
A Field-Oriented Approach to Web Form Validation
for Database-Isolated Rule

Liang, Zhou
Institute of Computer Science and Technology

Zhejiang University
Hangzhou, China

zhouliang@zju.edu.cn

Jianling, Sun
Institute of Computer Science and Technology

Zhejiang University
Hangzhou, China
sunjl@zju.edu.cn

Abstract - We address why, and especially how, to represent
Field-Oriented XML-based rule file in form validation for web
applications. Motivated by the decades-old problem of frequently
changing requirements for software development, we propose a
descriptive solution to validation on web form data. By extracting
all Database-Isolated Rules, which are to be implemented on both
client-side and server-side, into standalone rule file in a Field-
Oriented format, management of business rules on either side can
be simplified to a great extent. The main advantage of our
approach is a consistency guarantee of validation logic performed
by presentation and application layer, as well as prominent
clarity in representation and notable flexibility in modification.
It’s a tailored replacement for traditional realization of hard-
code, which results in redundant work, tight coupling structure,
and highly possible inconformity of rules between both sides.

Keywords — Field-Oriented, XML-Based, Database-Isolated
Rule (DIR), Massive-Form, Web Application

I. INTRODUCTION

As framework and technology become more and more
sophisticated, the importance of web application grows
significantly in e-commerce and financial industry. Banks,
investment companies and trading corporations have now
provided a variety of software applications, no matter internal
management or commercial use. Meanwhile, web forms
become really large-scale and complicated, having numerous
fields in a single form as well as tanglesome relationships
between each other. Such forms are referred to as “Massive-
Form” in this paper, reflecting its scale in size and complexity.

In turn, the requirement on efficiency and security becomes
such a high standard. Among all aspects, data validation is a
core function of any successful application, as it helps to make
certain the data from user conforms to specific business rules.
Traditionally, validation rules are implemented both on client-
side and server-side by hard code. Script ensures efficiency by
validating user input in browser, and giving errors instantly
without accessing server; while server-side validation
guarantees security for the entire application by executing
complete business rules including checking against database.

However, hard-coding complex rules into both client-side
script and server-side module becomes a disastrous task when
business rules are always changing in order to take advantage
of a potential opportunity or respond to a potential threat.
Reusability of such implementation is terribly low, because all
validation rules are buried in messy and scattered code. Worse

still, presentation layer and application layer are usually
developed by different teams with diverse designs, so there’s a
great possibility to introduce inconsistency between each side,
especially after decades’ modification and upgrading.

Obviously, development and maintenance of validation on
Massive-Form is exceedingly troublesome and error-prone.
Though great efforts have been made to find an easier solution
for developers, such as Simfatic Forms [1], JQuery Validate
Plug-in [2], Microsoft Access and Java/XML-based data
validation Framework [3], they only focus on one side of client
or server. Apache Struts supports validation on both sides with
an XML-Based rule file, but together with all the frameworks
mentioned above, neither of them has ever tried to support
“Inter-Field Rule” validation, which refers to those rules in
which the status of target field is determined by other fields in
the same form, e.g. in a typical order placing process of Gold
Futures transaction, “if Order Type is selected as ‘Two-way’,
then both Profit-Making Price and Stop-Loss Price are
mandatory”. Meanwhile, rule engine products like JBoss
Drools [4] and ILOG BRMS [5] are too complicated and bulky
for web form validation. Compared with the rules processed by
these engines, validation rule is static, simple and unordered.
Once again, they just concentrate on server-side improvement,
incapable of managing rules running on client-side.

To give an efficient, secure, and flexible approach to web
form validation, what we propose is to store validation rules
into standalone files, then use our framework to run these rules
automatically, both for client-side and server-side. Our
approach decouples Database-Isolated validation logic from
hard-code application, ensures consistency between each side,
and frees developer from tedious and labor-intensive work.

Our concept consists of two novel aspects. First, we
introduce a fresh fundamental knowledge of representation
formalism: Field-Oriented. Inspired by the idea of Object-
Oriented, we treat each target field as an “Object”. All related
rules operating on this field are placed together under the same
block. In plain terms, “One Rule Per Field”. Second, we offer a
set of XML tags for validation rule, which is specially designed
to share rule file between client-side and server-side, as well as
amongst heterogeneous platforms and operating systems.

II. VALIDATION ON CLIENT AND SERVER SIDE
For most web applications, both presentation layer and

application layer have complex code implementing business

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4752

logic, of which validation rules accounts for a great portion.
With various programming languages and techniques, form
data validation is executed separately on both client-side and
server-side, say, Javascript for front-end and Java for back-end.

Modern database also supports table or column validation
upon insert/update/delete by “Check Constraint” [6], but most
web applications still choose to implement entire validation on
application layer for flexibility reason. Besides, database
implementation not only postpones validation process, but also
increases security risk by manipulating database directly when
adapting to frequently changing requirements. Thus, this
uncommon realization is not in the scope of our paper.

A. Client-side Script
Web browser downloads scripts from server and run these

interpreted language code according to user’s input and event.
Compared with back-end validation, front-end check allows
application to give error as early as possible, which improves
user experience significantly. Script offers great efficiency by
reducing the number of round trips to the server, together with
server’s stress on processing and responding to invalid
requirements. Whereas, relying on scripts for client-side
validation is unmanageable, inflexible, and non-portable.

• Browser configuration is not under control of web
applications. User can stop using Javascript at will.

• Different browsers have different APIs. Adaptation to
various environments takes much risk as well as
tedious labor work.

• Script can’t perform Database-Related Rule, which
means for those validations that need check user input
against database, client-side script is of no avail.

• Business rules are mostly hard coded, which directly
leads to the tragedy of maintenance when requirements
are fast changing. Developers would be drowned in
messy relationships of all fields, and troublesome
orders of function calls.

B. Server-side Validation Module
A commonly practiced way of server-side validation is to

execute complete business rules in a validation-specific module
in the application layer of the classic three-tier architecture.
Programming language like Java provides supreme flexibility
to organize complex rules. However, this type of realization is
still too bulky and labor-intensive for modern web applications.

• When validating a Massive-Form with more than 20
fields, developers have to code thousands of lines to
check each field separately, which makes the whole
application full of repetitive and lengthy codes.

• When some business rules changed, the whole life
cycle of software development (code, compile, debug,
test, deploy) has to start all over again, which increases
development and maintenance cost drastically.

We can conclude from above, for web form validation,
front-end check is sufficient, while back-end check is
necessary. They cooperate with each other, providing
efficiency and security for the entire application.

However, we can also observe, for web applications that
contain numerous Massive-Forms, how terrible the traditional
implementation could be. As we can see from above, no matter
on client-side or server-side, hard coded realization has to be
updated frequently so as to keep up with the fast changing
requirements. To make matters worse, locating related code
that needs to be modified is quite a meticulous task for large
system. Because the validation rules are coded on client-side
and server-side separately, new logic has to be implemented on
both sides, which causes unnecessary work and introduces risk
of possible inconsistency.

Most likely, validation code uses event-action functions on
client-side, which brings unwanted coupling and ordering
concern. Even worse, maintenance work is normally performed
by different people on each side, who have different philosophy
and practice on software development. Original design could
be easily destroyed after ages’ change. Consequently, as
function of application evolves, structure of code degenerates.

Finally, we reach the question “Why don’t we end up hard-
code era by storing validation rules that are used on both sides
into a standalone rule file?” The next section would explain
what kind of rule can be extracted from validation logic.

III. BUSINESS RULE FOR VALIDATION
According to the Business Rules Group [7], “a business

rule is a statement that defines and constraints some business. It
is intended to assert business structure or to control or influence
the behavior of the business. The business rules which concern
the project are atomic, that is, cannot be broken down further.”

Nevertheless, business rules that we concern in this paper
are much more simple and specific. Business rules that are used
on both client-side and server-side for web form validation
doesn’t require too much runtime execution, nor sequence
management [8], that’s because all fields should have already
finished inputting when a form is being submitted. So
conceptually, validation rules are static, explicit and unordered.

We can divide validation-specific business rules into two
categories on the basis of their relationships with database.

A. Database-Isolated Rule (DIR)
In this context, “Isolated” means “Unrelated”. As the name

implies, this kind of rule doesn’t require data from database,
which means rule execution could be done without round trips
between browser and server. Such rules could and should be
implemented on both sides of a web application. An example
of this category is “If A is selected, then B is optional”.

B. Database-Related Rule (DRR)
This kind of rule requires database access in order to verify

user input against data stored in database, such as check the
validity of an input password for a certain user when logging
on. DRR can be implemented on server-side alone, because
script language is designed to run on client-side, which
determines its intrinsic inability to access database directly. The
only way to get data for script is to make requests to server and
let application layer play the role of data carrier.

This paper would only pay attentions to the first category.
Running a DRR on client-side is wasteful and meaningless,

4753

since passing database data to client-side validation loses
efficiency, which violates the original purpose of script.

Technologies like Ajax [9] raise a brand new idea on
creating interactive and rich web applications. With Ajax,
applications can retrieve data from the server asynchronously
in the background without interfering with the display and
behavior of the existing page. Though the use of asynchronous
requests allows browser to respond quickly to user inputs, and
sections of pages can also be reloaded individually, it’s not
quite necessary to use such technology in non-interactive form
validation. The time spent in request/response may not save
any time comparing to running these rules just at server-side.

IV. DATABASE- ISOLATED RULE

To be more clarifying, we would classify the Data-Isolated
Rule (DIR) into two subdivisions, according to the number of
fields that are connected in one rule.

A. Single-Field Rule (SFR)
This subdivision of DIR only verifies one single field,

independent from other fields in the same form. Validation
logic in SFR normally appears very simple, such as checks on
length, format, or number range. Numerous products [1, 2, 4]
have covered SFR validation work and achieved great success
in industry. SFR typically provide the first layer of validation.
When designing a web form, business analysis team defines
SFR for each field, which restricts what users can enter.

B. Inter-Field Rule (IFR)
On the opposite of SFR, an IFR connects more than one

field together within itself, which means at least two fields in
the same web form are related in this rule, one being the
validation target, and the rest being condition suppliers. The
logic for IFR could be really complex and flexible. As a result,
most applications use hard code realization to implement IFRs.
Though rule engines are invented and introduced to help out
the cumbersome work, they only work for server-side.

Figure 1. DIR file in 3-tier web application

Our goal is to extract both SFRs and IFRs from business
logic into a standalone rule file, decoupling DIR from hard
coded application. With our framework, developers on
presentation layer can concentrate on Event-Action Rule
(EAR) like “onChange” function, while those who work on

application layer could emphasize on DRR and other dynamic
process rules. For DIR, we take over the translation and
validation work automatically, which not only lowers cost for
development and maintenance, but also ensures consistency on
both sides and increases reusability of rule component.

For security and efficiency reason, our framework can even
converts the rule file into a corresponding Javascript file in
advance, when deploying, developer can simply put this pre-
generated file into the correct folder and use it afterwards.

As we can see from Figure 1, after DIR become external to
the web application that depends upon them, the variable
validation logic can be easily updated by changing the rule file
alone, without intruding the structure on both sides.

V. FIELD-ORIENTED AND XML-BASED
No matter in what kind of programming language, branch

syntax like IF/THEN/ELSE shows great power and flexibility
in dealing with conditional situations, making itself one of the
most essential element in any programming language.

But from the standpoint of a web application developer,
branch syntax is also the root reason of all risks and problems.
Too many IF/THEN/ELSE would degrade readability,
reusability and flexibility sharply.

To be more illustrative, we propose a pair of conceptual
terms about branch syntax, which would be further used.

• Target Field: the status of it is to be checked, always in
“THEN” block, being target of a validation.

• Condition Field: the status of it serves as an evaluation
term, mostly in “IF” block, being condition supplier.

JBoss Drools [5] gives similar concept when introducing
<LHS> and <RHS>. Each item of validation rules in “THEN”
block contains the constraints that should be satisfied for a
target field when the “IF” evaluation returns “true”. This is an
inherent mapping from business rule, because that’s how a rule
is defined in specification documents.

However, such realization brings big trouble when each
field of Massive-Form has complex validation logic, that is, the
status of target is determined by a complex combination of
condition fields’ status. Under this circumstance, validation
code for this target would be scattered throughout the entire
application. When business rules change, as they often do, the
maintenance becomes terrible and tragic. Rediscovery of
related code is quite painful, while the entire process of
software engineering is even labor-intensive and error-prone.

To overcome the drawback of traditional rule assignment
by hard code, considering the traits of form validation (static,
explicit, unordered, non-interactive), we take a fresh break in
extracting DIR from business logic by representing them in a
Field-Oriented way in standalone rule files.

“One Rule Per Field”—a common parlance to describe the
idea of “Field-Oriented”. In our approach, all the DIRs on a
target field are assembled under the same Field Rule tag, which
can be considered as an exclusive block of validation logic of
the target field. By reversing conventional process of coding,
the ruled becomes the ruler, the passive turns into the active.

(Database Layer)

DIR
Rule
File

Validation
Module

Other
Modules

DIR

DRR

(Application
Layer)

DIR

EAR

(Presentation
Layer)

4754

XML is an ideal technology to represent and store DIRs.
With its portability, interoperability and extensibility [10], the
extracted DIR file can be easily shared, managed and revised.

For client-side, all modern browsers have a built-in XML
parser that can be used to read and manipulate XML. Parsers
read XML file into memory and converts it into an XML DOM
object that can be accessed and further operated by JavaScript.

For server-side, there are more choices. Though DOM4J
[11] is considered the most powerful library to process XML,
W3C DOM [12] is used in our framework in order to keep
openness to all programming languages rather than Java alone.

With the help of XSL, XPath and XQuery [13], we can
display the rule file in a clearer and user specific way. This can
make our implementation more understandable and readable
for business team [14]. User can even generate rule report on
certain fields or conditions.

So, finally, our DIR file would be expressed in an XML-
Based and Field-Oriented format.

VI. DESIGN

Before introducing detail structure, first let’s see how many
kinds of DIR are commonly used in Massive-Form validation.

a) Format
b) Number Range
c) Legal Value Set
d) Calculation Check
e) Coexistence Check
f) Mandatory Check

The first three are always SFR, since they only perform
constraints on a single target field. Thus, as always does, they
are represented as XML attributes for each target field.

The following two are obviously IFR. The rule itself
determines at least two of fields are bound together in
processing validation logic. Calculation Check validates the
value of numeric target against a result of calculation on other
fields under certain conditions. Coexistence Check constrains
the value of target within a specific list according to the
combination of status of condition fields. These two types of
DIR are represented as sub children to the Field Rule.

The last is somehow a fence-sitter, being either an SFR or
an IFR. We have situations in which one field is always
mandatory while in other cases conditional mandatory, former
SFR and latter IFR correspondingly. Taking a further thought,
we find the conditional mandatory presence check is a special
case of Coexistence, by allowing any value. Considering the
simplicity and usability, we represent Mandatory Check Rule
as an attribute for SRF and as Coexistence Check for IFR.

A. Root Element
The root element of the XML rule file is <formValidator>,

with attributes “id” and “include”.

For server-side, the rule file is parsed and executed at run-
time. For client-side, we can process it in browser. Yet, taking
security and efficiency into consideration, our framework can
also translate the rule file into Javascript file first, with the

same name as the “id” attribute. Then server pages like JSP
only need to include a reference to this pre-generated Javascript
file in <script> tag.

As all programming language does, we also give the ability
to use external files, mostly, containing definitions of all
Function Rules. The “include” attribute locates these files.

B. Field Rule
Each Field Rule serves for only one target field in the form

exclusively, embodying the concept of Field-Oriented. All the
DIRs on the target field are registered under <rule> tag.

By convention, all SFRs are represented as attributes of
Field Rule. Defined attributes include “id”, “target”, “minlen”,
“maxlen”, “format”, “range”, “required”, “legalVal” etc.
Validations on SIF have been tried out by many frameworks [1,
2, 3, 4], both for client-side and server-side, so we don’t expand
these topics here. The only one we’d like to emphasize is the
“target” attribute, the value of which should be the same as the
id of this field in HTML code.

C. Coexistence Check

Figure 2. Structure of <checkCoex> tag

There are situations under which the value of target field is
dependant on a combination result of condition fields, and the
value should be confined within a specific list of legal value
set, mostly for a drop-down.

<checkCoex> is designed to execute such validation. All
the conditions are put together under this tag, with an attribute
of “valueIn”, holding the legal value set as a string by
separating each value with comma.

As we mentioned previously, conditional Mandatory Check
is a special case of Coexistence Check. By assigning “valueIn”
with “*” (representing any string), the coexistence rule turns
into an instance of conditional mandatory check rule.

D. Calculation Check

Figure 3. Structure of <checkCalc> tag

If (condition) {
The value of

FieldA should be
confined within a
legal list
}

<rule target=”FieldA”..>
<checkCoex
valueIn=legal list >

Condition
</checkCoex>

</rule>

If (condition) {
FieldA should be

compared to the
result of calculation
}

<rule target=”FieldA”..>
<checkCalc>

<condtion>
Condition

</condition>
<compare
type=compared>

Calculation
</compare>

</checkCalc>
</rule>

4755

1. PMP is a number type field, with max length of 10.
2. PMP is mandatory when “Order Type” field is “Profit

Making”.
3. When “Order Type” field is “Profit Making” and

“Buy or Sell” field is “Buy”, the PMP value should be
greater than the value of “Currrent Buy Price” (CBP) field.

In considerable cases, for a numeric target field, the value
of it should be compared (equal, less, or greater) with a result
of complex calculations on several other fields. <checkCalc> is
used to deal with such kind of rules.

Unlike <checkCoex> who is a born condition check rule,
<checkCalc> concerns on the result of calculation comparison
under certain conditions, so we divide it into two sub blocks,
<condition> and <compare> respectively.

<condition> holds the combination of conditions, while
<compare> focuses on the result of calculation. The “type”
attribute of <compare> indicates what kind of comparison
should be executed, “eq”, “gt” or “lt”, inside which, calculation
detail is described with various mathematical tags. The result of
this calculation is then verified against the value of target field.

E. Error Message
Giving correct error message is always an important task

for first-class products. Our framework supports system error
as well as custom specific error. By instantiating <errMsg> at
the end of a rule block, application would raise a customized
alert when validation fails. Though these errors are most likely
to be triggered in client-side, we also ensure this function on
server-side by printing them in log files.

F. Function Rule
In business rule, it’s common that under the same

condition, more than one field is to be validated. Enlightened
by syntax of Business Rules Markup Language [15], we
introduced the concept of “Function Rule”, which is a general-
purpose functional rule that can be used in many situations.

<defFuncRule> indicates the code inside defines a Function
Rule. Say, for business logic “if A1 and A2 are null, then B and
C and D should be mandatory”, we can define a Function Rule
named FR_A that evaluates whether A1 and A2 are null, if
true, then the invoker should not be empty, otherwise, an error
message shows up.

Then, the corresponding Field Rule for field B, C and D
calls FR_A in their own rule to test nonempty constraint
respectively, by using <useFuncRule> with its “funcRuleId”
attribute referring to “FR_A”.

G. Parameter
To define and utilize Function Rule, behavior of parameter

is a great concern for structure design. In <defFuncRule>,
attribute “paraNum” indicates the number of parameters this
function takes, while another attribute “para” can be used
alternatively to expatiate each parameter’s type, offering
validation on data type. When getting called, “para” attribute of
<useFuncRule> is used to send all parameters to the callee.

We use “@para” followed by an index to identify the
corresponding parameter that is passed in <useFuncRule>. E.g.
when declaring <defFuncRule>, user can take “@para0” to get
the value of the first parameter, so on so forth.

The caller name is usually used in error message, as well as
in calculation, so we introduce “@caller” to identify the
invoker’s id. A configuration file mapping this id to its screen
name is set up in the system. So the @caller would be finally
replaced by the actual field name when displaying the message.

By providing parameters, our framework earns more
flexibility and simplicity. Commonly used function rules can
be extracted and shared between target fields.

VII. EXAMPLE RULE FILE

The code segment shown in Figure 4 demonstrates how the
DIRs on “Profit Making Price” (PMP) field are represented in a
Field-Oriented and XML-Based format, in a typical pending
order placement of an online gold trading application.

Figure 4. Example of DIR file

This last example of validation rule file can be described in
readable language as:

Figure 5. Readable transalation of example

In the <defFuncRule> block, a function rule named
“FR_ProfitMaking” is defined, taking none parameters from
caller. If the value of “Order Type” field equals to
“ProfitMaking” but the caller is null or empty, then an error
message is raised, in which, the “@caller” specifies the
invoker’s id. This function rule can be used by any other Field-
Oriented rule whose target is also supposed to be mandatory
when “OrderType” is “ProfitMaking”.

<formValidator id="FV_OrderPlace">
<defFuncRule id="FR_ProfitMaking" paraNum="0">

<checkCoex value="*">
<field id="F_OrderType">ProfitMaking</field>
<errMsg text="@caller should be mandatory when
Order Type is Profit Making!"/>

</checkCoex>
</defFuncRule>
<rule target="F_ProfitMakingPrice" maxlen="10"
type="number">

<useFuncRule funcRuleId="FR_ProfitMaking" />
<checkCalc>

<condition>
<AND>

<field id="F_OrderType">ProfitMaking
</field>
<field id="F_BuyOrSell">Buy</field>

</AND>
</condition>
<compare type="gt">

<field id="F_CurrentBuyPrice"/>
</compare>
<errMsg text="Profit Making Price should be
greater than Current Buy Price!"/>

</checkCalc>
</rule>

</formValidator>

4756

Then, this defined function rule is called in the exclusive
Field Rule of PMP, by using <useFuncRule> tag with
“funcRuleId” pointing to “FR_ProfitMaking”. Since there’s no
parameters needed, the attribute of “para” can be omitted here.
Another inline DIR is declared after <useFuncRule>. This
<checkCalc> rule is used to compare the value of PMP against
CBP, ensuring the former to be greater than the latter. If not, an
error is alerted to inform user to correct their input.

For conciseness, the example we choose doesn’t have very
complex logic, but still, it shows great adaptivity and simplicity
in representing DIR.

When it comes to real financial system or investment
application, the forms would become really large-scale,
normally more than thirty fields with complicated relationships
between each other. The Field-Oriented XML-Based approach
offers an opportunity to represent DIR in a clear and simple
way rather than hard coding everything into application which
messes up business logic as well as complicates development
and maintenance work drastically.

VIII. DISCUSSION

Though the process to extract rules from existing code into
human readable language is not the focus of our paper, lack of
rule extraction tool [16] brings limitation to the usage of our
framework. Our solution is more suitable for an application that
is well documented or one that is just to be started from scratch
than one with little documents or a legacy system.

Although most of current web applications use XML to
store data and communicate between modules, there’s still a
slight possibility that some systems use other format as
intermediary. Our framework can’t be applied to such system,
since XML is an inherent requirement of our concept.

We offer type check under some circumstances, however,
the concept of data type is not being attached too much
importance in our solution. Because we suppose form
validation doesn’t require too many checks on parameter’s type.

The framework realizing our approach is still a prototype.
Current version supports Javascript for client-side and Java for
server-side, with limited functional tags. But for sure, supports
on more languages and tags would be implemented in future.
Apart from horizontal extension, more auxiliary functions
would be augmented in following release. Rule report on user
specific criteria would be quite helpful for communication
between business team and develop team.

Researches on extracting and unifying validation rules for
classic three-tier (presentation/application/database) system
would be expanded based on the concept of this paper hereafter.

IX. CONCLUSION

In this paper, we outline a representational solution to form
validation for web application. First we introduce the client-
side and server-side validation techniques that are broadly used
in industrial and commercial area at present. After listing the
major drawbacks of conventional implementation on both sides,
we then bring forward our approach of representing validation
rules in standalone rule files which can be parsed and used by

both sides during run-time. As a positive result, web
applications can minimize the impact of fast-changing
requirements on software development and maintenance.
Categorization of validation rules is made according to their
relationships with database, which are DIR and DRR
respectively. A further subdivision is specified within DIR, on
the basis of the relationship between target field and condition
field in one rule, namely, SFR and IFR.

Inspired by Object-Oriented concept, we introduce the idea
of “Field-Oriented”. The meticulous and burdensome searching
through scattered code to update validation rule can be
simplified to a large extent by applying this novel concept.
Meanwhile, XML is considered as a perfect format to store
DIRs, which are static, explicit and unordered in essence.
Externalized standalone XML-based rule file is well structured
and clearly represented. By gathering all related DIRs together
under the Field Rule tag of target field, the implementation of
“One Rule Per Field” gains more flexibility, consistency and
reusability to web form validation, as well as more fine-grained
control of data validation with comparison of conventional
hard-code realization.

Various general purpose tags and attributes are utilized to
depict DIR in a concise and understandable format. These tags
and attributes can be parsed and verified automatically within
our framework, which easily accelerate development process.

Thereby, our new concept supports easy management of
validation rules, guarantees consistency between client-side
and server-side, as well as decouples DIR implementation from
both sides. With the help of our framework, form validation
becomes much more convenient and labor-saving, offering
reliable and stable maintenance to the entire web application.

REFERENCES

[1] Simfatic Forms, http://www.simfatic.com/, 2009
[2] JQuery Validate Plug-in, http://docs.jquery.com/Plugins/Validation/
[3] J. Xue, “Java and XML: Learn a Better Approach To Data Validation”,

http://www.devx.com/Java/Article/16407/1763, 2002
[4] JBoss Drools, http://www.jboss.com/products/rules/, 2009
[5] ILOG BRMS, http://www.ilog.com/products/businessrules/, 2009
[6] Database Check Constraint, “Sams.MySQL, 3rd.Edition”
[7] D. Hay and K. A. Healy, “Defining business rules - what are they

really?”, http://www.businessrulesgroup.org, 2009
[8] F. Rosenberg and S. Dustdar, “Business Rules Integration in BPEL – A

Service-Oriented Approach”, In Proceedings of the 7th International
IEEE Conference on E-Commerce Technology (CEC’05), 2005.

[9] Ajax, http://www.ajax.org/, 2009
[10] B. McLaughlin, “Java & XML, 2nd Edition”, pp. 10-17
[11] DOM4J, http://www.dom4j.org/, 2009
[12] W3C DOM, http://www.w3.org/DOM/, 2009
[13] E. T. Ray, “Learning XML, 2nd Edition”
[14] M. Teraguchi, I. Yoshida, and N. Uramoto, “Rule-based XML

Mediation for Data Validation and Privacy Anonymization”, IEEE
International Conference on Services Computing, 2008

[15] B. N. Grosof and Y. Labrou, “An Approach to using XML and a Rule-
based Content Language with an Agent Communication Language”, In
Proc. IJCAI-99 Workshop on Agent Communication Languages, 1999

[16] V. Wadhwa, "Method And System Of Business Rule Extraction From
Existing Applications For Integration Into New Applications", Patent
No.: US 6389588 B1

4757

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

