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Abstract—To design appropriate actions of mobile robots, the 
designers usually observe the sensory signals on the robots and 
decide the actions from the viewpoint of some desired purposes. 
This approach needs deliberative consideration and abundant 
knowledge on robotics for a variety of situations. To improve the 
actions of robots, it is hard to sense the error by human eyes and 
takes time in trial-and-error. In this article, we propose a novel 
learning algorithm, Fused Behavior Q-Learning algorithm 
(FBQL) to deal with such situations. The proposed algorithm has 
the merit of simplicity in designing individual behavior by means 
of a decision tree approach to state aggregation which is 
eventually recoding the domain knowledge. Furthermore, these 
learned behaviors are fused into a more complicated behavior by 
a set of appropriate weighting parameters through a Q-learning 
mechanism such that the robots can behave adaptively and 
optimally in a dynamic environment. 

Keywords—reinforcement learning, behavior-based 
control, multiple behaviors, decision tree induction

I. INTRODUCTION
In general, designing appropriate actions to control robots is 

more difficult because of the system complexity. The 
considered parameters and conditions are enormous, and there 
are some tradeoffs between these actions. Sometimes, 
experiences and intuitions do not help judge the tradeoff, 
especially in complex conditions. Subsumption method is 
proposed to overcome the difficulty [1-3]. It develops some 
basic behavior module to achieve the task goal. In general 
conditions, only one behavior is activating by suppressing other 
behaviors so that such kind of algorithms raise some other 
problems. For example, it must decide what behavior 
suppresses others appropriately in every condition. Fused 
Behavior Q-Learning algorithm (FBQL) proposed in this 
article can overcome the problem. Like Subsumption method, it 
also develops some basic behavior modules and it utilizes a 
reinforcement learning (RL) to fuse the outputs of all behavior 
modules[4,5]. 

However, even a simple basic behavior also suffers some 
problems. Since sensory inputs are usually real values, it is 
difficult to define a clear range to represent an output. If it is an 
easy task, it may use fuzzy methods. But in the perplexity tasks, 
if there is no knowledge about the inference rules, it is difficult 
to create a suitable output. In general, although we do not know 

how to create an output, we can easily judge whether the result 
is better or worse. And further, if it is a Markov Decision 
Process (MDP), it can utilize RL to learn the mapping from the 
sensory inputs to the outputs [6,7]. 

For general RL, it also suffers the problem about 
partitioning state space suitably. If it partitions the state space 
coarsely, it results in worse performance. On the contrary, 
although fine partitioning results in better performance, it needs 
more and more time to learn. Several methods have been 
proposed to overcome the problem. Neural network can utilize 
less neurons to predict the state values, but it has a drawback in 
convergence. The Cerebellar Model Articulation Controller 
(CMAC) ignores the dissimilarity between different regions of 
the state space[8]. In other words, some regions do not need 
fine partitions, but some regions need fine partitions for 
sensitive control. Although decision tree considers the 
dissimilarity, the drawback is that it spends more time in 
learning [9-10]. 

We proposed Reinforcement Learning-based Decision Tree 
algorithm (RL-based Decision Tree algorithm) to ease the 
design complexity [11]. The instructor only needs to 
demonstrate the behavior a few times and the robots can imitate 
the instructor’s experience and induce these combinations of 
the sensory inputs and outputs. To improve the behavior, we 
proposed Decision Tree-based Q-Learning (DT-based 
Q-Learning) to train and adjust the behavior.  

Section II describes the RL-based Decision Tree to clone 
single behavior. The details of the FBQL algorithm including 
whole structure, meaning of each parameter, and the processes 
of the algorithm are also presented in this section. In section III, 
we experiment with FBQL and Subsumption method to fuse 
three single behaviors and discuss the results. Finally, 
conclusions are presented in Section IV. 

II. FUSED BEHAVIOR Q-LEARNING ALGORITHM

As the Subsumption method, we should develop some basic 
behavior before constructing our system. Humans usually learn 
new behaviors through imitation and then practices over and 
over times. This idea inspired us to propose the RL-based 
Decision Tree [11]. First, the instructor controls the robot from 
his/her instincts or experience, and the robot should record the 
patterns constructed from the sensory inputs denoted as 
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attributes and the robot’s outputs denoted as classes. Second, 
the robot classifies all the patterns according to the attributes by 
the RL-based Decision Tree algorithm. After that, the robot can 
imitate the behavior as demonstrated by the instructor. To 
improve the behavior of the robot, we proposed Decision 
Tree-based Q-Learning (DT-based Q-Learning) [11]. 

A. RL-based Decision Tree 
In general, the decision tree induction algorithms are based 

on a top-down greedy strategy to make a decision at each node, 
but it implies that the algorithms may fall into a local minimum 
[12,13]. In other words, the optimal decision tree must take 
account of successors while making a decision. In this work, 
the process of decision tree induction is regarded as an MDP, 
where the decision specifies a most appropriate split which has 
maximum long-term (accumulated) payoff in building the 
decision tree. 

1)  Algorithm 

The whole state space of RL corresponds to the root node of 
the tree. Each unique state corresponds to a unique leaf node of 
the tree. Each state is represented by a vector, representing the 
ranges of sensory input in this state. The representation of the 
state corresponding to node φ  is defined as 

),,,,()( maxminmax
1

min
1 dimdim NN xxxxs ≡φ , which is actually the vector 

consisting of the coordinates of the vertices of the 
hyper-cuboids where the sensory inputs reside in and Ndim is the 
dimensions of sensory space. The maximum and minimum 
input values of i-th dimension in the node are denoted as max

ix
and min

ix , respectively. The sensory inputs 
}~1|{ dim,

maxmindim NixxxR iiii
N =<≤∈x  belong to the 

state )(φs .

The action set A(s) of the state s contains a no-split and 
half-split actions with every input dimensions. If the state )(φs
fits in with one of the following stop-splitting criteria, only the 
no-split action can be selected. 

1.  The range of state )(φs  is too small. 

2.  There are only few patterns in )(φs .

3.  After taking a half-split action, either child node 
contains no data. 

4.  The impurity in nodeφ  is good enough. 

A nodeφ  is viewed as a leaf node, when the selected action 

of the state )(φs is a no-split action. 

In general, the performance of a decision is evaluated by the 
error rate and tree size. Since the reward function leads the 
learning direction, the reward function contains two parts. The 
first part of the reward function is the information 
gain, ),( aIgain φ . The information gain ),( aI gain φ  can be 
described as 
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And the entropy function is defined as 
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)ln()(φ , (2) 
where C is the number of classes and pi is the probability (or 
percentage) of patterns belonged to class i in the nodeφ . If the 
chosen action gets larger information gain, the patterns of child 
nodes are more pure such that the error rate is small. 

l
nφ

,
r

nφ ,

and φn  are the numbers of patterns in the left and right child 
nodes, lφ  and rφ , of parent node φ , respectively[14]. However, 
without a restriction to the splitting process, the process of the 
decision tree induction may be too trivial and become 
over-fitting one. Therefore, a splitting cost, 

splitr , is introduced 
to the reward function as a small penalty on the efforts on split. 
The splitting cost is a negative constant so as to make the bias of 
the decision tree growing toward ceasing growing. The reward 
function is listed as 
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In general reinforcement learning, after taking an action, the 
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Fig. 1 The sensory inputs of the robot soccer 
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Fig. 3 The distribution of the patterns classified by RL-based DT 
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current state translates only to the next one state. But in the 
RL-based Decision Tree, after taking a splitting action, it has 
two child nodes as the next states. The updating rule is modified 
as
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where lφ  and rφ are the left and right child nodes of parent node 
φ . For demonstrating the performance, a simulation about the 
target seeking in soccer robot is done. 

2) Simulation 

The target approaching problem is performed with FIRA 
robot soccer simulator. At first, an instructor demonstrates the 
target approaching behavior for the robot, and it records the 
relationship between sensory inputs and the outputs at each 
time period. The sensory inputs have two parameters drawn in 
Fig. 1: one is the distance d between the target and the robot, 
and the other is the angle θ  between the directions of the robot 
and the target 

The outputs are the rotating velocities of the two wheels of 
the robot. A training pattern of the RL-based decision tree 
includes the sensory inputs as its attributes and the outputs as its 
class. Since the classes of patterns should be discrete but the 
outputs are continuous values, the velocities of the two wheels 
are quantized to 29 levels and encoded to 841 (that is 29*29) 
classes.

In the simulation, the agent records 1000 patterns 
demonstrated by an instructor in advance and the agent induce a 
RL-based decision tree by using these patterns. Fig. 2 shows the 
distribution of the 1000 collected patterns. After 50 trails, the 
RL-based decision converges and the number of leaf nodes is 
110. The distribution of the patterns classified by the RL-based 
decision tree is shown in Fig. 3. After inducing the RL-based 
decision tree, the robot can imitate a similar behavior 
demonstrated by the instructor in advance. To improve the 
performance, the outputs are adjusted slightly at each leaf node. 

B. FBQL Algorithm 
In this section, a new algorithm called Fused Behavior 

Q-Learning (FBQL) algorithm is proposed to control a robot 
with some behaviors. The FBQL keeps the merit of simplicity 
in designing the individual behavior by RL-based decision tree 
and further considers the multiple behaviors at the same time on 
improving actions by responding to reinforcement signals. In 
the beginning, the robot imitates each behavior individually, 
and then fuses the learned behaviors by a set of appropriate 
weighting parameters. These parameters are learned through 
Q-learning such that the robot can behave adaptively and 
optimally in an unknown environment. 

1) The Architecture of FBQL Algorithm 

Depending on the many sensory inputs observed from the 
environment, the learning system can decide how to make fused 
behavior. Before performing the FBQL, all behaviors must use 
the RL-based DT method to learn and imitate the instructor’s 

demonstrations individually. Since different behaviors induct 
different decision trees, the state space of FBQL must consider 
all the output combinations of all behaviors. In a behavior, the 
sensory inputs activate the corresponding leaf nodes. Each 
active leaf node of all behaviors represents one dimension of 
the state space of FBQL. 

The architecture of FBQL algorithm is shown in Fig. 4. Bi is 
the i-th behavior which is constructed by the RL-based DT. 
According to the structure of the associated decision tree with 
each behavior, the leaf node ci where the sensory inputs fall 
onto is activated and outputs a reference action ref_ai. The 
FBQL outputs a weighted action from each behavior. In the 
other words, the system sums up the all products of ref_ai and 
wi and outputs a fused behavioral action a to the environment. 
The environment will send a reward by the effect from this 
fused behavior a, and the FBQL can use this reward to adjust 
the system parameters. 

When we receive a sensory input, each behavior Bi
activates a leaf node ci and outputs a reference action ref_ai.
These activated leaf nodes are combined to represent the input 
state, denoted as s=(c1,c2,…,cn), of FBQL. In each state, FBQL 
maintains n weighting parameters as its outputs and and 
maintains n Q values corresponding to each weighting 
parameter. The Q value is updated by (5). The reward is divided 
according to each weight of the behavior. The more effective 
the behavior, the more responsibility it takes. 
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In the FBQL algorithm, the Q value represent the 
experiment after accumulating many times. The weight value 
means the actual output actions. Update the value by referring 
to the Q value as (6). 
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The weight value increases if the behavior is better than 
others, and other weight values decrease at the same time. δ  is 
a scale parameter, and f is an offset to ensure that the weight 
value is always positive. To limit the sum of the weight value, 
we normalize the value. 
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Fig. 4 The architecture of FBQL algorithm 

409



In the domain of reinforcement learning, there are two ways 
to design a reward. One is a dense reward, and the other one is a 
sparse reward. Dense reward is almost a reward function. This 
reward would hint the learning system to train toward some 
specific direction. The system can learn efficiently, but the 
reward function is very hard to design. The system would not 
achieve the goal if the reward function is not designed 
thoughtfully. The sparse reward is used in the FBQL algorithm. 
This reward is almost zero in the greater part of the states. In the 
other special state, the reward is non-zero. It is very easy for a 
designer to encourage or punish the robot. But the learning 
system need more time to learn the solution because it gets less 
information. The experience of learning by sparse reward is the 
real experience of the robot without the hint of the designer.  

2) Convergency

Before briefly proofing the convergency of the FBQL, some 
symbols are predefined. rmax is the maximum value of the 
reward function for all states and behaviors. The Qmax is the 
maximum Q*(s,B)  for all states and behaviors, where Q*(s,B) is 
the optimal q value of state s and action a. Hence 

max*),( rrisw ≤  (7) 

max
1

max
1
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j
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From (5), (7) and (8), 
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If the learning rate α has the famous constraints ∞=∞

=1k kα

and ∞<∞

=1
2

k kα , the q value can converge. 

III. SIMULATION

To verify the FBQL algorithm, the FIRA simulation, used 
in the FIRA SimuroSot competition as Fig. 5, is performed. 
There are three single behaviors developed in advance based on 
the human experience. The three behaviors are described as 
follows: 

1.  Ball-Seeking Behavior: This behavior lets the robot to 
trace and get the ball as soon as possible. The sensory 
inputs are the distance from the ball to the robot and the 
angle from the direction of the robot to the direction of 
the ball, shown in Fig. 6. 

2.  Wall-Avoiding: This behavior can keep the robot safe 
and avoid getting stuck by the wall. We define the 
closest point of the wall as the position of the wall. 
Then the sensory inputs are the distance from the point 
of the wall to the robot and the angle from the direction 
of robot to the direction of the point, as shown in Fig. 7. 

3.  Approaching Behavior: This behavior is a tactic to 
push the ball to the front goal. It moves the robot 
toward the target along the approaching direction. 
Since the target is set to the front goal, the robot detours 
round the ball and then push the ball to the goal 
direction. The sensory input is the approach direction 
defined from the robot to the target, as shown in Fig. 8. 

For each behavior, it uses the DT-based reinforcement 
learning described in section III to learn from the human 
experience. After inducting these decision trees to imitate 
human experience, the decision trees of Ball-Seeking Behavior, 
Wall-Avoiding Behavior, and Approaching Behavior have 122, 
11, and 37 leaf nodes, respectively. 

These single behaviors deal with different intentions. The 

Fig. 5 FIRA SimuroSot Simulation 

Fig. 6 The variables in Ball-Seeking Behavior 
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Fig. 7 The variables in Wall-Avoiding Behavior 
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target of the simulation is to utilize these behaviors to 
accomplish the offense strategy. The ball is set on the free-ball 
position and the robot is set on the front of the blue goal. It will 
quickly score a goal when we use the three behaviors wisely 

A. Simulation with Subsumption method 
We construct a Subsumption method to fuse these 

behaviors as Fig. 9. If more than one behavior is encouraged, 
we use S  suppression signal to keep harmony. The lowest 
level is the Ball-Seeking behavior to dribble the ball. The robot 
would use Wall-Avoiding behavior if it is near the wall. The 
Approaching behavior is high property to stand a good position 
to score a goal. 

The robot kicks the ball until it scores a goal 50 times, and it 
fails if the ball is kicked to its gate. In the simulation, the robot 
fails 12 times in the process before succeeding 50 times. 
Observing the 50 success courses, we can see the total steps 
from the beginning to the goal as Fig. 10. The bold line is a 
moving average and the period is 5. The average steps are 

between 1200 and 3700 steps. To verify the effect of the 
Wall-Avoiding behavior, the collision times of the simulation is 
shown as Fig. 11. The bold line is a moving average and the 
period is 5. The average collision times are stable between 21.2 
and 80.8. 

B. Experiment with FBQL algorithm 
As described above, since these basic behaviors have 122, 

11, and 37 leaf nodes, the FBQL has 496543711122 =××
states. Besides, the simulation uses sparse rewards. The 
rewards of success and failure are 10 and -10, respectively; the 
reward of collision is -5, otherwise the reward is 0. The large 
state space and sparse rewards result in endless learning time. 
To reduce the time of the initial learning stage, the 
Subsumption method is applied to guiding the FBQL in 
learning for 20 episodes first. The robot takes the action 
selected by the Subsumption method, and then according to the 
FBQL algorithm, it updates the q values and weights. 

After 20 instructions, the robot selects the actions according 

Fig. 13 The collision times of FBQL 
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to the FBQL. At the same time, it continues updating the q 
values and the weights of FBQL. The robot also does the 
simulation which is the same as Subsumption method until it 
scores a goal 50 times. It only fails 4 times in this approach. 
Observing the 50 success courses, the total steps in each course 
is shown as Fig. 12. The bold line is a moving average with 
period 5. 

The average steps are between 300 and 2300 steps, and the 
tendency is downward. Figure 13 also shows that the tendency 
of the collision times is downward. 

Comparing these two approaches, the success rates of 
Subsumption method and FBQL are shown as Fig. 14. The 
success rate of FBQL increases with success times. Form Figs. 
12-14, the performance gets better with success times; it means 
that the FBQL learns to fuse these basic behaviors to score a 
goal. The comparison of total steps also shows that the FBQL is 
better than Subsumption method, but the comparison of 
collision times show an opposite trend. Although the 
Subsumption method is better than FBQL in early episodes, the 
tendency in the FBQL is downward and better than 
Subsumption method. Some of the reasons why the FBQL is 
not good at collision times are: 

1.  The FBQL approach is interested in the long term 
reward.

2.  In the Subsumption method, the Wall-Avoiding 
Behavior has priority. It is very hard to collide with the 
wall.

IV. CONCLUSIONS

In this article, we proposed a systematic method to design a 
behavior controller, especially in a complex task. We do not 
need to consider all conditions at the same time to design a 
complicated controller. We only decompose the complex task 
into some basic behaviors. The proposed FBQL can fuse these 
basic behaviors with different weights. But it has a drawback in 
state space size. The number of states increases with the 
number of behaviors. It means that it requires a more learning 
time. Besides, designing a density reward function is difficult. 
A sparse reward function is easy to be designed but results in a 
more learning time. These problems can be solved by 
demonstrating some episodes in advance. FBQL even learns 
better than the demonstrations in the final episodes. 

For designing basic behaviors, we proposed the RL-based 
decision tree to imitate the experience of the expert who cannot 
clearly express his controlling rules. It is not like fuzzy system 
which needs “clear” inference rules. All he has to do is 
demonstrating how to control a basic behavior. Combining the 
FBQL and RL-based decision tree, we can easily design a 
controller with expert experience, and even with better 
performance. 
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