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Abstract—This paper investigates techniques for reducing 
computational complexity of tracking eyes of computer user. By 
empirical evaluation of a number of techniques we define a 
technology capable of monitoring eyes of computer user in real 
time with high accuracy and very low computational overhead. 
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I. INTRODUCTION

A. Motivation 
With the wide popularity of user centric applications, the role 
of smart and intelligent devices, capable of monitoring human 
eyes is increasing. In addition to “traditional” applications, 
such as human-computer interface, security, health care and 
commercial applications, eye tracking has been applied to new 
fields, such as of drowsy-driver detection [1], display energy 
management [2]. Up to date, all above mentioned applications, 
but the last one, have not been constrained by energy 
consumption. Therefore research efforts have been focused on 
delivering accurate eye-tracing in real-time. However, as 
demands to make the eye-tracking ubiquitous or embedded in 
portable devices grow, the needs to reduce energy 
consumption become very important. 

Although it is easy for a human to detect and track eyes, 
performing it on hardware requires complex algorithms and 
many computations. Because each computation burns energy, 
lowering the computation complexity is considered to be one 
of the simplest and effective ways to reduce energy 
consumption. 

This paper focuses on minimizing complexity of detecting 
and tracking eyes of PC user by a single camera. Based on 
application features [2], we derive optimizations, capable of 
reducing complexity of original eye-tracking algorithm by 84% 
while maintaining the same accuracy. Though we target a 
particular application, the techniques presented here are general 
and can be used in other applications. 

B. Related Research 
The techniques proposed so far for eye-tracking may be 

grouped into two categories. The first one makes use of 
infrared (IR) devices and exploits the reflective properties of 
pupils [3-4]. Since pupils become bright under IR-illumination, 
the eye tracking is accomplished by detecting and tracking 
pupils using the differential IR lighting scheme. The approach 
is simple and accurate but requires additional resources in the 
form of multiple IR sources and sensors.  

The second approach attempts to track eyes with the aid of 
“ordinary” camera in the absence of any kind of IR devices. 
The techniques can be broadly classified into three groups: 
template matching, appearance-based and feature-based. The 
template-based techniques [5-6] are based on generic eye 
models and their recursive positioning, translation, rotation, 
and deformation to best fit the eye representation in the image. 
While these techniques can detect eyes accurately, they require 
good image contrast to converge correctly and are 
computationally expensive.  

The appearance-based techniques [7-8] detect eyes based on 
their photometric appearance. These techniques usually 
employ large amount of training data representing the eyes of 
different subjects under different face orientations and 
illumination conditions. These data are used to train a 
classifier such as neural networks (NN) or support vector 
machine (SVM) and detection is achieved via classification. 
Since NN treat each frame independently, many redundant 
data have to be processed.  

The feature-based techniques identify eyes by exploring 
their distinctive features, such as eye-corner points [9], color 
distribution of the eyes [10], edge and intensity of iris [11], 
intensity variation around the eyes [12], etc). Amid large 
variety of features available, the between-the-eyes point (BTE) 
[12,13] does not depend on illumination, face occlusion, eye 
closure and hence is  considered as the most stable and robust. 
When the BTE point is found, the eyes can be easily located as 
two small darkest points on each side of the point. To detect 
the BTE point based on circle-frequency filter [12], however, 
is very computationally intensive. To accelerate the search, 
Kawato et al [13] proposed to use a less complex Six-Segment 
Rectangular (SSR) filter that reflects the bright-dark relations 
in between-the-eyes region of the image. However, even with 
this filter, the algorithm runs over 28Million operations, such 
as addition or subtraction per frame (640x480 pixels frame 
size). In the rest of the paper we address complexity reduction 
of this eye-tracking algorithm.  

C. Related Research 
The contribution of this paper is two-fold. First, we 

empirically analyze the complexity of eye detection and 
tracking algorithm [13] and present solutions capable of 
lowering it without affecting the accuracy of results. Second, 
we propose a modified algorithm that, as experiments show, 
achieves same accuracy as [13] while reducing the number of 
computations by 84%.  
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The paper is organized as follows. In the next section we
discuss original eye-tracking algorithm. Section 3 presents 
algorithmic optimizations and outlines the modified algorithm. 
Section 4 summarizes our findings and the future work. 

II. THE ORIGINAL EYE DETECTION ALGORITHM

Before you begin to format your paper, first write and save 
the Fig. 1 shows the original face detection/tracing algorithm 
[13]. The system captures RGB video sequence and transforms 
the green component of each image frame i(x,y) into the 
integral image representation I(x,y) as follows:  

S(x,y)=S(x,y-1) +i(x,y)          (1) 

I(x,y)=I(x-1,y)+S(x,y),          (2) 

where S(x,y) is the cumulative row sum, S(x,-1)=0, I(-1,y)=0.
   The integral image is then scanned (pixel by pixel) by a six-
segment rectangle (Fig.2), computing the sums of pixel values 
in each segment. For instance, the sum of pixels within 
rectangle 5 is defined as:   Sum(5)=I(x2,y2)+I(x1,y1)-I(x2,y1)-
I(x1,y2)
The SSR filter then compares the computed sums of the 
segments as follows:  

Sum(1) < Sum(2) and Sum(1) < Sum(4)       (3) 

Sum(3) <Sum(2) and Sum(3)<Sum(6)         (4)

If the above criteria (3)(4) are satisfied, the SSR is 
considered to be a candidate for Between-The-Eyes (BTE) 
pattern and two local minimum (i.e. dark) points each are 
extracted from the regions 1,4 and 3,6 of the SSR for left and 
right eye candidates. As the eye candidates are selected, the 

BTE pattern is normalized by scaling, rotation and histogram 
equalization and then fed to Support Vector Machine (SVM) 
for confirmation. Thus for one face candidate, at most 4 
patterns are tested. 
    The search is then repeated for 6 other SSR filter sizes 
(120x72, 80x48, 60x36, 40x24, 30x18 and 20x12) in order to 
extract eyes of smaller faces if any. For the next frame, the 
BTE location is predicted as xp=2x1-x2, where xp is the 
predicted position, x1 and x2 are its positions in the most and 
the second most previous frames, respectively. Any incorrect 
prediction starts the full search.

We implemented the algorithm in software and used 
specific instructions to count the number of computations 
performed. As results (Table 1) show, the face candidate 
extraction (see Fig.1, right side) accounts for most of 
computational load. Because the face/eyes detection is general 
(no restriction on the number of faces, face size, motion, and 
rotation), it implies the following: 

1. Full SSR filter scan over the whole image frame. 
2. Repeats the scan six times (for all filter sizes). 
Although this full search is necessary to find multiple faces 

in an image in general case, it might be redundant in particular 
applications. Taking into account features of target application 
is the only way to reduce complexity of the task.  

III. COMPLEXITY REDUCTION TECHNIQUES

A. Assumptions 
In this study we focus on application [2] that uses eye-

tracking to monitor gaze of computer user and lower the 
power consumption of computer display whenever the user 
detracts his/her eyes from its screen. In contrast to a general 
case, we assume that 
1. The target object is a single PC user. The user sits in front 
of PC at a relatively close distance (50-70cm). 
2. The camera is located at the top of display. When the user 
looks at display it faces the camera frontally.  
4. The user’s motion is slow relatively to the frame rate.  
5. The background is stable and constant.  
Based on the assumptions, we explore several optimizations.  

B. Filter Size Optimization 
First we studied the influence of the filter size optimization 

on the detection rate and complexity. If we consider images of 
a person, which were taken by same camera from various 
distances, the interval between his/her eyes changes with the 
distance, as shown in Fig.3. Namely, the closer the camera, the 
larger is the interval. When the distance is about 50-70cm, the 
interval is about is 45-58 pixels. From experiments, we found 
for this distance range, the BTE of 55 pixels ensures almost 
100% detection rate. 

Image size Function 320x240 640x480 
Integral image computation 76.2 306.1 

Face candidate extraction 5867.6 27869 
Eye confirmation by SVM 82.9 147.3 

Table 1: Number of computations per frame (x103)

Fig.1. Flowchart of original eye tracking algorithm 
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Fig.2. Illustration of the SSR filter. 
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Next, we empirically estimated the most suitable SSR filter 
size ratio (R=Height/Width) for the selected BTE. We used 
180 facial images (92x116 pixels, 256 gray levels) from 
FERET data base, re-sized when necessary to have the BTE 
interval in 45-58 pixel range. For each filter size we manually 
checked whether it covered two eyes, two eyebrows and 
cheekbone area, including nose. The ratio of the positive cases 
to the total number of tasted cases represented the detection 
ratio. Fig.4 shows the results obtained for different values of R.
Clearly, the filter ratio (R=2:3) ensures minimal complexity at 
the highest detection rate. The equations are an exception to 
the prescribed specifications of this template. You will need to 
determine whether or not your equation should be typed using 
either the Times New Roman or the Symbol font (please no 
other font). To create multileveled equations, it may be 
necessary to treat the equation as a graphic and insert it into 
the text after your paper is styled. 

C. Enlarging the SSR displacement 
In the original algorithm (Fig.1), the SSR filter is scanned 

over the image in the raster-scan mode pixel by pixel, i.e. with 
the displacement (D) between two consequent SSR locations 
of 1 pixel. If we increase the distance (D), the detection rate 
almost does not change while the number of operations 
decreases significantly, as shown in Table 2. In this table, the 
detection rate shows the ratio of the number of times the eyes 
were detected in regions 1 and 3 of SSR to the total number of 
trials. We observe that the computational complexity 
decreases by a factor of 3 for D=2, and by a factor of 4.5 for 
D=3 without affecting the detection rate of the original (full 
scan) algorithm. 

D. Background Subtraction 
Background subtraction is a commonly used class of 

techniques for segmenting out objects of interest. The main 

goal is given a frame sequence (f1 f2, f3,…,fn) from a fixed 
camera, detect the foreground object with highest accuracy 
and minimum number of computations. Because in our target 
application, the object (i.e. the PC user) is not moving fast, the 
simplest solution to detect foreground is to find the difference 
between the current frame ft and the previous frame ft+1 that is 
larger than a threshold (T) [14], i.e.  | ft - ft-1 | >T.

Fig. 5 shows variation of the detection rate and complexity 
normalized to the full search, empirically evaluated for 
different threshold values. The tests revealed that when T<20,
the search area expanded almost over the whole frame because 
most of pixels were treated as foreground. This large search 
leads to 100% detection rate but costs many redundant 
operations. As the threshold increases, the search area shrinks, 
because fewer pixels belong to foreground. This reduces 
computational load of the algorithm but lowers the detection 
rate. For example, at T=60, the algorithm has 26% of original 
complexity and 77% detection rate. The value of T=25 
provides a tradeoff with 40% of complexity reduction and 
96% detection rate in comparison to the full search.  

E. Background Subtraction 
Skin-color is a well known-technique to filter out the non-
faces in image frames. To define skin we use the following 
criteria [15]: 0.55<R<0.85, 1.15<R/G<1.19, 1.15<R/B<1.5, 
0.6<(R+G+B)<1.8. 
Furthermore, to speed-up the face-area extraction, we use two 
filters. The first one limits the size of the head in reasonable 
range. The second one verifies that the face contains a 
minimum of 25% of skin colored pixels. 

Fig.6 shows the results of applying the optimization to the 
results of the background extraction. As one can see, at T=25, 
the optimization lowers complexity by 23% with the detection 
rate loss of 7%.  

F. Frame rate reduction 
Next we evaluated the influence of the frame rate on 

detection complexity. Regarding to the frame rate of camera 
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Fig 5: Detection accuracy and complexity vs. threshold 

SSR displacement 
in pixels 

Detection
rate (%) 

Operations
(x106)

Reduction
factor 

1 100 36.13 1 
2 100 11.89 3.04 
3 100 7.89 4.57 
4 94 7.33 4.93 

Table 2: Effect of the SSR displacement on the results
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Fig 4: The effect of SSR filter ratio on the results 
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readings (30 fps), the movement of PC user is very slow. 
Hence, tracing the PC user by using the highest frame rate is 
usually redundant because the lower rate brings the same 
results with fewer computations.  

Fig. 7 shows the results obtained for 3min. long user 
detection at different frame rates (measured in frames per 
second). As we process less frames per second, both the total 
number of operations performed per second and the detection 
accuracy decrease though the number of computations per 
frame increases due to larger difference between the frames 
and frequent mis-prediction of eye locations. Clearly, the 10 
fps rate ensures minimum computations at maximum accuracy.  

G. The Modified Algorithm 
Based on the proposed optimizations, we modified the 

original eye tracking algorithm, as shown in Fig.8. For initial 
frame or frames, in which the BTE point is unknown, the 
algorithm runs background extraction and skin-color 
segmentation to reduce thesearch area (S) to face. Else, it 
searches only a small area (S) of ±8 pixels around the BTE 
point. For the chosen area (S), the algorithm computes the 
integral image and scans it by the SSR filter with D=3 to 
accelerate the BTE search. The eye-location and verification 
steps are done as in the original algorithm.  

In comparison to original formulation, our algorithm not 
only scans the SSR over a smaller image area, but scans it 
faster. Fig.9 illustrates the search area reduction of our 
algorithm: dashed line shows the area defined by background 
extraction; dotted line depicts the area obtained by skin-color-
segmentation; the plain (dark line) shows the area around the 
previous BTE point; white crosses show the computed 
locations of eyes.  

Additionally to algorithm modification, we propose to run 
the eye-tracing at low (10fps) frame rate. Fig.10 profiles the 
amount of computations performed per frame by the modified 
algorithm (10 fps) and the original one (30fps) in a test, which 
had the PC user  looking at display (camera) and for 123 
frames then not looking at the display (camera) at all. The 
peaks in profile of the original algorithm reflect eye-blinks and 
miss-predictions. By analyzing the performance on all 151 
frames we found that the modified algorithm traced the human 
eyes by only 1% less correctly than the original one (94% 
accuracy), while taking only 16% of computations.  

Table 3 shows comparisons on 3 different tests. Here, 
columns marked by ‘Or.’ and ‘Mod.’ reflect the original and 
the modified algorithms, respectively; CRF is complexity 
reduction factor, calculated as ratio of the total number of 
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Fig 7: Detection accuracy and complexity vs. frame rate 
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based search reduction 

True/False Accuracy %)test Frames Or. Mod. Or Mod.
CFR (%)

1 151/16 142/9 14/1 94 93 84 
2 240/25 217/23 22/2 88 87 87 
3 100/10 99/1 10/0 99 100 82 

Av. 164/17 153/11 15/1 94 94 84 

Table 3:  Results of evaluation on test sequences

Fig.9. An illustration of the search area reduction 
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computations taken by the modified algorithm to those taken 
by the original algorithm; ‘Av.’ is the average. We see that 
proposed modifications decrease complexity of the original 
algorithm by 84% on average without affecting accuracy of 
eye-tracking. 

IV. CONCLUSION

In this paper we have studied computational savings in 
eye/face monitoring due to the reduction of the scan area. 
Combining all the discussed techniques produces an eye-
tracking system with satisfactory accuracy and significantly 
better performance than the original one. In this study we have 
not tacked the computational complexity of the SVM-based 
decision making. Because the SVM searches a huge space, it 
is imperative to investigate ways to reduce its complexity of 

the search. A comparative analysis with other eye-tracing 
systems will also be conducted in the near future. 
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