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Abstract—Many scientific applications involve reduction or
accumulation operations on sequential data streams. Examples
such as matrix-vector multiplication include multiple inner prod-
uct operations on different data sets. If the core operator of
the reduction is deeply pipelined, which is usually the case,
dependencies between the input data cause data hazards in the
pipeline and ask for a proper design. In this paper, we propose
a modified design of the reduction operation based on Sips
and Lin’s method. We analyze the performance of the proposed
design to prove the correctness of the timing and demonstrate its
performance against previous methods.

Index Terms—reduction, algorithm, pipeline, architecture

I. INTRODUCTION

Reduction, or sometimes vector-reduction or accumulation,

in the scope of this paper is a process that reduces a set of

input data values into a single value. The reduction problem

is encountered in designs for many different applications.

As an example, in a dot product computation, the results

of each multiplicatoin from the two input vectors need to

be accumulated. The core operation in the reduction circuit

used to reduce the input values can be any commutative and

associative binary operator. Without loss of generality, we use

the addition operator in lieu of the general binary operator in

this paper.

In this paper, we propose a modified design to previous

work and analyze the performance of the modified method. The

organization of this paper is as follows. In the next section, the

reduction problem is defined and the background and previous

work are introduced. Following that in Section III, we describe

the improved reduction method, the delayed buffering method,

proposed in this paper. In Section IV, the performance of the

proposed method is analyzed, along with an analytical per-

formance comparison with other methods. Finally, Section V

concludes the paper.

II. BACKGROUND & PREVIOUS WORK

The reduction problem can be defined in the following.

For simplicity, we use the addition operator ”+” in place of

a general binary operator throughout the paper, and we call

it an operation or an addition interchangeably. Let n be the

number of consecutive input data elements in a set and Xi be

the ith input element of the set and 1 ≤ i ≤ n. The reduced

scalar output R can be represented as

R = X1 + X2 + · · · + Xn. (1)

In hardware, this reduction process can be represented as

shown in Fig. 1. The binary reduction operation is performed

on two input elements at a time, and the partial result is then

added by a subsequent input element. While this scheme seems

perform well, if the operator is pipelined, an operation needs

to wait for its precedent operation to complete before it can

enter the operator pipeline. Assume that there are p stages in

the operator pipeline, then a new input element has to wait for

p − 1 cycles at the entrance of the pipeline for the previous

partial sum to appear at the exit of the pipeline. Therefore,

equation (1) is no longer feasible for deeply pipelined case

and proper arrangement has to be done to fill the pipeline

efficiently to improve the performance.

Fig. 1. Reduction in hardware.

The reduction problem has been studied decades ago by

Kogge in [1] and Ni and Hwang in [2]. Realizing the binary

operator is communicative and associative, the n elements of

an input set is partitioned into p groups, where p is the length

or latency of the pipeline. The elements in each group are

summed independently, and after the reduction in each group

is done, the group partial results are then merged to produce

the final scalar result. For the Kogge method, the merging

is performed using a divide-by-half concept and buffers are

needed to store the partial results from the groups. Ni and

Hwang take a step further by placing a latch in front of the

pipeline entry, eliminating the need of the temporary storage

buffers of size p and reducing the computation time.
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In [2], the reduction process is divided into three phases

and the reduction time

Tr = Tf + Tm + Td (2)

where Tf is the time for the phase to feed all input elements

and Td is the number of cycles for the phase where the pipeline

is being drained after the last operation enters the pipeline. It

is observed that Tf + Td = n + p − 1 for all the methods

studied, and this leaves the term Tm, which is the time spent

in the phase to merge all partial results into a single output,

the only differing factor among the methods, and the equation

for the overall reduction time becomes

Tr = n + p − 1 + Tm. (3)

Two methods are proposed by Ni and Hwang, namely the

symmetric method (SM) and the asymmetric method (AM).

These two methods both have similar hardware architecture,

but the asymmetric method performs better by recording the

state of each stage of the operator pipeline and merging the

partial results in a irregular pattern. The merging performance

of the asymmetric method in number of cycles is analyzed in

[2] as

TAM
m (n) =

{
p�log p� − 2�log p� + p n ≥ p

p�log n� − 2�log n� + n n < p.
(4)

Note that in this paper, unless otherwise mentioned, a ”log”

denotes logarithm operation with a base of 2.

In a correspondence to the Ni-Hwang methods mentioned

above, Sips and Lin proposed improved methods for the

reduction problem [3]. The improved methods, called modified

symmetric method (MS) and modified asymmetric method

(MA), overlap the feeding phase and the merging phase and

thus improve the performance when the number of input

elements is small. The performance, in number of cycles, of

the modified asymetric method in the merging phase is

TMA
m (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TAM
m (n) − p n ≤ p

TAM
m (n) − p + 1 n = p + 1

TAM
m (�n/2�) − D(�n/2�) p + 1 < n < 2p

TAM
m (n) n ≥ 2p

(5)

where D is a displacement function that compensates the effect

of the irregular merging pattern to the performance. As can

be seen in the above equation (5), the modified asymmetric

method has significant advantage over the asymmetric method

for n < 2p. Note that for n ≥ 2p, the merging performance are

the same for both methods. In fact, as will be shown later in

this paper, for this type of reduction process the performance

is all the same and pipeline is fill if n is large enough.

There are several other approaches in the literature tackling

the reduction problem. For some special cases, binary tree

accumulators are used for reduction operations, such as the

ones in [4] and [5], but the resources required are some-

times not acceptable. In [6], Zhuo et al. proposed an FPGA-

based circuit using one adder and log n fixed-sized buffers
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Fig. 2. Hardware configuration for the proposed design.

for reducing data sets with sizes of a power of 2 but not

arbitrary sized sets. Zhuo et al., in [7] and [8], further proposed

an one-adder design termed the single strided adder (SSA)

method that alternately uses two buffers of size p2 each and

can handle multiple input data sets of arbitrary size. In the

design, when one of the buffers is providing data for the

reduction process, the other is being used to receive input data

elements in the way that it does not overflow. The design

carefully and cleverly arranges received data elements into

the 2-dimensional p × p input buffer space so that when

the input buffer is swapped to be the reduction buffer, the

operator pipeline can be filled without data hazards. These

characteristics of the design may not meet the need of some

of the possible containing applications, however. Firstly, as

has been identified by the authors, it may produce out-of-

order reduction results under certain circumstances, yet the

pipeline is better utilized. Moreover, for input sets of some

sizes, results of different input sets are produced closely in

time. For example, if multple sets of size p enter consecutively,

after the buffering and the reduction processing, the results are

produced at the pipeline output cycle by cycle. This may not

be a desired behavior for other circuits using the results of

this design. The SSA circuit can reduce m sets of input data

in at most
∑

m−1
i=0 ni + 2p2 cycles, where ni is the number of

elements in set i. Nevertheless, the single set performance of

this design is not overly appealing since it focuses on multiple

data sets and pipeline utilization.

III. ARCHITECTURE OF THE PROPOSED METHOD

We discussed in the previous section the modified asymmet-

ric method by Sips and Lin that has better performance than the

original asymmetric method when the input set size n < 2p.

Yet the improvement does not stop there. In this section
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Cycle X A B R REG X A B R REG

0 X1 X1

1 X2 X2 X1 X1 X2 X2 X1 X1

2 X3 X3

3 X4 X4 X3 X3 X4 X4 X3 X3

4 X5 X5

5 X6 X6 X1 + X2 X1 + X2 X5 X6 X6 X6 X5

6 X7 X7 X5 X5 X7 X7 X1 + X2 X1 + X2

7 X3 + X4

8 X3 + X4 X3 + X4

9 X3 + X4 X1 + X2 + X6 X1 + X2 + X6 X3 + X4 X3 + X4

10 X5 + X7 X3 + X4 X5 + X6 X5 + X6 X3 + X4

11 X5 + X7 X1 + X2 + X7

12 X5 + X7 X1 + X2 + X7

13 X5 + X7

P
4

i=1
Xi + X6

P
4

i=1
Xi + X6 X5 + X7 X1 + X2 + X7

14 X1 + X2 + X7

15 X1 + X2 + X7

P
6

i=3
Xi

P
6

i=3
Xi X1 + X2 + X7

16

17
P

7

i=1
Xi

18
19

20
P

7

i=1
Xi

(a) p = 4 (b) p = 5

Fig. 3. Two illustrative examples of seven input data elements on different pipeline depth for the DB algorithm.

we propose an improved version of the modified algorithm

that performs better in certain data set size. Although very

similar to the previous methods in the architecture and the

resource used, the proposed algorithm is very different from

the previous ones conceptually.

A. Hardware Configuration

The proposed hardware configuration is shown in Fig. 2. In

this configuration, there are three multiplexors and one operand

register besides the operator/adder pipeline; the control logic

is shown as a whole in a box in the figure. Different from the

one described in [3], the value stored in the operand register

can be used as either operands that enter the operator pipeline,

but not both at the same time. Furthermore, the input data can

only go to the left entry of the pipeline directly. The operand

from the right to the operator is always from the feedback path

if there is a valid pipeline output.

The three multiplexors are controlled by the mode and

validity control signals. The mode signal represents the current

processing phase of the circuit. For control purpose, in the

proposed design the reduction processing is divided into two

phases. When there is currently an input element for the circuit,

the circuit is in the loading phase, and obviously this phase

occupies n clock cycles. If the reduction unit is not loading

new inputs, it is in the joining phase. Control validity signal

represents the validity of the current output of the operator

pipeline. If at a certain cycle the pipeline produces a valid

result, it is always fed back to the right-hand side input of the

adder pipeline.

Another control signal, denoted v in the figure, is used to

direct whether the operand register should load a new value. In

the loading phase, if there is no valid output from the pipeline

and the register does not hold any prior input data element,

then the current input has to be loaded to the register to keep

it from entering the pipeline. In the joining phase, if there is a

valid pipeline output but there is no data stored in the register

as the other operand for issuing a new operation, the pipeline

output is then stored in the operand register.

B. The Algorithm

Conceptually the proposed algorithm works in a very simple

way:

• As soon as any two data elements are available, either

from the input, the operand register, or the pipeline output

feedback path, they enter the pipeline.

• A valid feedback value from the pipeline output always

has the highest priority to be consumed by the pipeline.

• If a data element cannot enter the pipeline, it is stored in

the operand register.

Although there are two incoming paths, the operand register

only needs a capacity of one data element. The reason can be

easily observed. From the feedback path, since the feedback

pipeline output value is always used first when its available,

the only time it is not used there is no value stored in the

operand register, and thus it can be stored in the register

without overflow. From the input path, since an input element

can be paired with either the feedback value or the data stored

in the register, similar situation apply when it needs to be

stored and there is no problem of storing it in the register. The

algorithm is implemented in hardware as what has been shown

in Fig. 2 discussed above.

Illustrated in Fig. 3 are two operational examples of how

the algorithm works from the aspect of the data present in and

out of the pipeline each clock cycle. At clock cycle 0 in both

examples, the input data stream starts to appear at the entry

of the pipeline. Since it takes two operands for the binary

operation, the very first input data element has to be stored

in the operand register and wait for the second element. In

the next cycle, when the second element enters the reduction

circuit, both the element and the first element stored in the

operand register will be consumed by the operator pipeline. So

far it is exactly the same as the modified asymmetric method

presented in [3]. This goes on until the pth cycle where the

input element Xp+1 is present at the entry of the pipeline.
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s1 • Xp+3 + Xp+1 • Xp+3 + C
s2 • Xp+2 + (X1 + X2) • Xp+2 + (X1 + X2)
s3 ◦ • Xp+1 + C
s4 • Xp + Xp−1 • Xp + Xp−1

s5 ◦ ◦

.

.

.
.
.
.

sp−1 ◦ ◦

sp • X3 + X4 • X3 + X4

(a) DB method (b) MA method

Fig. 4. Difference between the DB method and the MA method at cycle
p + 3 when p is even.

At clock cycle p, if p is even, there is no value stored in

the operand register because all the previous data pairs have

been consumed by the pipeline. Hence, the data element Xp+1

present at the pipeline has to be stored in the register for later

usage. In the case of an odd p, because Xp is in the register at

cycle p, it can be added by the new element Xp+1 and both of

them enter the pipeline. Here is the major difference between

our method and the modified asymmetric method and is clearly

depicted in Fig. 4. The s1, s2, . . . , sp in the figure denote the

stages of the operator pipeline. That is, the figure shows the

data being handled by different pipeline stages internally. In the

MA method, the element Xp+1 present at cycle p is designed to

enter the pipeline paired with the identity element C to prevent

collision, while in our proposed method, Xp+1 is held in the

operand register for delayed consumption. In the figure, it can

be seen that For this reason, comparing with the MA method,

we dub our scheme the delayed buffering (DB) method.

The delayed buffering method may seem slower at first

because some data elements enter the operator pipeline later,

but as can be seen in the following analysis, it is actually faster

than the modified asymmetric method.

IV. PERFORMANCE ANALYSIS

Although not explicitly established in the algorithm, the

approach from equation (2) can still apply to the analysis

of our delayed buffering method due to the nature of the

problem. Tf + Td is still n + p − 1, which leaves Tm the

only differentiating factor for the performance of various

algorithms. To analyze the performance of our algorithm, for

simplicity, we call a cycle a ”hole” for unproductive cycles

where not both operands entering the pipeline are valid in the

time table such as the one shown in Fig. 3.

It can be observed from time tables that for the DB method,

the pattern of holes is exactly the same as the pattern of produc-

tive segments at the merging phase of the AM method in [2].

In the beginning, there is no valid operand for the operator

pipeline. When input arrives, the unproductive operands enter

the pipeline every other cycle, which is also the case at the

beginning of the merging phase where the pairs of consecutive

pipeline output is fed back to the pipeline every other cycle.

Therefore, there are at most p − 1 holes and as shown in (4),

the last hole appears at cycle p�log p�− 2�log p� + p, provided

that the number of input n is large enough.

Lemma 1. For n input elements and k = �n−1
p

�, the number

of holes contained in the feeding phase of n− 1 cycles equals

�G(n)�, where

G(n) =
n − p(k − 1) − 1

2k
+

k−1∑
i=1

p

2i
.

Proof: As the pipeline consumes two operands each cycle,

the number of holes for the ith iteration of p cycles is �p/2i�.

The remainding non-integer part p/2i − �p/2i� affects the

location of holes at later iterations. Since it takes 2i cycles in

an iteration to form a hole, the stepping amount for each cycle

is 1/2i. The remainders accumulate for the formation holes in

later iterations. For the last iteration k in which the input of

n elements cannot fulfill, the stepping can be represented as

n−1−p(k−1) steps over 1/2k each step in the last iteration.

The function in the lemma can then be derived. In this sense,

the accumulation of previous unrealized holes forms a new

hole if G is integer.

We can take the p = 4, n = 7 case shown in Fig. 3 as an

example since n > p + 1 in this case. From Lemma 1, k = 2
and G(7) = 2.5. Thus, there are totally �G(7)� = 2 holes in

the feeding phase, which matches what we can observe in the

illustrative example.

Corollary 1. If G(n) is an integer, then cycle n− 1 is a hole.

From Corollary 1, a cycle can be examined to be a hole

or not. However, we need to determine the position of a hole

more conveniently. First, from the perspective of performance

analysis, we divide the reduction operation into iterations of

p clock cycles. Since operands enter the pipeline in pairs, let

qi = � p
2i � for the ith iteration and in the beginning q0 = p. It

can be observed that when qi is odd, the first possible hole slot

in iteration i + 1 cannot be eliminated because of the lack of

an operand stored in the register for pairing, while in case of

even qi, the first possible hole of the next iteration is occupied.

Thus, the accumulated number of holes after the ith iteration is

si =
∑

i
j=1(qj − E(qj−1)), where the Boolean function E(x)

is equal to 0 if x is even, and 1 if x is odd.

Lemma 2. The z-th hole for a p-stage pipeline appears at

Hz = kp + (z − sk)2k+1 −

k−1∑
j=0

2j+1E(qj)

where k = i if si < z ≤ si+1 for i = 0, 1, . . . , �log p� − 1.

Proof: For the first iteration of p cycles, it is obvious that

the first k holes are at cycles 2k for k ≤ �p/2�, since it takes

a pair of input operands to enter the pipeline productively. It

can be observed that later holes are the pipeline results of the

holes in the first iteration and their locations are dependent

on the previous hole locations. The first hole in the second

iteration is located at H1 + p if q0 = p is odd, or at H2 + p if

q0 even. This is also true for the first holes in a later iteration

i that depend on qi−2. Moreover, the distance between holes

in iteration i is 2i. Therefore, the location of the z-th hole can
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TABLE I
REDUCTION PERFORMANCE COMPARISON OF SEVERAL METHODS IN NUMBER OF CYCLES

n=5 n=10 n=15 n=25 n=100
Tr AM MA DB AM MA DB AM MA DB AM MA DB AM MA DB
p=3 12 10 10 17 17 14 22 22 22 32 32 32 107 107 107
p=5 21 16 16 26 26 23 31 31 30 41 41 41 116 116 116
p=8 33 25 25 41 37 35 46 46 43 56 56 55 131 131 131
p=13 53 40 40 68 55 55 76 65 65 87 85 81 161 161 161
p=15 61 46 46 78 63 63 88 73 73 98 95 91 173 173 172

be represented as

Hz =

{
Hsi−2+1 + p + (z − si−1 − 1)2i if qi−2 odd

Hsi−2+2 + p + (z − si−1 − 1)2i if qi−2 even
(6)

if z is in the ith iteration. By subsituting the Hx in equation (6)

from previous iterations, the equation in Lemma 2 can be

acquired. Note that when z = p − 1, Hz reduces to the form

shown in (4).

Taking the same p = 4, n = 7 example, we demonstrate

how to find where the holes are using Lemma 2. Firstly, the

accumulated number of holes in the beginning is s0 = 0 and

after the first iteration of p cycles is s1 = 2. Thus, for both

holes, k = 0 in Lemma 2 for this case. Then, using the formula

in the lemma, we can find the location of the first hole is

H1 = 2 and the second hole is at H2 = 4.

From a time table such as the ones in Fig. 3, we can

observe that the number of cycles spent in the merging phase

is determined by the time the last pair of operands enter

the pipeline. This time is in turn determined by the path

that contains the last operation which is also the longest

computation path due to operation dependency. If we count

the clock cycles bottom-up along the longest path starting from

the cycle the last operation enters the pipeline, it can be found

that it takes i iterations of p cycles for the last 2i operations,

where the iteration number i = 0, 1, 2, .... Thus, if one of

the first operations of the these last ones can be found, the

performance of the merging phase of the delayed buffering

method can be easily calculated.

To find out where the first of these last 2i operations is, we

start from the cycle of the last input element, counting again

bottom-up, and try to find the nearest first operation of longest

parth iterations. Since there are �G� holes contained in the n
input cycles of the feeding phase, with the fact totally n − 1
operations are needed for the whole reduction process, there

are exactly the same �G� operations left in the merging phase.

Consequently, we need to count 2L − �G� operations bottom-

up from the last input cycle but skipping and compensating for

the holes because there is no valid operation at those cycles,

where

L =

{
�log p� if 2�log p� > �G�

�log p� otherwise.

Lemma 3. The need of compensation for the z-th hole for n
input elements can be determined using a compensation check

function

Cz = 2L + Hz − n − z + 1.

If Cz ≤ 0 then no compensation is needed for that hole;

otherwise, compensation is needed.

Proof: The construction of the compensation check func-

tion is straightforward. Since we need to count 2L − �G�
productive operations bottom-up from the last input cycle,

we check each hole, starting from the last hole, to see if it

will be encoutered during the count-up to determine whether

compensation is needed. For the last hole, which is the �G�-th

hole located at H�G�, if the value

C�G� =
(
2L − �G�

)
−

(
n − 1 − H�G�

)
.

is less than or equal to zero, then the location of the first of

the last 2L operations has been found, and compensation is not

needed for the last hole. Otherwise, we have leftovers passing

by this hole and still need to count up more. Checking the

(�G� − 1)-th hole can be done in the same way so that

C�G�−1 = C�G� −
(
H�G� − H�G�−1 − 1

)
.

By substitution, the check function in the lemma for the kth

hole can be obtained.

Corollary 2. The overall compensation for counting the op-

erations bottom-up can be represented as the displacement

D =

�G�∑
i=1

Di , where Di =

{
0 if Ci ≤ 0

1 if Ci > 0
.

From Corollary 2, we know exactly how many more cycles

should be counted from the last input cycle up. In the example

of p = 4 and n = 7, we firstly check if compensation for each

hole is in need. Using Lemma 3, it can be calculated that

C1 = −1 and C2 = 0. Therefore, no count-up compensation

is needed for both holes and D = 0. The merging performance

of the design can now be summarized in the following lemma.

Lemma 4. For n > p + 1, the merging performance for the

delayed buffering (DB) method equals

TDB
m = pL − 2L + �G� − D + 1.

Proof: The result also comes from a straight derivation.

Since it is known that the last 2L productive operations

along the longest computation parth take pL cycles, and the

first of these last operations can be found by applying the

displacement from Corollary 2, we have

TDB
m =

[
n −

(
2L − �G� + D

)
+ pL

]
− n + 1

and the equation in the lemma can be obtained. Note that if

n ≥ pL − 2L + 2p + 1, since the input n has passed the last
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hole p+1 cycles, the pipeline will always be full from then on,

and there is no displacement so D = 0. That is, �G� −D + 1
becomes p and TDB

m becomes exactly the same as the case of

n ≥ p in (4) and the case of n ≥ 2p in (5).

Theorem 1. For the delayed buffering (DB) method, the

number of cycles spent in the merging phase equals

TDB
m =

⎧⎪⎨
⎪⎩

p�log n� − 2�log n� + n − p n ≤ p

p�log p� − 2�log p� + 1 n = p + 1

pL − 2L + �G� − D + 1 n > p + 1.

Proof: Since the DB method behaves exactly the same

with the AM and MA methods when n ≤ p + 1, the

performance comes directly from (4) and (5) for n in that

range. For n > p + 1, the result is from Lemma 4.

For the p = 4, n = 7 example, since n > p + 1, the

third case from the Theorem 1 is fit, and we need to know

�G� and D, which have been previously calculated as 2 and

0, respectively. Thus, for the delayed buffering method, the

merging time Tm = 8 − 4 + 2 − 0 + 1 = 7, and the total

reduction time Tr = n + p − 1 + Tm = 17.

The number of cycles required in the reduction process for

the various methods mentioned in this paper is shown in Table I

for different number of p and n. The DB method performs at

least as well as the MA method, while in the range p + 1 <
n ≤ pL − 2L + 2p + 1, the DB method is in most cases

faster than the MA method. Indeed when n is large, the gain

becomes less significant; however, in the mid-range of pipline

size and input size, the DB method does have some impact.

Among the various p and n combinations, the speedup against

the MA method can be up to 1.11 (eg., p = 6, n = 10). If the

DB method is used by an application in this range repeatedly,

the clock cycles saved can be considerable.

V. CONCLUSIONS

In this paper we proposed an improved version to one of

the fastest known reduction algorithm involving deep pipeline.

There is minimal addtion in resource requirements to the

proposed hardware configuration for the reduction method. The

performance of the proposed method is analyzed and proved to

have better results than previous methods for certain number of

input elements in the range of p+1 < n ≤ pL−2L+2p+1. The

proposed method can be applied to improve the performance of

applictions that have reduction or accumulation computations

using deep pipeline.
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