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Abstract—To surmount the difficulty in solving the problem 
of linear programming with grey parameters (LPGP), a series of 
new conceptions such as the positioned linear programming, the 
ideal model, the critical model, and some other new ideas are put 
forward. The problem of how the optimum solution is affected by 
the variation of positioned coefficients and the range of the 
variation of the optimum positioned values are studied. The 
satisfying solution for the positioned programming and the 
satisfying degree of the solution were defined. Thus, the LPGP 
problem will be converted into several problems of ordinary 
linear programming. The difficulty in solving the LPGP problem 
and how to appraise the solution have been surmounted to a 
certain degree. 

Keywords—the LPGP, positioned programming, satisfying 
solution

I. INTRODUCTION

The so-called programming mainly studies under certain 
constraints how to guarantee the objective of achieving the 
possible optimum. In these problems, if the constraint 
condition and objective function is linear, the problems are 
called linear programming problems. Linear programming is 
one of the most important branches in operations research, 
which developed early and matured fast with a wide range of 
practical applications. When grey numbers appear in either the 
programming model or the constraint of a linear programming 
model, it is called a linear programming with grey parameters 
(LPGP). 

The LPGP problem is put forward first by Professor Julong 
Deng who with Huazhong University of Science and 
Technology, China [1]. He studied the grey drafting linear 
programming, the grey linear programming of prediction 
type[2,3]. The confidence degree solution of grey linear 
programming[4,5] and the cover solution of grey linear 
programming[6] were studied in recent years. In this paper, we 
put forward some new thinking to solving the LPGP problem. 
The work presented in [7,8,9] have been developed. 

II. THE LPGP PROBLEM AND ITS POSITIONED 

PROGRAMMING

Definition 2.1 Assume that  
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is called a problem of linear programming with grey 
parameters (LPGP), and )(⊗C  a grey price vector, )(⊗A  a 

grey consumption matrix, )(⊗b  a grey constraints vector for 

resource, and X the decision vector of the LPGP. 
As a matter of fact, X is a grey vector as well. 
Definition 2.2 Suppose that  

.,,2,1;,,2,1],1,0[,, njmiijij �� ==∈δβρ

and let the white values of grey parameters be, respectively, as 
follows 

njccc jjjjj ,,2,1;)1()(~ �=−+=⊗ ρρ

mibbb iiiii ,,2,1;)1()(
~ �=−+=⊗ ββ

njmiaaa ijijijijij ,,2,1;,,2,1;)1()(~ �� ==δ−+δ=⊗

where )(
~

⊗C )(
~

⊗b )(
~

⊗A  are, respectively, the 

whitenization vector of price, constraints for resources, and the 
whitenization matrix of consumption. Then 
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is called a positioned programming of the LPGP; and 

),,2,1( njj �=ρ  the positioned coefficients of price 

vector, ),,2,1( mii �=β  the positioned coefficients of 

constraint vector for resources, and 

),,2,1;,,2,1( njmiij �� ==δ

the positioned coefficients of consumption. 

In Definition 2.2, jρ  is a reflection of price fluctuation of 

the jth product. It can be determined by using a market 

analysis. Less jρ  reflects a lower expected price of the jth 

product, and larger jρ  reflects a higher expected price of the

jth product. 

The coefficient iβ  is a reflection of market supplies of the 

ith resource. Less iβ  expresses short supply of the ith 

resource, and larger iβ  expresses sufficient supply of the ith 

resource. 

Similarly, less ijδ  expresses lower consumption of the ith 

resource to produce an unit of the jth product, and larger ijδ

expresses higher consumption of the ith resource to produce 
the same unit of the jth product. 

Proposition 2.1. The optimal value maxS of the positioned 
programming of a LPGP is a function with mnnm ++

variables of ),,2,1;,,2,1(,, njmiijij �� ==δβρ . 

From the Proposition 2.1, the optimal value maxS of the 
positioned programming can be marked as follows, 

),,2,1;,,2,1),,((max njmifS ijij �� === δβρ

Similarly, the positioned programming can be marked as 
follows, 

LP ),,2,1;,,2,1),,(( njmiijij �� ==δβρ

For the sake of convenience, we first make the following 
assumptions. 

Assumption 1. rank nmA <=⊗))(
~

( . 

Assumption 2. The set composed of the feasible solution 
of  

LP ),,2,1;,,2,1),,(( njmiijij �� ==δβρ

is non-empty. 

Assumption 3. The set }0),(
~

)(
~

{ ≥⊗≤⊗ XbXAX
composed of real vectors is bounded. At the same time, the 
positioned programming  

),,2,1;,,2,1),,(( njmiijij �� ==δβρ

can be rewritten into the following form, 
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That is, the first m columns of the whitenization matrix of 

consumption )(
~

⊗A  are the basis matrix )(
~

⊗B ; the last n-m 

columns are the non-basis matrix )(
~

⊗N . The basis vectors 

and non-basis vectors corresponding to )(
~

⊗B  and )(
~

⊗N

can be written, respectively, as NB XX , . The whitenization 

vectors of price corresponding to NB XX ,  can be written, 

respectively, as )(
~

⊗BC )(
~

⊗NC . From assumption 3, and 

noticing the fact that 0=NX , it is clear that 

[ ]TT
NB bBXXX 0),(

~
)(

~
],[ 1 ⊗⊗== −

)(
~

)(
~

)(
~ 1 ⊗⊗⊗= − bBCS B

and the test vector is 

)(
~

)(
~

)(
~

)(
~ 1 ⊗⊗⊗−⊗= − ABCCr B . 

Proposition 2.2. Suppose that the positioned programming 
of (3) satisfies the above assumption 1,2,and 3, and 

[ ]T
nxxxX ,,, 21 �=

is the basic solution of the positioned programming of (3). 
Then, 

},,2,1{ njx j �=

is bounded. 
Proposition 2.3. There is at least one basic feasible 

solution of the positioned programming 

LP ),,2,1,,2,1),,(( njmiijij �� ==δβρ

which satisfies the assumption 1,2,and 3. 

III. THEOREMS ON POSITIONED SOLUTIONS OF LPGP

The LPGP is also called grey drifting linear programming. 
In reality, a problem of LPGP is a set composed of some 
ordinary problems of linear programming. 

In the following proof, we suppose that the whitenization 
vectors and the whitenization matrix, given in the following 
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still keep the property of non-negativity. 
Theorem 3.1. For a positioned programming of a LPGP, 

when the positioned coefficients of the price vector satisfy 

jj ρρ ′≤ nj �,2,1=

we have 

),,2,1;,,2,1),,((max njmifS ijij �� === δβρ

Snjmif ijij ′===′≤ max),,2,1;,,2,1),,(( ��δβρ

Proof: Because jj ρρ ′≤ nj �,2,1= , we have 
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Suppose that )(
~

)(
~

)(
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⊗Δ+⊗=⊗′ CCC and 0)(
~

≥⊗ΔC . 

There are now the following two cases. Without loss of 
generality, we assume 

that )(
~

⊗B  is the optimal basis of  

LP miijij ,,2,1),,(( �=δβρ ; ),,2,1 nj �=

(1) 0)(
~

)(
~
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)(
~ 1 ≤⊗⊗⊗′−⊗′ − ABCC B

Here, the optimal basis )(
~

⊗B  of the corresponding 

positioned programming doesn’t change, nor does the 
optimum solution 
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not the optimal basis of the positioned programming
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Moreover, suppose that we use the simplex method to work 

out its optimal basis )(
~

1 ⊗B  and its optimal solution 
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of the positioned programming  
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Theorem 3.2. For a positioned programming of a LPGP, 
when the positioned coefficients of restriction vectors for 
resource satisfy the following 

ii ββ ′≤    mi ,,2,1 �=
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Hence, )(
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programming 
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Suppose that there is a k 0<Δ kx . Now we discuss the 

situation in two cases as follows 

0≥Δ+=′ kkk xxx . Then )(
~

⊗B  is still the optimal 

basis of the positioned programming  

LP miijij ,,2,1),,(( �=′ δβρ ),,2,1 nj �=   

But the optimal solution of LP miijij ,,2,1),,(( �=δβρ ; 

),,2,1 nj �= . 

is a feasible basic solution of  

LP miijij ,,2,1),,(( �=′ δβρ ),,2,1 nj �=

Therefore, we have 
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is not the feasible basic solution of 

769



     SMC 2009 

LP miijij ,,2,1),,(( �=′ δβρ ),,2,1 nj �=

But )(
~

⊗B  is a regular basis. By using the dual simplex 

method, we can obtain the optimal basis )(
~

1 ⊗B  and the 

optimal solution TbBX ]0),(
~
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And, noticing that the optimal solution of 

LP ),,2,1;,,2,1),,(( njmiijij �� ==δβρ  is a feasible 

basic solution of LP miijij ,,2,1),,(( �=′ δβρ
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we have 
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Theorem 3.3. For a positioned programming 

LP ),,2,1;,,2,1),,(( njmiijij �� ==δβρ   

of an LPGP, when the positioned coefficients of consumption 
satisfy the following 

ijij δδ ′≥      njmi ,,2,1,,2,1 �� ==
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When )(
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⊗′kP , the basis )(
~

⊗B  does 

not changed. 
However, the test number 

)(
~~
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)(
~ 1 ⊗′⊗+⊗=′ −

kBkk PBCCr
may have been changed. 

 If 0≤′kr then the optimal solution of 

),,2,1;,,2,1),,(( njmiLP ijij �� ==δβρ

is still the optimal solution of  

LP ),,2,1;,,2,1),,(( njmiijij �� ==′δβρ . 

And, the optimal value doesn’t changed. So, 
SS ′= maxmax

 If 0>′kr , then kx′  which corresponds to )(
~

⊗′kP  will 

become a basis variable. We can obtain the optimal solution 

TbBX ]0),(
~

)(
~

[ 1
1 ⊗⊗=′ − of 

LP ),,2,1;,,2,1),,(( njmiijij �� ==′δβρ

by using the simplex algorithm. 

Noticing that TbB ]0),(
~

)(
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[ 1 ⊗⊗−  is the feasible basic 

solution of  
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(2) )(
~

⊗kP  is a basis vector. 

When )(
~

⊗kP  is changed to )(
~

⊗′kP , whether the basis of  

),,2,1;,,2,1),,(( njmiLP ijij �� ==δβρ

is a basis of LP ),,2,1;,,2,1),,(( njmiijij �� ==′δβρ

or not, the optimal solution of the former is a feasible basic 

solution of the latter. But TbBX ]0),(
~
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1 ⊗⊗=′ − is the 

optimal solution of the latter, therefore 
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According to Theorems 3.1, 3.2 and 3.3, we know that the 
optimal value of a positioned programming is an increasing 
function about the positioned coefficients 

),,2,1( njj �=ρ  of the price vector and the positioned 

coefficients of the constraint vector, and a decreasing function 

about the positioned coefficients miij ,,2,1( �=δ

),,2,1 nj �= of consumption. 

Definition 3.1. Assume that mi ,,2,1 �=∀ and 

nj ,,2,1 �= , we have 

ρρ =j ββ =j δδ =ij

Then, the corresponding positioned programming is called a 
),,( δβρ -positioned programming. It is written as 

LP ),,( δβρ . Its optimal value is denoted ),,(max δβρS , 

called the ),,( δβρ -positioned optimal value. 

Theorem 3.4. For a positioned programming 
LP ),,( δβρ , we have 

10 When 2100 ,, δδββρρ ≤==

),,(max),,(max 200100 δβρδβρ SS ≥

20 When 0021 ,, δδββρρ ==≤

),,(max),,(max 002001 δβρδβρ SS ≤

30 When 0210 ,, δδββρρ =≤=

),,(max),,(max 020010 δβρδβρ SS ≤
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Here, ρ  reflects the general price level of n kinds of products; 

β  reflects the general supplying state of m kinds of resources; 

and δ  is a collective reflection of the level of manufacturing 
technique, the quantity of the labor force, and managerial level 
applied in production. 

IV. SATISFYING SOLUTIONS OF GREY LINEAR 

PROGRAMMING

In this section, we study grey linear programming 
problems such that not necessarily the optimal solutions but 
satisfying solutions can be practically reached. 

Definition 4.1. When 0,1 === δβρ , the correspond 

-ding positioned programming LP(1, 1, 0) is called an ideal 

model of the LPGP. Its optimal value is written as Smax . 
The ideal model stands for an ideal condition such that the 
highest prices of its products, the most sufficient resource 
supply, the most developed manufacturing technique, and the 
quality of labor force and managerial level are all at their 
optimal states. In fact, only a few firms can potentially come 
up to the ideal state. 
Definition 4.2. When 1,0 === δβρ , the corresponding 

positioned programming LP(0, 0, 1) is called a critical model 

of the LPGP. Its optimal value is written as Smax . 

The critical model stands for a condition such that the lowest 
prices, the shortest resource supply, the less-developed 
manufacturing technique, and the lowest quantity of labor 
force and managerial level are employed. With such a 
condition in place, the firm is at the edge of bankruptcy. The 
only choice for the firm to take is to change its products, to 
improve its production techniques, to find alternative 
resources, and to reeducate its managers and workers all 
around. 
Definition 4.3. When θδβρ === , the corresponding 

positioned programming is called a θ -positioned program -
ming. It is written as LP(θ ). 

Similarly, its optimal value is written as )(max θS , which is 

called the θ -positioned optimal value. 
Especially when θ  = 0.5, the corresponding θ - positioned 
programming LP(0.5) is called the mean whitenization prog -
ramming. Generally, the mean whitenization programming is 
the most typical one for LPGP. 

Theorem 4.1. ∀ δβρ ,, [0,1], we have 

(1) Smax ≤ ),,(max δβρS ≤ Smax

(2) Smax ≤ )(max θS ≤ Smax . 

Proof: We prove (1). only. The second statement is left to the 
reader to prove. 
Because 10 ≤≤ ρ 10 ≤≤ β 10 ≤≤ δ
from Theorem 3.4, it follows that 

Smax = )1,0,0(max S ≤ )1,0,(max ρS
≤ )1,,(max βρS ≤ ),,(max δβρS . 

Similarly, we can prove that Smax ≥ ),,(max δβρS . 

Definition 4.4. For the given δβρ ,, [0,1]

⎟
⎠
⎞

⎜
⎝
⎛

−=
),,(max

max
1

2
1

),,(
δβρ

δβρμ
S

S

+
S

S

max

),,(max

2

1 δβρ
            4

is called the satisfying degree of the positioned programming 
LP ),,( δβρ . 

The satisfying degree of LP ),,( δβρ  reflects the relation 

-ship among the positioned optimal value ),,(max δβρS , 

the optimal value Smax  of its critical model, and the 

optimal value Smax  of the ideal model. The nearer 

),,(max δβρS  approaches Smax , the bigger 

),,( δβρμ  is; the nearer ),,(max δβρS  approaches 

Smax , the smaller ),,( δβρμ  is. 

Similarly, we can define the concept of satisfying degree 
of μ(θ ) for θ -positioned programming LP(θ ). 

Proposition 4.1. ∀ δβρ ,, [0,1], we have that 

0≤ ),,( δβρμ ≤1 

Definition 4.5. Given a grey target ]1,[ 0μ=D if 

),,( δβρμ D , then the corresponding optimal solution is 

called the satisfying solution of the LPGP.

V. CONCLUDING REMARKS

Grey parameters often included in linear programming 
problems. As a result of lack information, the price vector, the 
consumption matrix, and the constraints vector for resource in 
linear programming problems all with some uncertainty. In the 
process of research on solving the LPGP problem, many people 
have probed from different angles. In this paper, we go further 
into the positioned solution of LPGP. By positioning an LPGP 
problem first, we can solve the LPGP problem by solve several 
ordinary linear programming problems. 
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