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Abstract—This paper improves a method of sample selection 
based on maximum entropy. Compared with the original method, 
the improved one takes the probability distribution of unlabeled 
instances into consideration. It selects the instances which can 
reduce the uncertainty of the whole unlabeled set to a great 
extent. The uncertainty reduction of the whole unlabeled set 
caused by an instance is measured by the instance’s uncertainty 
and its influence index on the whole unlabeled set. To calculate 
the influence index conveniently, we introduces the similar 
matrix, the elements of which are the similarities measured by 
the distances between instances. The new method avoids the 
drawbacks that some abnormal or isolated samples may be 
selected by original method. Thus it can select the instances with 
more representation and more capability to resist noises. Our 
experimental results show that the performance of the classifier 
built from samples selected by the new algorithm is better than 
those selected by original method in the same time complexity. 

Keywords—Sample selection, probability distribution, 
similarity, classification ambiguity, fuzzy decision tree 

I.  INTRODUCTION 
Mass data are produced as the rapid and drastic technology 

development and the popularity of the Internet. There's no 
doubt that it is a hard task for human to process the large data 
effectively. Take an example in e-mail filtering. Thousands of 
e-mails are produced every day on the Internet. Undoubtedly, it 
is a tedious and boring work for people to classify so many e-
mails. Take another example in the domain of life science. 
Abnormal structure of the proteins may cause the reduction and 
the loss of the biological activity, or even lead to disease, such 
as mad cow disease and Alzheimer. Therefore, the protein 
structure prediction and analysis is of great significance to the 
prevention and the treatment of the related disease. However, 
the predication of the proteinaceous structure is an extremely 
arduous and complex task. It will cost a great deal of time and 
energy. In reaction to the related phenomenon above, we hope 
that computer can deal with the task instead of human. In this 
way, experts only need to label a few instances for the classifier 
to learn, and a large proportion of unlabeled instances can be 
labeled by the classifier. How to select the instance as few as 
possible on the premise that the generalization capability of the 
classifier will not decrease, is becoming more and more 
important in machine learning. 

The research on sample selection focuses three aspects[1]: 
uncertainty based methodology, version space based 
methodology and expectation error based methodology. 

Uncertainty-based methodology selects the instances with 
maximum uncertainty. Usually, these instances are situated in 
the neighborhood of the decision boundary and are hard to 
label, thus they are thought to be the most informative 
instances. This methodology can be applied to many induction 
learning, such as Logistic Regression[9], Hidden Markov 
Model (HMM)[10], Support Vector Machine (SVM) [11-12], 
uncertainty-based clustering[16], inductive logical 
programming [13] and decision tree[14] etc. Version space 
based methodology selects the instances that could reduce the 
version space at most. Usually, these instances could shrink the 
version space by half. The representative algorithms are 
QBC[2], SG net[3], QBag, QBoost [4], and Active Decorate[5] 
etc. Expectation error based methodology selects the instances 
that could reduce the expectation error at the utmost once they 
are selected and labeled. The methodology is applied to Native 
Bayes[6], Bayesian Network[7], Genetic Algorithm[17-18] and 
k-NN[8] etc. The methodology is thought to be best 
theoretically, for it directly takes the generalization error as the 
goal. However, too much calculation and time are needed. 

This paper improves the maximum entropy based sample 
selection algorithm proposed in [14]. Comparing with original 
method, the improved algorithm takes the distribution of the 
unlabeled data into consideration. In stead of selecting the most 
uncertainty instance(s), it select the instance(s) which can 
probably cause the maximum average uncertainty reduction on 
the whole unlabeled set. The average uncertainty reduction on 
the whole unlabeled set caused by an instance is measured by 
the instance’s uncertainty and its similarity to other unlabeled 
instances, in which the uncertainty and similarity are measured 
by classification ambiguity and Euclidean distance respectively. 
The experiments, conducted on UCI databases, show that the 
generalization capability of the improved algorithm is better 
than the original while no much time is cost. 

The rest of the paper is organized as follows: section 2 
gives some related basic concept and section 3 introduces the 
basic idea of improvement and the new algorithm. The 
experimental results conducted on UCI databases and the 
correspondence analyses are in section 4. Finally, we give the 
conclusion in section 5. 

II. RELATED NOTIONS  
Suppose that the universe of discourse 1 2{ , , , }NE e e e= � is 

made up by the training set T and testing set 'T , where 
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T and 'T satisfy ' , 'T T T T X∩ = ∅ ∪ = . An instance e  is 
described by the attribute set (1) (2) ( ){ , , , }mA A A A= � . Each 

attribute ( ) (1 )k k mA ≤ ≤  takes km  values: ( ) ( ) ( )
1 2, , ,

k

k k k
mA A A�  

and there are R classes: 1 2 , ,, RC C C� . We designate an 
instance which has been labeled by expert as a sample denoted 
by a tuple ( , )i je C , which means the class label of the sample 

ie is jC . 

Definition 1: Suppose that 1 2, , , Rπ π π� is the classification 
possibility distribution of a sample e , then the classification 
ambiguity of the sample e  is defined as 
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1 2{ , , , }Rπ π π π= � is the normalized 

classification possibility distribution 1 2 )( , , , Rπ π π�  with 
descending order. 

Definition 2: A similar matrix : U U×S is defined as 
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where U denotes the number of elements in unlabeled set and 

ijs  is the similarity degree between ie and je . And the 
similarity degree can be calculated by 

( , ) exp( ( , ))i j i jSimilarity e e D e e= −  

where ( ) ( ) 2
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Definition 3: The classification ambiguity of an instance ie  
will reduce to zero once it is labeled by expert. Then the 
uncertainty reduction of the instance after annotation is defined 
as 

( ) ( ) ( )

( )

i i bf i af

i bf

UR e Ambig e Ambig e

Ambig e

= −

=
 

where ( )i bfAmbig e is the ambiguity of the instance ie  before 

annotation and ( )i afAmbig e is the ambiguity after annotation, 
which equals to 0. 

Without a doubt, the labeling process of the instance ie  will 
have the influences on the unlabeled instances especially those 
are in its neighborhood. Then we define the uncertainty 
reduction of je  caused by the annotation of ie  as follows: 

( | ) ( , ) ( )j i j i iUR e e Similarity e e UR e= i  

( )ij is UR e= i  

Then we can define the uncertainty reduction of the whole 
unlabeled set caused by the annotation of the instance ie  as 

1
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in which iw  is called influence index of the instance ie   to the 

whole set and equals 
1

U

ij
j

s
=

∑ . 

( | )iUR U e  can be viewed as the contribution of the 
instance ie to the whole unlabeled set. It is the selection 
criterion of the new sample selection algorithm. 

III. IMPROVED AMBIGUITY-BASED SAMPLE SELECTION 
ALGORITHM 

A. Main idea 
The uncertainty based sample selection methodology has 

been widely used in many domains as well as many machine 
learning algorithms [9-14]. Lewis & Gail propose the 
uncertainty sampling method with probability classifier in [9] 
which has been used to text classification. Based on the idea, 
[10] applies it to the learning of partially HMM (Hidden 
Markov Models), and [13] and [14] to natural language 
processing and fuzzy decision tree induction, respectively. 

All the above methods select the most uncertainty samples 
for annotation. They consider the samples which close to the 
decision boundary with more information. Those samples 
which are far away from the decision boundary and can be 
easily labeled are thought with little or even no information for 
the current classifier.  

However, there exist several drawbacks in the uncertainty 
based sample selection algorithms: 

(1) The method ignores the instruction of the unlabeled data 
to current classifier. It only uses the labeled data to select 
samples, while the unlabeled set just plays the role of a pool for 
the classifier to select instances; 

(2) The method may be sensitivity to noise for it select the 
instances closest to boundary which may be extremely 
particular and so without any representation; 

(3) The method doesn’t take the distribution of unlabeled 
set into consideration, so the isolated samples may be selected 
probably.  

For the drawbacks mentioned above, we improve the 
maximum entropy based sample selection algorithm. Instead of 
selecting the instances with maximum uncertainty, the new 
algorithm selects the instances that could reduce the uncertainty 
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of the entire unlabeled set most. The main idea of the algorithm 
is described briefly below. 

Firstly, construct the similar matrix of the unlabeled set. 
The matrix can be iteratively used without too much 
modification until the end of the algorithm. The elements of the 
matrix denote the similarity between instances. Secondly, train 
a classifier on the labeled set and predict the ambiguity of every 
unlabeled instance with the classifier. Thirdly, calculate the 
influence of every instance on the entire unlabeled set 
according to the similar matrix. Then get the classification 
ambiguity reduction of the whole unlabeled set caused by every 
unlabeled instance according to its ambiguity and influence 
index. Finally, select the one/ones which could reduce the 
classification ambiguity of the unlabeled set most for 
annotation and then add it/them to the labeled set with its true 
class and remove it/them at the same time from the unlabeled 
set. Repeat the procedure until the number of selected samples 
equals the predefined number. 

From the description of the new algorithm’s main idea, we 
can see that the criterion of the new algorithm to select samples 
concerns two aspects: the ambiguities of the instances and their 
influences to the unlabeled set once they are labeled. Compared 
with the original algorithm, the influence on the unlabeled set is 
considered. It introduces the similar matrix to describe the 
distribution of the unlabeled set and measure the influence on 
the labeled set of every unlabeled instance. Thus it can avoid 
the isolated instances to be selected and improve the robustness. 

Here we take a simple example from [15] shown in Fig.1 to 
interpret the advantage of the new improved sample selection 
algorithm based on maximum uncertainty. 

 
Figure 1.  A simple example 

Fig.1 shows a synthetic dataset with two labeled data 
(marked ‘1’ and ‘0’), an unlabeled point ‘a’ lying in the center 
of the two labeled point in horizon, the coordinate of which is 
(0, 0.5) and a clustering ‘B’ including 9 unlabeled points, the 
coordinate of which are (0.1, -0.5), (0.15, -0.5), (0.2, -0.5), (0.1, 
-0.55), (0.15, -0.55), (0.2, -0.55), (0.1, -0.6), (0.15, -0.6), (0.2, -
0.6) respectively from the top left one to the lower right one. 

Obviously, the optimal decision surface obtained by the two 
labeled point is the vertical line 0x = and the point ‘a’ is more 
uncertainty than every point in clustering B and has most 
uncertainty because it just lies on the decision boundary.  So it 

will be considered as the most informative point by the sample 
selection algorithm based on maximum uncertainty and have 
the greatest contribution to current classifier on its prediction 
accuracy improvement. However, intuitively the points in 
clustering B should be more important than point ‘a’ because 
point ‘a’ is isolated from others with little representation and is 
likely to be a noise. 

The improved new sample selection algorithm can solve the 
problem of avoiding such isolated data to be selected. From the 
figure we can see that the uncertainties are very similar among 
these unlabeled points, especially the left points of B and the 
point ‘a’. But the points in clustering B are have more influence 
than point ‘a’ on the whole unlabeled set. Thus one or some 
points in clustering B can be selected instead of point ‘a’ by the 
criteria that is information amounts which is measured by the 
product of the uncertainty and the influence degree to the 
whole unlabeled set.  

B. Algorithm description 
The algorithm includes three components: an oracle G , a 

learner L  and a data set X . Oracle G , which knows the label 
of all the data, may be a target function, a decision set or an 
expert in the correspondence domain etc. Learner L  classifies 
all the unlabeled data and selects the most informative samples 
for current learner.  Data set X  includes labeled set LX and 

unlabeled set UX . 

The goal of the algorithm is to get a learner L which can 
make ( ) ( )G x L x=  for the elements Ux X∈  as many as 
possible. 

At the beginning of the algorithm, there must be a 
learner/classifier, otherwise a labeled data set must be 
provided, which can be used to build a classifier. The steps of 
the algorithm are described below. 

Step 1: Define a sample number to be selected. 

Step 2: Build the similar matrix of unlabeled set.  

Step 3: Train a fuzzy decision tree from the labeled set. 

Step 4: Get the probability of every unlabeled instance 
belonging to every class by current decision tree. And then 
calculate the classification ambiguity of every unlabeled 
instance. 

Step 5: Calculate the uncertainty reduction of the whole 
unlabeled set caused by of every unlabeled instance. 

Step 6: Select the instance(s) which could reduce the 
uncertainty of the whole unlabeled set most for annotation. 
Then add it/them to the labeled set and remove it/them from 
the unlabeled set at the same time. 

Step 7: Delete the correspondence row(s) and column(s) of 
the similar matrix. 

Step 8: Judge whether the selected samples are enough. If 
not, go to step 3; otherwise go to step 9. 

Step 9: Save the labeled set and train a fuzzy decision tree 
from the labeled set to predict unseen instances. 
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The algorithm flow chart is shown in Fig.2. 

 
Figure 2.  Flow chart of the improved sample selection algorithm 

C. Algorithm analysis 
The improved sample selection algorithm based on weighed 

maximum ambiguity introduces the similar matrix to calculate 
the influence index of every unlabeled instance on the whole 
unlabeled set and takes the most uncertain reduction of the 
unlabeled set as selection criteria, which is determined by two 
factors: influence index and classification ambiguity. The 
influence index of an instance to the whole unlabeled set is 
measured by the average similarities of the instance to every 
unlabeled instance. Thus the improved algorithm would not 
select abnormal instances with no representation. 

The improved algorithm is not more complex and costs no 
more time than original because the similar matrix is built only 
once offline and has little change during the selection process. 
And most of the time consumption is the building the fuzzy 
decision tree. One drawback of the new algorithm is that it 
takes O(n2/2) storage more than original. But the storage will 
not greatly influence the execution of the program in these days. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
We conduct the experiments on four databases of UCI. The 

information of the four databases is showed in Table 1. 

TABLE I.  DATABASES OF UCI  

Databases 
Attribute 
Number 

Class Number Instance 
Number 

Iris 5 3 150 
Wine 14 3 178 
Glass 10 7 214 
Sonar 61 2 208 

 

In our experiments, all the numeric attributes is scattered 
into three clusters by k-means and fuzzified by triangular fuzzy 
number. 

Firstly, we select 5% instances randomly from every 
database and all the others are thought to be unlabeled 
instances. Then we iteratively select one instance to label every 
time by three different ways: random selection, maximum 
entropy based selection and weighted maximum entropy based 
selection which is the improved method until the number of the 
selected samples equals to 20. The testing accuracies and 
elapsed time during the selection are recorded when a new 
instance is selected and added to the selected set. 

The program is compiled with Matlab 7.1 and run on 
Pentium(R) 4 CPU 3.06GHz. The experiments are conducted 
50 times on every database and the average testing accuracy 
and elapsed time are shown in Table 2. 

TABLE II.   EXPERIMENTAL RESULT 

Databases Iris Wine Glass Sonar 
Random 0.9635 0.8120 0.5429 0.6870 
MABSS 0.9894 0.8349 0.5712 0.7194 

Testing 
accuracy 

(%) WMABSS 0.9898 0.8429 0.5755 0.7198 

Random 0.0156 0.0156 0.0156 0.0156 

MABSS 0.0367 0.0453 0.0666 0.0606 
Selection 
time cost 
(seconds) WMABSS 0.0415 0.0516 0.0634 0.0719 

 

From Table 2, we can see that both of Maximum 
Ambiguity Based Sample Selection(MABSS) algorithm and 
the Weighted Maximum Ambiguity Based Sample 
Selection(MABSS) algorithm are better than random selection 
but cost more time. Comparing MABSS with WMABSS, the 
testing accuracy of decision tree trained from samples selected 
by WMABSS is higher than that of samples by MABSS 
although WMABSS costs more time than MABSS.  

The advantage of WMABSS to MABSS and random 
selection during the selection process is also shown in Figs 3-6. 
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Figure 3.  Experiment on Iris 

 
Figure 4.  Experiment on Wine 

 
Figure 5.  Experiment on Glass 

 
Figure 6.  Experiment on Sonar 

The figures clearly show that the improved sample selection 
method is better than both original method and random 
selection because the solid curves are always above the dashed 
curves and dotted curves. 

V. CONCLUSION 
This paper improves the maximum entropy based sample 

selection algorithm. It introduces the similar matrix to describe 
the probability distribution of the unlabeled instances and 
measure the influence of an unlabeled instance on the whole 
unlabeled set. The criterion to select samples is the uncertainty 
reduction of the whole unlabeled set caused by an unlabeled 
instance, which is determined by the classification ambiguity 
and the influence on the whole unlabeled set. The improved 
sample selection algorithm avoids the abnormal instances to be 
selected and is robust in noises while without time increasing.  
All of these have been shown in our experimental results 
conducted on UCI databases. 
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