
Behavioral-Fusion Control Based on Reinforcement
Learning

 Kao-Shing Hwang Yu-Jen Chen Chun-Ju Wu Cheng-Shong Wu
National Chung Cheng University

Electrical Engineering
Chia-Yi, Taiwan

 hwang@ccu.edu.tw yujen@mail.educities.edu.tw 490350260@s90.tku.edu.tw cswu@ee.ccu.edu.tw

Abstract—To design appropriate actions of mobile robots, the
designers usually observe the sensory signals on the robots and
decide the actions from the viewpoint of some desired purposes.
This approach needs deliberative consideration and abundant
knowledge on robotics for a variety of situations. To improve the
actions of robots, it is hard to sense the error by human eyes and
takes time in trial-and-error. In this article, we propose a novel
learning algorithm, Fused Behavior Q-Learning algorithm
(FBQL) to deal with such situations. The proposed algorithm has
the merit of simplicity in designing individual behavior by means
of a decision tree approach to state aggregation which is
eventually recoding the domain knowledge. Furthermore, these
learned behaviors are fused into a more complicated behavior by
a set of appropriate weighting parameters through a Q-learning
mechanism such that the robots can behave adaptively and
optimally in a dynamic environment.

Keywords—reinforcement learning, behavior-based
control, multiple behaviors, decision tree induction

I. INTRODUCTION
In general, designing appropriate actions to control robots is

more difficult because of the system complexity. The
considered parameters and conditions are enormous, and there
are some tradeoffs between these actions. Sometimes,
experiences and intuitions do not help judge the tradeoff,
especially in complex conditions. Subsumption method is
proposed to overcome the difficulty [1-3]. It develops some
basic behavior module to achieve the task goal. In general
conditions, only one behavior is activating by suppressing other
behaviors so that such kind of algorithms raise some other
problems. For example, it must decide what behavior
suppresses others appropriately in every condition. Fused
Behavior Q-Learning algorithm (FBQL) proposed in this
article can overcome the problem. Like Subsumption method, it
also develops some basic behavior modules and it utilizes a
reinforcement learning (RL) to fuse the outputs of all behavior
modules[4,5].

However, even a simple basic behavior also suffers some
problems. Since sensory inputs are usually real values, it is
difficult to define a clear range to represent an output. If it is an
easy task, it may use fuzzy methods. But in the perplexity tasks,
if there is no knowledge about the inference rules, it is difficult
to create a suitable output. In general, although we do not know

how to create an output, we can easily judge whether the result
is better or worse. And further, if it is a Markov Decision
Process (MDP), it can utilize RL to learn the mapping from the
sensory inputs to the outputs [6,7].

For general RL, it also suffers the problem about
partitioning state space suitably. If it partitions the state space
coarsely, it results in worse performance. On the contrary,
although fine partitioning results in better performance, it needs
more and more time to learn. Several methods have been
proposed to overcome the problem. Neural network can utilize
less neurons to predict the state values, but it has a drawback in
convergence. The Cerebellar Model Articulation Controller
(CMAC) ignores the dissimilarity between different regions of
the state space[8]. In other words, some regions do not need
fine partitions, but some regions need fine partitions for
sensitive control. Although decision tree considers the
dissimilarity, the drawback is that it spends more time in
learning [9-10].

We proposed Reinforcement Learning-based Decision Tree
algorithm (RL-based Decision Tree algorithm) to ease the
design complexity [11]. The instructor only needs to
demonstrate the behavior a few times and the robots can imitate
the instructor’s experience and induce these combinations of
the sensory inputs and outputs. To improve the behavior, we
proposed Decision Tree-based Q-Learning (DT-based
Q-Learning) to train and adjust the behavior.

Section II describes the RL-based Decision Tree to clone
single behavior. The details of the FBQL algorithm including
whole structure, meaning of each parameter, and the processes
of the algorithm are also presented in this section. In section III,
we experiment with FBQL and Subsumption method to fuse
three single behaviors and discuss the results. Finally,
conclusions are presented in Section IV.

II. FUSED BEHAVIOR Q-LEARNING ALGORITHM

As the Subsumption method, we should develop some basic
behavior before constructing our system. Humans usually learn
new behaviors through imitation and then practices over and
over times. This idea inspired us to propose the RL-based
Decision Tree [11]. First, the instructor controls the robot from
his/her instincts or experience, and the robot should record the
patterns constructed from the sensory inputs denoted as

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
407

attributes and the robot’s outputs denoted as classes. Second,
the robot classifies all the patterns according to the attributes by
the RL-based Decision Tree algorithm. After that, the robot can
imitate the behavior as demonstrated by the instructor. To
improve the behavior of the robot, we proposed Decision
Tree-based Q-Learning (DT-based Q-Learning) [11].

A. RL-based Decision Tree
In general, the decision tree induction algorithms are based

on a top-down greedy strategy to make a decision at each node,
but it implies that the algorithms may fall into a local minimum
[12,13]. In other words, the optimal decision tree must take
account of successors while making a decision. In this work,
the process of decision tree induction is regarded as an MDP,
where the decision specifies a most appropriate split which has
maximum long-term (accumulated) payoff in building the
decision tree.

1) Algorithm

The whole state space of RL corresponds to the root node of
the tree. Each unique state corresponds to a unique leaf node of
the tree. Each state is represented by a vector, representing the
ranges of sensory input in this state. The representation of the
state corresponding to node φ is defined as

),,,,()(maxminmax
1

min
1 dimdim NN xxxxs ≡φ , which is actually the vector

consisting of the coordinates of the vertices of the
hyper-cuboids where the sensory inputs reside in and Ndim is the
dimensions of sensory space. The maximum and minimum
input values of i-th dimension in the node are denoted as max

ix
and min

ix , respectively. The sensory inputs
}~1|{ dim,

maxmindim NixxxR iiii
N =<≤∈x belong to the

state)(φs .

The action set A(s) of the state s contains a no-split and
half-split actions with every input dimensions. If the state)(φs
fits in with one of the following stop-splitting criteria, only the
no-split action can be selected.

1. The range of state)(φs is too small.

2. There are only few patterns in)(φs .

3. After taking a half-split action, either child node
contains no data.

4. The impurity in nodeφ is good enough.

A nodeφ is viewed as a leaf node, when the selected action

of the state)(φs is a no-split action.

In general, the performance of a decision is evaluated by the
error rate and tree size. Since the reward function leads the
learning direction, the reward function contains two parts. The
first part of the reward function is the information
gain,),(aIgain φ . The information gain),(aI gain φ can be
described as

))()(
)()(()(),(

rr

llgain

Entropynn
EntropynnEntropyaI

φ
φφφ

φφ

φφ

+

−= . (1)

And the entropy function is defined as

=
−= C

i ii ppEntropy
1

)ln()(φ , (2)
where C is the number of classes and pi is the probability (or
percentage) of patterns belonged to class i in the nodeφ . If the
chosen action gets larger information gain, the patterns of child
nodes are more pure such that the error rate is small.

l
nφ

,
r

nφ ,

and φn are the numbers of patterns in the left and right child
nodes, lφ and rφ , of parent node φ , respectively[14]. However,
without a restriction to the splitting process, the process of the
decision tree induction may be too trivial and become
over-fitting one. Therefore, a splitting cost,

splitr , is introduced
to the reward function as a small penalty on the efforts on split.
The splitting cost is a negative constant so as to make the bias of
the decision tree growing toward ceasing growing. The reward
function is listed as

+
=

actionsplittingnoaisif0
actionsplittingaisif),(

)),((
a
aaIr

asR gainsplit φ
φ . (3)

In general reinforcement learning, after taking an action, the

dθ

Target

Robot

Fig. 1 The sensory inputs of the robot soccer

Class id

d

θ (degree)

Fig. 3 The distribution of the patterns classified by RL-based DT

Class id

d θ (degree)

Fig. 2 The distribution of 1000 collected patterns

408

current state translates only to the next one state. But in the
RL-based Decision Tree, after taking a splitting action, it has
two child nodes as the next states. The updating rule is modified
as

)2))),((max)),((max(
)),((()),(()),((

)()(

1

bsQbsQ
asRasQasQ

rtsAbltsAb

tt

φφγ
φαφφ

∈∈

+

+
++= , (4)

where lφ and rφ are the left and right child nodes of parent node
φ . For demonstrating the performance, a simulation about the
target seeking in soccer robot is done.

2) Simulation

The target approaching problem is performed with FIRA
robot soccer simulator. At first, an instructor demonstrates the
target approaching behavior for the robot, and it records the
relationship between sensory inputs and the outputs at each
time period. The sensory inputs have two parameters drawn in
Fig. 1: one is the distance d between the target and the robot,
and the other is the angle θ between the directions of the robot
and the target

The outputs are the rotating velocities of the two wheels of
the robot. A training pattern of the RL-based decision tree
includes the sensory inputs as its attributes and the outputs as its
class. Since the classes of patterns should be discrete but the
outputs are continuous values, the velocities of the two wheels
are quantized to 29 levels and encoded to 841 (that is 29*29)
classes.

In the simulation, the agent records 1000 patterns
demonstrated by an instructor in advance and the agent induce a
RL-based decision tree by using these patterns. Fig. 2 shows the
distribution of the 1000 collected patterns. After 50 trails, the
RL-based decision converges and the number of leaf nodes is
110. The distribution of the patterns classified by the RL-based
decision tree is shown in Fig. 3. After inducing the RL-based
decision tree, the robot can imitate a similar behavior
demonstrated by the instructor in advance. To improve the
performance, the outputs are adjusted slightly at each leaf node.

B. FBQL Algorithm
In this section, a new algorithm called Fused Behavior

Q-Learning (FBQL) algorithm is proposed to control a robot
with some behaviors. The FBQL keeps the merit of simplicity
in designing the individual behavior by RL-based decision tree
and further considers the multiple behaviors at the same time on
improving actions by responding to reinforcement signals. In
the beginning, the robot imitates each behavior individually,
and then fuses the learned behaviors by a set of appropriate
weighting parameters. These parameters are learned through
Q-learning such that the robot can behave adaptively and
optimally in an unknown environment.

1) The Architecture of FBQL Algorithm

Depending on the many sensory inputs observed from the
environment, the learning system can decide how to make fused
behavior. Before performing the FBQL, all behaviors must use
the RL-based DT method to learn and imitate the instructor’s

demonstrations individually. Since different behaviors induct
different decision trees, the state space of FBQL must consider
all the output combinations of all behaviors. In a behavior, the
sensory inputs activate the corresponding leaf nodes. Each
active leaf node of all behaviors represents one dimension of
the state space of FBQL.

The architecture of FBQL algorithm is shown in Fig. 4. Bi is
the i-th behavior which is constructed by the RL-based DT.
According to the structure of the associated decision tree with
each behavior, the leaf node ci where the sensory inputs fall
onto is activated and outputs a reference action ref_ai. The
FBQL outputs a weighted action from each behavior. In the
other words, the system sums up the all products of ref_ai and
wi and outputs a fused behavioral action a to the environment.
The environment will send a reward by the effect from this
fused behavior a, and the FBQL can use this reward to adjust
the system parameters.

When we receive a sensory input, each behavior Bi
activates a leaf node ci and outputs a reference action ref_ai.
These activated leaf nodes are combined to represent the input
state, denoted as s=(c1,c2,…,cn), of FBQL. In each state, FBQL
maintains n weighting parameters as its outputs and and
maintains n Q values corresponding to each weighting
parameter. The Q value is updated by (5). The reward is divided
according to each weight of the behavior. The more effective
the behavior, the more responsibility it takes.

)],(),'(),'(

),([),(),(

1

1

ik

n

j
jkjk

ikikik

BsQBsQBsw

rBswBsQBsQ

−+

+=

=

+

γ

α
. (5)

In the FBQL algorithm, the Q value represent the
experiment after accumulating many times. The weight value
means the actual output actions. Update the value by referring
to the Q value as (6).

() ()
()()

=
+−

+−
+

=

+

+

+

otherwize,

),(maxargif,
,),(

),(),(1

),(),(

1

1

1

iBi

ikik

ikik

ikik

BsQB
fBsQBsw

fBsQBsw

BswBsw

i

δ
δ . (6)

The weight value increases if the behavior is better than
others, and other weight values decrease at the same time. δ is
a scale parameter, and f is an offset to ensure that the weight
value is always positive. To limit the sum of the weight value,
we normalize the value.

B1

B2

Bn

FBQL

Env
r

sensory
input

w1 w2

wn
a

ref_a1

ref_an

ref_a2

c1

cn

c2

Fig. 4 The architecture of FBQL algorithm

409

In the domain of reinforcement learning, there are two ways
to design a reward. One is a dense reward, and the other one is a
sparse reward. Dense reward is almost a reward function. This
reward would hint the learning system to train toward some
specific direction. The system can learn efficiently, but the
reward function is very hard to design. The system would not
achieve the goal if the reward function is not designed
thoughtfully. The sparse reward is used in the FBQL algorithm.
This reward is almost zero in the greater part of the states. In the
other special state, the reward is non-zero. It is very easy for a
designer to encourage or punish the robot. But the learning
system need more time to learn the solution because it gets less
information. The experience of learning by sparse reward is the
real experience of the robot without the hint of the designer.

2) Convergency

Before briefly proofing the convergency of the FBQL, some
symbols are predefined. rmax is the maximum value of the
reward function for all states and behaviors. The Qmax is the
maximum Q*(s,B) for all states and behaviors, where Q*(s,B) is
the optimal q value of state s and action a. Hence

max*),(rrisw ≤ (7)

max
1

max
1

),'(),'(),'(QQBswBsQBsw
n

j
j

n

j
jkj =≤

==

 (8)

From (5), (7) and (8),

)],([

)],(),'(),'(),([

),(

maxmax

1

ik

ik

n

j
jkjkik

ik

BsQQr

BsQBsQBswrBsw

BsQ

−+≤

−+=

Δ

=

γ

γ
. (9)

If the learning rate α has the famous constraints ∞=∞

=1k kα

and ∞<∞

=1
2

k kα , the q value can converge.

III. SIMULATION

To verify the FBQL algorithm, the FIRA simulation, used
in the FIRA SimuroSot competition as Fig. 5, is performed.
There are three single behaviors developed in advance based on
the human experience. The three behaviors are described as
follows:

1. Ball-Seeking Behavior: This behavior lets the robot to
trace and get the ball as soon as possible. The sensory
inputs are the distance from the ball to the robot and the
angle from the direction of the robot to the direction of
the ball, shown in Fig. 6.

2. Wall-Avoiding: This behavior can keep the robot safe
and avoid getting stuck by the wall. We define the
closest point of the wall as the position of the wall.
Then the sensory inputs are the distance from the point
of the wall to the robot and the angle from the direction
of robot to the direction of the point, as shown in Fig. 7.

3. Approaching Behavior: This behavior is a tactic to
push the ball to the front goal. It moves the robot
toward the target along the approaching direction.
Since the target is set to the front goal, the robot detours
round the ball and then push the ball to the goal
direction. The sensory input is the approach direction
defined from the robot to the target, as shown in Fig. 8.

For each behavior, it uses the DT-based reinforcement
learning described in section III to learn from the human
experience. After inducting these decision trees to imitate
human experience, the decision trees of Ball-Seeking Behavior,
Wall-Avoiding Behavior, and Approaching Behavior have 122,
11, and 37 leaf nodes, respectively.

These single behaviors deal with different intentions. The

Fig. 5 FIRA SimuroSot Simulation

Fig. 6 The variables in Ball-Seeking Behavior

Ball_distance

Ball_angle

Fig. 7 The variables in Wall-Avoiding Behavior

Wall_distance

Wall_angle
Wall

Fig. 8 The variables in Approaching Behavior

Approach_direction

Approach_angle
Target

410

target of the simulation is to utilize these behaviors to
accomplish the offense strategy. The ball is set on the free-ball
position and the robot is set on the front of the blue goal. It will
quickly score a goal when we use the three behaviors wisely

A. Simulation with Subsumption method
We construct a Subsumption method to fuse these

behaviors as Fig. 9. If more than one behavior is encouraged,
we use S suppression signal to keep harmony. The lowest
level is the Ball-Seeking behavior to dribble the ball. The robot
would use Wall-Avoiding behavior if it is near the wall. The
Approaching behavior is high property to stand a good position
to score a goal.

The robot kicks the ball until it scores a goal 50 times, and it
fails if the ball is kicked to its gate. In the simulation, the robot
fails 12 times in the process before succeeding 50 times.
Observing the 50 success courses, we can see the total steps
from the beginning to the goal as Fig. 10. The bold line is a
moving average and the period is 5. The average steps are

between 1200 and 3700 steps. To verify the effect of the
Wall-Avoiding behavior, the collision times of the simulation is
shown as Fig. 11. The bold line is a moving average and the
period is 5. The average collision times are stable between 21.2
and 80.8.

B. Experiment with FBQL algorithm
As described above, since these basic behaviors have 122,

11, and 37 leaf nodes, the FBQL has 496543711122 =××
states. Besides, the simulation uses sparse rewards. The
rewards of success and failure are 10 and -10, respectively; the
reward of collision is -5, otherwise the reward is 0. The large
state space and sparse rewards result in endless learning time.
To reduce the time of the initial learning stage, the
Subsumption method is applied to guiding the FBQL in
learning for 20 episodes first. The robot takes the action
selected by the Subsumption method, and then according to the
FBQL algorithm, it updates the q values and weights.

After 20 instructions, the robot selects the actions according

Fig. 13 The collision times of FBQL

0
100
200
300
400
500
600

5 10 15 20 25 30 35 40 45 50

Success Times

C
ol

lis
io

n
Ti

m
es

Fig. 14 Success rate comparison for FBQL and Subsumption method

0.7

0.8

0.9

1

20 25 30 35 40 45 50

Success Times

Su
cc

es
s

R
at

e

FBQL
Subsumption Architecture

0

2000

4000

6000

8000

5 10 15 20 25 30 35 40 45 50

Success Times

To
ta

l S
te

ps

Fig. 12 The total steps of FBQL

0

2000

4000

6000

8000

5 10 15 20 25 30 35 40 45 50

Success Times

To
ta

l S
te

ps

Fig. 10 The total steps of Subsumption method

0
100
200
300
400
500
600

5 10 15 20 25 30 35 40 45 50

Success Times

C
ol

lis
io

n
Ti

m
es

Fig. 11 The collision times of Subsumption method

Fig. 9 The Subsumption method

Approaching

Wall-Avoiding

Ball-Seeking

S

S

Suppression
signal

Se
ns

or
 in

pu
ts

Output
action

411

to the FBQL. At the same time, it continues updating the q
values and the weights of FBQL. The robot also does the
simulation which is the same as Subsumption method until it
scores a goal 50 times. It only fails 4 times in this approach.
Observing the 50 success courses, the total steps in each course
is shown as Fig. 12. The bold line is a moving average with
period 5.

The average steps are between 300 and 2300 steps, and the
tendency is downward. Figure 13 also shows that the tendency
of the collision times is downward.

Comparing these two approaches, the success rates of
Subsumption method and FBQL are shown as Fig. 14. The
success rate of FBQL increases with success times. Form Figs.
12-14, the performance gets better with success times; it means
that the FBQL learns to fuse these basic behaviors to score a
goal. The comparison of total steps also shows that the FBQL is
better than Subsumption method, but the comparison of
collision times show an opposite trend. Although the
Subsumption method is better than FBQL in early episodes, the
tendency in the FBQL is downward and better than
Subsumption method. Some of the reasons why the FBQL is
not good at collision times are:

1. The FBQL approach is interested in the long term
reward.

2. In the Subsumption method, the Wall-Avoiding
Behavior has priority. It is very hard to collide with the
wall.

IV. CONCLUSIONS

In this article, we proposed a systematic method to design a
behavior controller, especially in a complex task. We do not
need to consider all conditions at the same time to design a
complicated controller. We only decompose the complex task
into some basic behaviors. The proposed FBQL can fuse these
basic behaviors with different weights. But it has a drawback in
state space size. The number of states increases with the
number of behaviors. It means that it requires a more learning
time. Besides, designing a density reward function is difficult.
A sparse reward function is easy to be designed but results in a
more learning time. These problems can be solved by
demonstrating some episodes in advance. FBQL even learns
better than the demonstrations in the final episodes.

For designing basic behaviors, we proposed the RL-based
decision tree to imitate the experience of the expert who cannot
clearly express his controlling rules. It is not like fuzzy system
which needs “clear” inference rules. All he has to do is
demonstrating how to control a basic behavior. Combining the
FBQL and RL-based decision tree, we can easily design a
controller with expert experience, and even with better
performance.

REFERENCES

 [1] R. C. Arkin, “Behavior-Based Robotics,” The MIT Press, Cambridge,
Massachusetts, London, England, pp. 130-141, 1998.

[2] D. Toal, C. Flanagan, C. Jones, and B. Strunz, “Subsumption method for
the Control of Robots,” University of Limerick, 1996.

[3] J. Simpson, C. L. Jacobsen, and M. C. Jadud, “Mobile Robot Control: The
Subsumption method and Occam-Pi,” Communicating Process
Architectures 2006, Amsterdam, The Netherlands, pp. 225-236, 2006.

[4] R. S. Sutton and A. G. Barto, “Reinforcement Learning,” The MIT Press,
Cambridge, Massachusetts, London, England, 1998.

[5] N. J. Nilsson, “Introduction to Machine Learning,” Robotics Laboratory
Department of Computer Science Stanford University, pp.159-174, 1997.

[6] P. He and S. Jagannathan, “Reinforcement learning-based output feedback
control of nonlinear systems with input constraints,” IEEE Transactions
on Systems Man and Cybernetics, Part B-Cybernetics, vol. 35, no. 1, pp.
150-154, 2005.

[7] C. J. C. H. Watkins, “Learning from Delayed Rewards,” PhD thesis,
Cambridge University, 1989.

[8] K. S. Hwang and C. S. Lin, “Smoothing Trajectory Tracking of
Three-Link Robot: A Self-Organizing CMAC Approach,” IEEE
Transactions on System, Man, and Cybernetics, Part B, vol. 28, no. 5, pp.
680-692, Oct. 1998.

[9] S. R. Safavian and D. Landgrebe, “A Survey of Decision Tree Classifier
Methodology,” IEEE Transactions on Systems, Man, and Cybernetics,
vol.21, pp.660-674, 1990.

[10] S. K. Murthy, “Automatic Construction of Decision Trees form Data: A
Multi-Disciplinary Survey,” Data Mining and Knowledge Discovery,
vol.2, pp.345-389, 1998.

[11] K. S. Hwang, Y. J. Chen, and T. H. Yang, “Behavior Cloning by a
Self-Organizing Decision Tree,” in Proceedings of the 2007 IEEE
International Conference on Integration Technology, Shenzhen, China,
pp. 731-734, 2007.

[12] M. Dong and R. Kothari, “Look-Ahead Based Fuzzy Decision Tree
Induction,” IEEE Transactions on Fuzzy System, vol.9, 2001.

[13] S. K. Murthy and S. Salzberg, “Lookahead and Pathology in Decision
Tree Induction,” in Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, San Mateo, CA, pp.1025-1031,
1995.

[14] L. Hyafil and R. L. Rivest, “Constructing Optimal Binary Decision Trees
is NP-Complete,” Information Processing Letter, vol.5, 1976.

412

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

