
Abstract—In this paper, we propose a Q-learning with 
continuous action policy and extend this algorithm to a 
multi-agent system. We examine this algorithm in a task that 
there are two robots taking action independently but connected 
with a straight bar. The robots must cooperate to move to the 
goal and avoid the obstacles in the environment. Conventional 
Q-learning needs a pre-defined and discrete state space but fails 
to identify the variances of the different situation in the same 
state. We introduce a Stochastic Recording Real-Valued unit to 
Q-learning to differentiate the actions corresponding to 
different state inputs but categorized to the same state. This unit 
can be regarded as an action evaluation module, which models 
and produces the expected evaluation signal and an action 
selection unit that generates an action with the expectation of 
better performance using a probability distribution function 
that estimates an optimal action selection policy. The results 
from both the simulation and experiment demonstrate better 
performance and applicability of the proposed learning model. 

I. INTRODUCTION

N the article we proposed a method called the Stochastic 
Recording Real-Valued (SRRV) learning algorithm to 

tackle the problems mentioned. Eventually, the problems that 
the proposed method coped with are two-fold; first, the work 
deals with the problem of quantization in the state space from 
sensory receptive field for the associated value function [1]. 
In other words, the architecture of the proposed algorithm 
can divided into two layers. The first layer is akin to a 
conventional Q-learning [2, 3] but with a scheme of state 
aggregation. On the second layer, the concept of stochastic 
action generation is applied to policy learning through 
exploration for Q-learning. The algorithm uses a Gaussian 
distribution to produce a stochastic and real-valued output, 
and adjusts the mean and the variance of the Gaussian 
distribution so as to increase the probability of producing the 
optimal real-valued output for each state. In other words, in 
conventional reinforcement learning [4,5] algorithms, such 
as Adaptive Heuristic Critics (AHC) [6], where the LMS rule 
of Widrow and Hoff approach is applied, the critic network 
may be trapped into local maximums. To overcome this 
problem, the SRRV learning algorithm is proposed to record 
the optimal reward and shows that it converges more quickly. 

Furthermore, the capability of state aggregation is 
designed for the Q-learning with SRRV unit such that the 
system can differentiate actions corresponding to different 
state inputs but categorized (aggregated) to the same state 
since the conventional Q-learning needs a pre-defined and 
discrete state space but fails to identify the variances of the 
different situation in the same state. We denote this evolving 
Q-learning system as Real-Valued Q-learning (RVQ). As a 
matter of fact, the RVQ unit can be regarded as being 
composed of two functionality units; an action evaluation 
unit, which models and produces the expected evaluation 
signal, and an action selection unit that generates an action 
with the expectation of better performance based on a 

probability distribution function that estimates an optimal 
action selection policy. 

The structure of this paper is organized as follows. In 
Section II, the learning algorithm of RVQ is derived based on 
the maximum likelihood. Section III describes the proposed 
algorithm of RVQ unit. The experimental results are 
demonstrated in Section IV, where the task is to assign two 
small-size succor robots holding two ends of a stick to learn 
to go through a narrow gate safely. Finally, a brief conclusion 
on the merit and drawback of the proposed algorithm is 
drawn in the last section. 

II. LEARNING AGENT IN THE RVQ NETWORK

If a reinforcement learning scheme, instead of the 
supervisory learning scheme, is applied to this percetron-like 
unit, an action evaluation unit is supposed to be embedded 
into the model.  

A. Action Selection with Stochastic Search 
In the proposed learning algorithm, the gradient 

information is instead estimated by a stochastic exploration 
method, based particularly on the multi-parameter 
distributions used for the stochastic network output unit 
search [7]. In estimating the gradient information, the output 
y  of the action network does not act directly on the 
environment. Instead, it is treated as a mean (expected) action. 
The actual action ŷ  is chosen by exploring a range around 
this mean point. This range of exploration corresponds to the 
variance in a probability function that is the normal 
distribution here. The amount of exploration )(t  is some 
nonnegative monotonically decreasing function of the 
predicted reinforcement signal. For example, )(t  can be 
interpreted as an extent to which the output node searches for 
a better action. Since )(ˆ tr  is the predicted evaluation signal, 

if )(ˆ tr  is small, the exploratory range )(t  will be large. On 

the contrary, if )(ˆ tr  is large, )(t  will be small. This 
amounts to narrowing the search about the mean )(ty  if the 
predicted reinforcement signal is large. This can provide a 
higher probability of choosing an actual action )(ˆ ty , which is 
very close to )(ty , since it is expected that the mean action 

)(ty  is very close to the best action possible for the current 
given input vector. On the other hand, the search range about 
the mean )(ty  is broadened if the predicted reinforcement 
signal is small such that the actual action has a higher 
probability of being quite different from the mean action )(ty .
Thus, if an expected action has a smaller predicted 
reinforcement signal, we can have more novel trials.      

In the above two-parameter distribution approach, the 
predicted reinforcement signal )(ˆ tr  is necessary to 
determine the search range )(t . This predicted 
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reinforcement signal can be obtained from the action 
evaluation network that is described in the following 
subsection. Once the variance has been decided, the actual 
output of the stochastic node can be set as 

)).(),(()(ˆ ttyty                                                  (1) 
That is, )(ˆ ty  is a normal or Gaussian random variable with 

a density function: 

For a real-world application, )(ˆ ty  should be properly scaled 
to the final output to fit the input specifications of the 
controlled plant [7]. In other words, the actual action is 
chosen by exploring a range around the expected action and 
this range of exploration corresponds to the variance of the 
normal distribution,  determined by the action evaluation 
unit. 

The interaction between the action unit and the 
environment is described as follows: 

At time t, the unit receives an input vector )(tx .  That unit 

uses the input vector )(tx  and two internal parameter 

vectors )(tw  and )(tv  to compute the two parameters 

)(t  and )(t of the normal distribution to generate the 

unit’s output. The mean output, )(t , is an estimate of the 
optimal output which can maximize and compute  a weighted 
sum of the inputs of the unit: 

For a given input, the standard deviation )(t  should 
depend on how close the current expected output is to the 
optimal output for that input. The expected reinforcement 

)(ˆ tr  is used to compute the standard deviation )(t  as: 

))(ˆ()( trst ,                                                            (4)

where (.)s  is a monotonically decreasing, nonnegative 

function of )(ˆ tr . For instance, it can be designed 

as )(ˆ1))(ˆ( trtrs , so that the standard deviation 
becomes zero and causes the unit’s output to be the optimal 
mean output when the maximum reinforcement is expected, 
i.e. 0.0)0.1(s . Based on the mean, )(t , and the 

deviation, )(t , of the normal distribution, ),( , the 
unit calculates its activation, a(t), as

))(),((~)( ttta ,                                       (5) 
where a(t) is the normally distributed random output 

generated by the network.  
The unit uses above equations to calculate its output at a 

given time step. Assume that the environment provides a 
reinforcement signal r(t) that is the evaluation of the unit’s 
output at time t. The weights computing the mean )(t  are 
updated at each time step as follows: 

)()()()1( txtwtwtw iii ,                                   (6) 
where  is the learning rate and 

The fraction in (7) can be viewed as a normalized noise 
that has been added to the mean activation of the unit for the 
given input. If this perturbation has caused the unit to receive 
a reinforcement signal r(t) that is greater than the predicted 
evaluation )(ˆ tr , then it is desirable for the unit to produce an 
output closer to the current output a(t).  This should change 
the mean output value in the direction of the perturbation. 
That is, if the perturbation is positive, the unit should update 
its weights so that the mean value increases. Conversely, if 
the perturbation is negative, the weights should be updated so 
that the mean value decreases. On the other hand, if the 
reinforcement signal is less than the expected evaluation, 
then the unit should adjust its mean in the direction opposite 
to that of the perturbation. 

Updating the weights )(tv  used for computing the 
expected evaluation is relatively straightforward. The 
predicted evaluation )(ˆ tr , generated by the action evaluation 
network, follows the reinforcement signal r(t). Hence, r(t)
can be viewed as a desired output and the delta rule is used to 
learn the association between the reinforcement signal and 
the expected evaluation. The update rule is given by: 

)()()()1( txtvtvtv iii ,                             (8) 

where  is the learning rate and ).(ˆ)()( trtrtv

B. Action Evaluation with Maximum Likelihood 
As previously mentioned, an action evaluation unit is used 

to predict the reinforcement signal )(tr  from the 
environment, instead of modeling the discounted cumulative 
reinforcement [6]. Eventually the environment is usually a 
controlled plant, from where the observed reinforcement 
signals always come along with some kind of uncertainty due 
to the locality of the gradient search. In other words, the 
signal )(tr  may be regarded as a random signal better or 
worse around the true one. To accommodate the learning 
agent for this problem, an action evaluation unit based on the 
maximum likelihood method is developed.  

Assuming that the reinforcement signal )(tr  can be 

modeled by nr r g , where gn is an imposed Gaussian 

noise, the predicated evaluation signal )(ˆ tr can be 

represented as an estimated mean r  with the variance 2
r ,

i.e., )(ˆ tr = r (t) + norm · 2)(tr , where the norm is a 
normal distribution. The action evaluation unit computes the 
two parameters r  and 2

r  of a Gaussian distribution 
respectively. The final output of the action evaluation unit is 
selected randomly from this distribution. Not only should the 
action evaluation unit learn an output function that estimates 
the expected value r  of the conditional target distribution, 
but it should also have the capability to estimate the variance 

2
r  of that distribution. In Short, the proposed architecture 
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of the network with two output units; the unit, called y-unit, 
predicts the conditional mean r  of the output distribution. 
The output of the y-unit can be written as a weighted sum of 
the inputs: 

The other unit, v-unit, predicts the conditional variance (i.e., 
estimate of 2

r ) of that distribution. Since 2
r  must be 

positive, an exponential activation function is chosen for 
each v-unit to limit this boundary. Therefore the output of the 
v-unit can be written as: 

where thv  is the offset, and iv  is the weight between input 
unit x and the v-unit. 

The y-unit predicts the conditional mean r  and v-unit 

predicts the conditional variance 2
r .

Assuming that the error model around r(t) is normal 
distribution, the probability distribution function can be 
written as : 

The probability density function may be viewed as a 
likelihood function. Since the logarithm is a monotonic 
increasing function of its argument, a negative log-likelihood 
function is defined as follows:  

The characteristic eligibilities of r  and r  are shown in 
(13), (14), respectively. 

Let r̂  be a normally distributed random variable. The 
update rule is obtained by setting the learning constant 
proportional to r . Therefore, the update rules of the weights 
connected to the y-unit and v-unit are shown as follows, 
respectively,

where , is a positive learning rate. 

III. RVQ LEARNING ALGORITHM

In the Stochastic Real-Valued (SRV) [8] unit, the mean 
value )(t  and the variance are approximated by recursive 
rules. Since it applies the LMS rule, the convergent results 
may fall into local solution even if it has ever reached the 
optimal solution. In order to overcome this drawback, the 
SRRV unit is presented. One unit )(t  is to record the 

optimal solution up to now. Another unit )(max tr  is used to 
record the reinforcement signal gain at that optimal solution 
(i.e. the maximum )(ty  in this case). One last unit is a 

recursive unit )(tv . This unit determines the variance  of 

the normal distribution ),( .
Consider the problem of searching maximum solution of 

the function )/1sin()( xxxy  again. At time t, the 

action is generated as the equation ))(),((~)( tttx ,
where

    
   Then we receive )(ty  and )(tr . The updating rules are 
separated into two phases: 

Phase 1 
 If a better solution is obtained, the solution and )(ty  are 

recorded as )1(t  and )1(max tr . And the variance 
decrease to explore wider. The updating rules are as follows: 

 if )()( max trtr  then 

Phase 2 
If a worse solution is obtained, the mean value )(t  and 

)(max tr  will not be updated and )(tv  will increase. 
The updating rule is as follow: 
if )()( max trtr  then 

|)()(|)()1( max trtrtvtv .
These two phases both converge because of the term 

|)()(| max trtr . In phase 1, the divergence term 

|)()(| ttx  is added to explore wider when the 
learning agent discover a better solution. 

The v -unit is the prediction of the variance (i.e. the 
estimation of ) of the distribution. It contains two terms. 
One is the convergence term |)()(| max trtr which
controls the convergence rate of the variance.  is the 
convergence rate. Since it is an absolute value, this term is a 
positive term. As the time increasing, the v -unit shall be 
updated larger, it will result in a smaller variance )(t . If the 
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new explored reward )(tr  is much larger (or smaller) than 

the recorded reward )(max tr , it will speed up the 

convergence rate. The other term |)()(| ttx
enlarges the variance, since it is a negative value.  is a 
divergence rate. If the new explored reward is larger than the 
recorded, it represents that we still can find another better 
solution, so we expand our exploration (i.e. increase the 
variance). So this term is added. The divergence rate is 
determined according to the location of the newly explored 
reward. If the location is far from the recorded mean value, it 
expands wider. Otherwise, it expands smaller. 

A. Input Space Representation  
The modified Fuzzy Cerebellar Model Articulation 

Controller (FCMAC) can be regarded as the fuzzification 
operation on fuzzy sets. The standard univariate basis 
function of the CMAC [9] is binary so that the network 
modeling capability is only piecewise constant. The 
univariate basis functions with higher-order piecewise 
polynomials can generate a smoother output. A crisp set can 
be considered as a special form of fuzzy set, to which an 
instance can to some degree either belong or not belong. This 
property is similar to the problem where the state variable x
excites a specific region in the FCMAC sensor layer. The 
membership function, 1,0xi

, associates each state 
variable x  with a number. It represents the grade of 
membership of x  in xi

. Triangles are adopted such that 
only one maximum output exists in the hyperspace after the 
aggregation operation. These membership grades have a peak 
value at the center of the excited region and decrease as the 
input moves toward the edge of the excited region. A 
two-dimensional RVQ operation where each subset is offset 
relative to the others along a hyperdiagonal in the input 
hyperspace is illustrated in Fig. 1. 

Fig.1. The nonlinear mapping result on the RVQ receptive field. 
Fig. 1 shows a result that the RVQ maps the observed input 

space to the receptive field with various exciting strength in 
certain activated areas. In this way, different inputs can 
generate the outputs with discrepant representation in spite of 
the resolution by which the field is divided. From the other 
viewpoint, a FCMAC is actually a percetron-like action unit, 
which determines the output, connecting to a state space 
quantizer. The output of the action unit can be written 
as ( )i ii

p w b x  where bi is a fuzzy membership 

function. 

B. RVQ Unit 
In this section, a new RVQ model is proposed to produce a 

real-valued output. In this learning model, the stochastic 
recording real-valued unit is used to search for the action 
under a greedy policy in Q-learning. The proposed learning 
model is depicted as follows: 

The robot exists in an environment consisting of a set, S of
states. At time t , the observed input vector X , is sent into the 
Q-learning. The Q-learning receives this state )(tX , suppose 

we have an optimal policy )(* X  that maps input states 
into movements. The action space is separated into several 
sub-sets. The movement derived from Q-learning will 
correspond to these sets. The action generated from RVQ 
consists in one of these sets. Once the RVQ unit receives the 
action )(ta  under a policy, the action is also considered as 
an index to RVQ unit. Then a mean value under this 
policy ( )t of the normal distribution was computed as 
follow:  

),,()( taXwt ,                                                    (17) 

where ),,( taXw  is the recorded mean value. 

The ),,( taXv  value shall also be obtained. We use a 

temporary note )(tp  to represent )(tv  under the action. 

The variance )(t  of the normal distribution will then be 

obtained based on the )(tp  under the policy )(* X .
Therefore we have

),,()( taXvtp ,

( )

1( ) 1
1 p tt

e
.                                                 (18) 

Based on the mean value )(t  and variance )(t , the 
action can be generated by the normal distribution 

( ) ~ ( ( ), ( ))sa t t t .                                            (19) 
Assume that the environment provides a reinforcement 

signal )(tr  that is the evaluation of the unit’s output at time t.

The state leads to next state )(' tX . The Q-learning is 
updated according to this reinforcement signal. The updating 
rule is as the original Q-learning: 

1 1( , ) (1 ) ( , ) [ ( ) ( ' )]t t t tQ X Q X r t V X .  (20) 

When the agent receives the next state '( )X t , we can 
derive a weight vector (b1,b2,…,bn) from FCMAC. This 
weighting bi factor represents how a continuous state '( )X t
is influenced by a representative state X(t). When the agent 
perceives its environment as a continuous reward  rs(t),
where rs (t) is the reward of RVQ unit. This current rs(t) is 
described by the weighted linear combination of 
representative state bi  as follows: 

*

1
( ) ( , )

n

s i i
i

r t V X t b ,                                               (21) 

where
*
( , ) ( , ) ( , )i i t i

a
V X t X a Q X a is the optimal 

value function [5]. 
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Fig. 3. The photo of the experimental environment where the task is to 
assign two small-size succor robots holding two ends of a stick to learn 
to go through a narrow gate safely.

(a)                                         (b) 
Fig. 4. (a) The path of the robot applying the SRV unit. The steps are 126 
steps. (b)  The path of the robot applying the RVQ unit. The steps are 105 
steps.

(a)                                      (b) 
Fig. 5. (a) The path of the robot applying the SRV unit after 95 times 
learning cycles. (b) The path of the robot applying the RVQ unit after 95 
times learning cycles. 

This reward rs (t) determines which update rule should it use. 
The update rules are as follows: 

Fig. 2 shows the data flow diagram of the RVQ model. The 
signals used to calculate the output of the network are shown 
with solid lines, and the dash lines show the signals used for 
learning. 

IV. EXPERIMENTS

The proposed RVQ is implemented in two tasks to 
demonstrate its achievement. The first task is to assign a 
robot to avoid the obstacle and to reach to the goal. The other 
task is that there are two robots taking action independently 
and both are connected with a straight bar. Fig. 3 shows the 
experimental environment of this task. 

A. The Environment of Experiments 

The field is 900 in length and 500 in width. The action sa
generated is a direction command. The action a  generated 
from Q-learning contains 4 commands which are UP, 
DOWN, LEFT and RIGHT. Each command maps to the 
direction up, down, left, right. The range of each direction’s 
angle is from -45 to 45 degree. When the robot receives this 
command, it will move a distance toward this direction. The 

Q-table is a 459  table, which means position x, 
position y, activity respectively. Each element in Q-table has 
corresponding , v  and maxr .

B.  Results of Experiments 
Fig. 4 (a) shows the path recorded at the 126th epoch is 

derived from SRV learning. For comparison, the path after 
105 times training by the proposed RVQ is shown in Fig. 4 
(b). It is notable that the later path is smoother and shorter 
through with less number of learning epoch. Fig. 5 shows the 
results of the other cases.

As the figure depicts, the path of the agent is rough and 
line-piece wide. It makes poor performance for robots to take 
actions in real applications and has worse performance. It is 
worthy to mention that when implementing in real robot 
applications, if the output action command can not be 
controlled precisely, the robots will transit to a state that may 
not be a well-defined quantized state. Because the position of 
robot in real world is continuous, the quantized state defined 
by the conventional Q-learning can not provide a fine 
resolution of agents’ state. And because the inflexibility of 
the discrete action output value, the efficiency of robots in 
real world is poor. 

In the second experiment, two robots will try to reach the 
goal. They are connected with a straight bar, and the bar’s 
length is flexible but limited. Its length limit is from 200 cm 
to 282.8427 cm. We use the master-slave structure to 
implement this method. The master robot leads and decides 
the path, the slave one tries to balance the straight bar and 
tries not to collide with the obstacles. The slave robot uses 
only the RVQ algorithm since its goal is not quite 
complicated. Its reward is based on the length of the straight 
bar. Since it must keep the straight bar not to short or not too 
long, the reward of 1 is given best when the length of straight 
bar is at the averaged length of maximum and minimum 
length. When the straight bar’s length is longer or shorter 
than the averaged length, the reward value becomes less. 
Once the straight bar stocks with the obstacle, the reward 
then is set to zero. As well, when the slave robot bumps into 
obstacles or goes out the field, the reward is given zero, too.  

if ),,()( max taXrtrs                                                       (22)
)()1,,(max trtaXr s

)()1,,( tataXw s

),,()(||),,()(|),,()1,,( max taXwtataXrtrtaXvtaXv ss

else |),,()(|),,()1,,( max taXrtrtaXvtaXv s .

Fig. 2. The data flow diagram of the RVQ model. 
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(a)                                     (b) 
Fig. 6. (a) The trace of agents in SRV method after 100th trials. (b) 
The trace of agents in RVQ after 100th trials.

Fig. 7. The result trace of the robots in cooperation through a gate. 

The master robot shares the information of its position to 
the slave robot. So the state space of the slave robot will be 
added one dimension of the relative position of master robot. 
The basic actions are up, right up, right, right down, down, 
left down, left and left up. The initial weights of slave robot 
are random. The speeds of the two robots are differentiated, 
master’s highest speed is a little slower than slave’s, because 
we must guarantee that slave can catch up with master. To 
perform the algorithm proposed above, we give a simple task 
to two robots which have a straight bar connected with each 
other. The goal of them is to cooperate for passing through 
the gate. Both agents perform actions and update Q-values 
simultaneously.  

Fig. 6 (a) depicts the trace of both agents in the SRV 
method. The bold line square is the position of the first agent, 
and the dash line square is the position of the second agent. 
The number in the center of the square is the time step (trial) 
of the experiment. The trace of both robots with RVQ method 
is shown in Fig. 6 (b).  

Fig. 7 is the trend of the two robots learning to pass the 
gate cooperatively. We can see at first 100 trials there still 
needs more than 500 steps to find the way to pass through the 
gate. Then when the number of training trials is greater than 
100 times, the average of the steps of robots to reach the goal 
successfully is down to about 200 steps. And after the 450th 
trials, we can see that the robots have found an optimal 
solution and take about 10 steps to cooperate to pass through 
the gate. In the last demonstration, the length of the stick held 
by the robots increase one and half times after the robots are 
trained for the previous tasks. Fig. 7 shows the result trace of 
robots in cooperation through a gate and the steps of the 
master robot with RVQ take to get through a gate and reach 
the target point along the number of learning epochs. 

V. CONCLUSION

In this paper we propose a method that can generate a 
continuous action and it is based on Q-learning. We compare 
the performance of the proposed RVQ with SRV and 
implement this algorithm to the multi-agent. 

This algorithm uses three parameters to generate the action. 
In SRV learning algorithm, the critic network may be trapped 

into local maximum since it applies the LMS rule to update 
the weight. To overcome this problem, the stochastic 
recording real-valued unit is proposed to record the optimal 
reward. The result shows that it converges more quickly.  

 However, when it applies to the simulation, there are still 
some problems. If we train the Q-learning and the RVQ at the 
same time, the Q-table will be updated wrong often 
especially when the robot is near the obstacle. This make the 
training become inefficient. One solution is to check the state, 
when the state is actually maps to the action that Q-learning 
made, the Q-table then will be updated. But it decreases the 
chance to explore. In multi-agent cooperation, the problem is 
that the master doesn’t know the existence of the slave one. It 
only knows how to pass through the obstacle and reaches the 
goal, but doesn’t know how to cooperate with the slave. So 
this cooperation may fail at some other cases. The other 
problem is that the training must begin with Q-learning, when 
the Q-learning converges; the RVQ unit then finds the 
optimal solution. When the master robot’s motivation is fixed, 
the slave one then can cooperate with the master robot and 
converge. This is not ideal at the learning.  

 The continuous state problem is always an issue in 
reinforcement learning. We can try another approach to 
improve the performance. Try converting the Cartesian 
coordinates into polar coordinate; this will be more general 
than the origin, or try tracing the dynamic targets. Maybe 
convert the weights into local and global information is not a 
bad idea. The structure in communication between 
Q-learning and RVQ maybe can be improved, such as 
considering the sojourn time [10], or elsewhere.
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