the detection
rate. For example, at T=60, the algorithm has 26% of original
complexity and 77% detection rate. The value of T=25
provides a tradeoff with 40% of complexity reduction and
96% detection rate in comparison to the full search.

E. Background Subtraction
Skin-color is a well known-technique to filter out the non-
faces in image frames. To define skin we use the following
criteria [15]: 0.55<R<0.85, 1.15<R/G<1.19, 1.15<R/B<1.5,
0.6<(R+G+B)<1.8.
Furthermore, to speed-up the face-area extraction, we use two
filters. The first one limits the size of the head in reasonable
range. The second one verifies that the face contains a
minimum of 25% of skin colored pixels.

Fig.6 shows the results of applying the optimization to the
results of the background extraction. As one can see, at T=25,
the optimization lowers complexity by 23% with the detection
rate loss of 7%.

F. Frame rate reduction
Next we evaluated the influence of the frame rate on

detection complexity. Regarding to the frame rate of camera

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60
Threshold

%

Detection rate Complexity

Fig 5: Detection accuracy and complexity vs. threshold

SSR displacement
in pixels

Detection
rate (%)

Operations
(x106)

Reduction
factor

1 100 36.13 1
2 100 11.89 3.04
3 100 7.89 4.57
4 94 7.33 4.93

Table 2: Effect of the SSR displacement on the results

0

20

40

60

80

100

120

6:5 5:4 4:3 3:2 2:1 1:2 2:3 3:4 4:5 5:6 6:5
SSR size ratio (Hight/Width)

%

0

20

40

60

80

100

120
Detection rate Complexity

Fig 4: The effect of SSR filter ratio on the results

0

40

80

120

160

20 25 30 35 40 45 50 55 60 65
Distance from the camera

pi
xe

ls

BTE range

Fig 3: BTE variation with the user’s distance from camera: user images
captured from 50 cm and 1m (left); the dependency graph (right)

50cm 1m

20

 SMC 2009

readings (30 fps), the movement of PC user is very slow.
Hence, tracing the PC user by using the highest frame rate is
usually redundant because the lower rate brings the same
results with fewer computations.

Fig. 7 shows the results obtained for 3min. long user
detection at different frame rates (measured in frames per
second). As we process less frames per second, both the total
number of operations performed per second and the detection
accuracy decrease though the number of computations per
frame increases due to larger difference between the frames
and frequent mis-prediction of eye locations. Clearly, the 10
fps rate ensures minimum computations at maximum accuracy.

G. The Modified Algorithm
Based on the proposed optimizations, we modified the

original eye tracking algorithm, as shown in Fig.8. For initial
frame or frames, in which the BTE point is unknown, the
algorithm runs background extraction and skin-color
segmentation to reduce thesearch area (S) to face. Else, it
searches only a small area (S) of ±8 pixels around the BTE
point. For the chosen area (S), the algorithm computes the
integral image and scans it by the SSR filter with D=3 to
accelerate the BTE search. The eye-location and verification
steps are done as in the original algorithm.

In comparison to original formulation, our algorithm not
only scans the SSR over a smaller image area, but scans it
faster. Fig.9 illustrates the search area reduction of our
algorithm: dashed line shows the area defined by background
extraction; dotted line depicts the area obtained by skin-color-
segmentation; the plain (dark line) shows the area around the
previous BTE point; white crosses show the computed
locations of eyes.

Additionally to algorithm modification, we propose to run
the eye-tracing at low (10fps) frame rate. Fig.10 profiles the
amount of computations performed per frame by the modified
algorithm (10 fps) and the original one (30fps) in a test, which
had the PC user looking at display (camera) and for 123
frames then not looking at the display (camera) at all. The
peaks in profile of the original algorithm reflect eye-blinks and
miss-predictions. By analyzing the performance on all 151
frames we found that the modified algorithm traced the human
eyes by only 1% less correctly than the original one (94%
accuracy), while taking only 16% of computations.

Table 3 shows comparisons on 3 different tests. Here,
columns marked by ‘Or.’ and ‘Mod.’ reflect the original and
the modified algorithms, respectively; CRF is complexity
reduction factor, calculated as ratio of the total number of

80
85
90
95

100
105

1 2 3 4 5 6 7 8 9 10 15 20 25 30
fps

%

0
10
20
30
40
50
60

op
er

at
io

ns
 x

10
6

Accuracy Complexity

Fig 7: Detection accuracy and complexity vs. frame rate

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60
Threshold

%
Detection rate Complexity

Fig 6: Results of joint background extraction and skin-color
based search reduction

True/False Accuracy %)test Frames Or. Mod. Or Mod.
CFR (%)

1 151/16 142/9 14/1 94 93 84
2 240/25 217/23 22/2 88 87 87
3 100/10 99/1 10/0 99 100 82

Av. 164/17 153/11 15/1 94 94 84

Table 3: Results of evaluation on test sequences

Fig.9. An illustration of the search area reduction

Locate the eyes

Confirm by SVM

Save BTE, eye locations

Positive
yes

no

Extract face candidates

Next face candidate

0ther candidates?yes
no

Next frame

Positive

Compute integral image of S

0ther candidates?

Run SSR filter
no

yes

no
Save BTE location

Run complete?

Face candidate? no

no

yes

Face candidate?

Set search area (S)
around previous BTE

no Set search area (S) by
background extraction and

skin-color segmentation
BTE known?

yes

Locate the eyes

Confirm by SVM

Save BTE, eye locations

Positive
yes

no

Extract face candidates

Next face candidate

0ther candidates?yes
no

Next frame

Positive

Compute integral image of S

0ther candidates?

Run SSR filter
no

yes

no
Save BTE location

Run complete?

Face candidate? no

no

yes

Face candidate?

Run SSR filter
no

yes

no
Save BTE location

Run complete?

Face candidate? no

no

yes

Face candidate?

Set search area (S)
around previous BTE

no Set search area (S) by
background extraction and

skin-color segmentation
BTE known?

yes

Fig.8. The modified eye-tracking algorithm

21

 SMC 2009

computations taken by the modified algorithm to those taken
by the original algorithm; ‘Av.’ is the average. We see that
proposed modifications decrease complexity of the original
algorithm by 84% on average without affecting accuracy of
eye-tracking.

IV. CONCLUSION

In this paper we have studied computational savings in
eye/face monitoring due to the reduction of the scan area.
Combining all the discussed techniques produces an eye-
tracking system with satisfactory accuracy and significantly
better performance than the original one. In this study we have
not tacked the computational complexity of the SVM-based
decision making. Because the SVM searches a huge space, it
is imperative to investigate ways to reduce its complexity of

the search. A comparative analysis with other eye-tracing
systems will also be conducted in the near future.

REFERENCES

[1] M.Kutila, “Methods for machine vision-based driver monitoring
applications”, VTT Research, 2006, Available from
http://www.vtt.fi/publications/index.jsp

[2] V.G.Moshnyaga, E.Morikawa, “LCD display energy reduction by user
monitoring”, Proc. IEEE ICCD, 2005, pp.94-97.

[3] Y.Ebisawa, “Improved video-based eye-gaze detection method”, IEEE
Trans. Instrum. Meas., vol.47, no.2, pp.948-955, 1998

[4] C.Morimoto, M.Flickner, “Real-time multiple face detection and using
active illumination.” Proc.IEEE Int. Conf. Automatic Face and Gesture
Recognition, 2000.

[5] X.Liu, et al., “Real-time eye detection and tracking for driver
observation under various lighting conditions”, IEEE Intelligent Vehicle
Symp. 2002

[6] K.M.Lam, H.Yuan, Locating and extracting the eye in human face
images, Pattern Recognit., vol.27, pp.99-111, 1998

[7] W.Huang and R.Mariani, “Face detection and precise eye location”, Proc.
Int. Conf. Pattern Recognition, 2000

[8] M.Reinders, et al, Locating facial features in image sequences using
neural networks. Proc. IEEE Int. Conf. Automatic Face and Gesture
Recognition, 1997

[9] G.C.Feng, P.C.Yuen, “Variance projection function and its application
to eye detection for human face recognition”, Int. J. Computer Vision,
vol.19, pp.899-906, 1998.

[10] S.Amarnag, R.S.Kumaran, J.N.Gowdy, “Real time eye tracking for
human computer interface”s, Proc. ICME 2003, vol.3, pp.557-560.

[11] Y.Tian, T.Kanade, J.F.Coin, “Dual-state parametric eye-tracking”, Proc.
IEEE Int. Conf. Automatic Face and Gesture Recognition, 2000.

Fig.10. Complexity comparison per frame

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

M
ill

io
ns

frame

co
m

pu
ta

tio
ns

original modified

Fig.10. Complexity comparison per frame

22

