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Abstract—In this study, we present a computational model of 
a car driver’s cognitive process and eye movement in relation to 
risk evaluation for greater safe driving assistance．The model 
status is mainly determined by visual inputs. In simulations, we 
reconstructed and predicted the driver eye movements while 
driving using an environmental risk calculation model, and 
compared them to the eye movements of an actual human driver. 
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I. INTRODUCTION

Many kinds of driving assistance systems are being 
developed as part of an intelligent transport systems (ITS) for 
improving automobile safety. To effectively make driving safer, 
it is important that the system assist drivers based on their own 
cognitive processes [1][2][3]. To achieve this, we need a model 
of the human cognitive process for driving an automobile. Even 
though many of models for human driving behaviors have been 
proposed [4][5][6], no single model has been able to duplicate 
all human driving situations because directly measuring the 
cognitive processes involved is impossible.  

We approach this problem by focusing on eye movement, 
which constitutes a major part of information gathering while 
driving a car, and established a cognitive model of a driver 
based on eye movements while driving [3]. In a previous study 
[7], we proposed a cognitive model for driver eye movement 
based on risk evaluation, and reconstructed the actual eye 
movements of drivers. In this study, we improved the model 
especially to predict the eye movements of drivers entering  
intersections with blind sides and evaluated the model by 
comparing them to actual drivers eye movements while he was 
driving the road simulated.   

II. COMPUTATIONAL MODELING OF EYE MOVEMENT

We present a broad overview of the proposed model in Fig. 
1. First, the visual perception system builds a distribution 
calculation system based on the images viewed. The 
distribution calculation system estimates the probability 
distributions of visible and non-visible objects. The driver 
acquires a probability distribution of the visible objects for the 
visible area such as pedestrians and oncoming cars based on the 
laws of physics and a probability distribution of the non-visible 
mobile objects for the non-visible areas such as blind 
intersections and behind the obstacles. 

Then the driver detects risk by estimating the overlapping 
area between one of these two distributions and a probability 
distribution of his own car’s position based on the driver’s 
intention. We call these overlapping areas the predicted visible 
risky area (PVRA) and the predicted non-visible risky area 
(PNRA), respectively (Fig. 2).  

Figure 1. Overview of the proposed model 
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Figure 2. PVRA (left) and PNRA (right)

The driver tries to see the high risky areas to predict the 
precise course of any approaching visible or non-visible objects 
[8]. As a result of this observation, he changes his course to 
avoid an accident if he judges it to be dangerous. 

In Sections II.A. and II.B., we explain in detail the 
probability distributions of visible and non-visible objects. 

A. Model of the Visible Risky Area 
1) Distribution prediction of the visible objects: 

To calculate PVRA, the position of visible objects several 
seconds in the future is predicted using a Kalman filter [9]. The 
predicted position is represented by a normal distribution called 
a probability distribution of visual objects.  

Moreover, several sets of such position predictors are used 
to allow for various possible approaching courses of the objects. 
In this study, we simultaneously used three Kalman filters: go-
straight, right-turn, and left-turn. The weighted sum of these 
three predicted distributions was used to calculate an object’s 
predicted distribution. The variance of each normal distribution 
accounts for the prediction ambiguity. The weights for the three 
distributions were determined by the error between each 
predicted position and the visible object’s actual position. 

For example, the go-straight Kalman filter is expressed as 
below: 
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where )(),(),(ˆ ttt forwardforward Kyx  denote the inner state of 
the object’s velocity and position, observed target information, 
and the Kalman gain at time t, respectively. G denotes white 
noise, and Fforward and )(ˆ tforward

denote the state transition 

matrix and error covariance matrix of the go-straight Kalman 
filter. 

The Kalman gain is updated by (1). The internal state and 
the error covariance matrix of the go-straight Kalman filter are 
updated using observed target information )(ty  by (2) and (3), 
respectively. Furthermore, the inner state of the object’s 
velocity and position and the error covariance matrix at time 
t+1 are predicted by (4) and (5), respectively. 

Using these equations, we predict the object’s position 
distribution for each time step to N futurer steps and express it 
as (6). 
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where ),(ℵ u  denotes a normal distribution with average 
),(ℵ u  , variance u , and covariance , coefficients 

rightleftforward www ,,  denote the weights of the Kalman 

filter for each direction, and 1,, =rightleftforward www .
From the results, we can calculate the distribution of the object 
by (7). 
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2) Distribution prediction of the driver’s car: 
The position distribution of driver’s car )(ˆ txSelf  is also 

calculated with the same procedure by (8), (9) and (10).   
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Here, SelfF  denotes a transition matrix based on the 
driver’s action plan. By calculating the overlap of the position 
distributions along time, we get the predicted distribution of 
driver’s car by (11).  
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3) Calculation of predicted visible risky area: 
We describe PVRA as ),( txdexplicit . It is defin it as an 

overlap of predicted distribution )(xeexplicit for the visible 

object and )(xeSelf  for the driver’s car, it is calculated by (12).  

{ }),(),,(min)( txetxexd Selfexplicitexplicit =          (12) 
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B. Model of the Non-Visible Risky Area 
When we pass a blind intersection, we become aware of  

unseen cars that might emerge from the left or right blind 
corners. Such caution is based on a prediction that an 
unobservable car might approach from behind corners. In this 
paper, we call an area where a possibly oncoming car may 
collide with the driver’s car the “Predicted Non-Visible Risky 
Area (PNRA)”. 

1) Position estimation of the  non-visible objects: 

In this study, we consider a case in which the driver’s car is 
trying to go through an intersection (Fig. 3). We assume that a 
car coming from a blind corner collides with the driver’s car at 
the center of intersectinon. The most probable scenario is that 
the car located at a distance Dc from the intersection center 
with average speed v0 simulaneously arrive at the intersection 
with the driver’s car ((a) in Fig. 3). The driver must always 
estimate the possible oncoming car’s position and speed called 
Dc and v0, respectively. We call the distance Dc critical 
distance, which is calculated by (13) where the driver’s car’s 
speed is denoted as vs.

0
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How does the critical distance changes when the driver’s 
car approaches intersection and becomes visible from the 
occluded area behind the corner or object? The point D0 is now 
observable and no car is found there. When we assume the 
speed of the oncoming car is distributed with average v0 and 
decreasing probability along the deviation from the average, the 
most probable scenario is that the oncoming car is located at 
distance DB in Fig. 3(b) where DB is nearest to the intersection 
but still at an unobservable distance. In this case the probability 
of an oncoming car decreases because the car must travel faster 
than average to collide with the driver’s car, and the probability 
of the speed is lower than that of v0.

Figure 3. Prediction of non-visible object: (a) calculation of critical 
distance, (b) calculation of boundary distance.

Distance DB can be calculated by (14) where θ  is an angle 
from the front to observed the occluded corner (see Fig. 3 (b)), 
L is half of the road width and D0 is the distance of the driver’s 
car from the intersection. Distance DB  called the boundary 
distance.
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Which distance of Dc and DB should be choosen as an 
estimated distance of the oncoming car from the intersection? If 
DB < DC, the oncoming car must have slower speed to avoid 
collision with the driver’s car. However the probability of 
slower speed is lower than that of the average speed, the 
oncoming car position at DC should be had highest probability 
of collision. In contrast, the oncoming car must be observed 
from the driver’s car when DB > DC. If the driver fail to observe 
the oncoming car, the driver must assume that the position of 
the coming car is at DB.

2) Distribution prediction of the non-visible objects: 
Based on the estimated position, the model predicts future 

position and distribution of the oncoming car using (15) and 
(16).
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The initial value of )(ˆ 0timplicitx  is set to the estimated 

position of the oncoming car. The matrix imF  originally 
represents a situation where the oncoming car enters the 
intersection at a speed to just collide with the driver’s car. But 
this time, we used imF with the fixed speed v0 for simplicity. 
Then, the predicted distribution of the non-visible object is 
calculated by (17) and (18).  
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3) Calculation of predictive non-visible risky area: 

With the calculation of non-visible object distribution 
along time, we can calculate the non-visible risky area 
(PNRA) for the blind corner as follows. 

{ }),(),,(min),( tetetd Selfimplicitimplicit xxx =         (19) 

C. Risk Evaluation and Eye Movement 
After calculating PVRA for observable objects and PNRA 

for non-visible objects, we can instantly compare the risk of the 
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environment and detect which object has the highest risk. We 
assume that the deriver is watching the object’s current position 
that has the highest risk in the near future, but not the place of 
risk distribution. The object to be observed momentarily can be 
calculated as follows. 

{ }),(),,(maxarg* tdtd implicitexplicit xxx x=  (20) 

If the object is a non-visible, we assumed the driver can see 
from which direction the object can be seen first when it enters 
the visible area. Direction θ  is calculated by (14).  

III. EXPERIMENT

To verify the validity of our proposed model, we compared 
the reconstructed eye movements from our model with the 
actual eye movements of a driver on the road. 

A. Recordings of Car Driver’s Eye Movement 
We recorded eye movements of a driving school instructor 

while he was driving on a predetermined course in a suburban 
area (around midoriyama housing estate in Machida city) of  
Tokyo. He wore an eye-mark recorder (EMR-8B, NAC) and 
drove a car (PRIUS, TOYOTA).  

We selected a 240-m long cource (upper half of Fig. 4) on 
which the instructor drove from right to left at 34.3 km/h on 
average. There were eight intersections, a parked vehicle, and a 
pedestrian on the course, and the driver had to drive and pass 
the vehicle while predicting both risks. The line over the course 
indicates the gaze direction of the driver, upper-right and 
lower-left, along the course. 

The lower part of Fig. 4 shows an example of a recorded 
driver's field of view and the gaze direction (white “+”), which 
we identified every 0.1 sec from the beginning of the course to 
the end.   

 
Figure 4. Road map of actual driving experiment and measured direction 

                       of gaze (upper part) and a slice of eye movement data (lower part,  
                       eye direction indicated by white “+”).

Figure 5. Example of predicted object distribution by the model.  
Left part shows a course map and right part shows predicted area  
of a non-visible object, a pedestrian, and driver’s car. 

B. Eye Movement Simulation  
To evaluate the model, we prepared a 240-m driving 

computer simulation environment that resembled the test 
course and calculated eye direction with the same visual 
information as driver's using the proposed model. In the 
simulation experiment, the model predicted one second into the 
future in 0.05 sec steps and recalculated every 0.1sec step. 

In the simulation, we divided the course into a former half 
area (120 m) and a latter half area (120 m), and considered an 
area around a bus stop at 180 m point from the start. The left 
side of Fig. 5 shows a birds-eye view of the latter half area, and 
the right side shows the predicted distribution of the objects 
and the driver’s car by the model. In the left side of Fig. 5, the 
driver’s car is indicated by a solid and black rectangle, a 
pedestrian is indicated by an open circle, a non-visible vehicle 
is indicated by a white rectangle, and the eye direction 
calculated by the model is indicated by a dot. In the right side 
of Fig. 5, the predicted distribution of the driver’s car, the 
predicted distribution of the non-visible car, and a pedestrian 
are shown with ellipses. Places with lower probability are 
darkened, and ones with higher probability are brightened.  

To evaluate the validity of our proposed model, we 
compared the reconstructed eye movements from our model 
with the actual eye movements of the driver on the test course. 
To quantify the similarity of the reconstructed eye movements 
with the actual eye movements, we identified driver’s eye 
directions and the objets toward driver’s eye direction every 10 
m (block) on the test course and compared them. Table 1 shows 
the gaze direction of the driverr and our proposed model at 
each block on the test course. Symbols “F”, “L”, “R”, “M”, and 
“P” mean “forward direction”, “left side”, “right side”, “side 
mirror”, and “parked vehicle” respectively. 
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TABLE I. EYE DIRECTION COMPARISON BETWEEN ACTUAL DRIVER’S
AND MODEL.

Blocks Eye
Direction 1 2 3 4 5 6 7 8 9 10

Actual 
Driver F M L F P P P F R F

Model F L L F R R R F R L

           
Blocks Eye

Direction 11 12 13 14 15 16 17 18 19
Actual 
Driver F M L F P P P F R

Model F L L F R R R F R

F: Forward direction, L: Left side, R: Right side, M: Side mirror, P: Parked vehicle. 

Our proposed model successfully reconstructed 73.6% of 
the driver's actual eye movements. On the other hand, the 
model failed to reconstruct the eye movements of side mirror 
(Table1 2nd and 12th blocks.) This is only because the model 
does not support the side mirror object. Moveover, the model 
also failed to construct the eye movement of the narrow 
intersections (Table 1: 5th, 6th, and 7th blocks). There are two 
interpretations on this result. The first one is that these 
intersections probably should have been observed, but the 
driver missed them. Such human error attending the visible risk 
overrides the non-visible risk. The second one is that the driver 
knows that there are less risk in these intersections, where 
moving objects are raely appeared normally. 

If we assume that the latter case is correct,  the accuracy 
will be improved by indroducting the prior knowledge about 
the intersections. Meanwhile, if we assume that the first case is 
correct,our system should support dirvers if it can detect such 
human error and only gives alerts when the error is caused 
without any other reason. We need more precise driver’s 
models to determine if error alerts should be issued.   

IV. CONCLUSION

In this paper, we proposed a computational model for eye 
movements while driving a car. In our model, the probability 
distributions of the surrounding objects' existence and the 
probability distribution of a driver's car position were 
calculated by predicting the behavior of objects using Kalman 
filters and prior probability distributions. Two types of risky 
area, PVRA and PNRA were calculated using these probability 
distributions. Drivers moved their eyes toward the risky objects 
to obtain more precise information for the prediction. 

In addition, we compared the reconstructed eye movements 
of the model and the actual eye movements of the drivers while 
driving on a road. Our model could explain the eye movements 
for PVRA and PNRA, but it could not reconstruct the actual 
eye movements such as neglecting narrow intersections due to 
human error or some other reasonable mechanism. Human 
drivers might have rules or prior knowledge about ordinary 
traffic that they might apply to the actual decision making for 
driving. We plan to improve our model to inhibit redundant eye 
movements and to overcome the above drawbacks, and 
evaluate the model by increased number of subjects behavior. 
We believe that if the model is successfully improved and the 
environments, which are the intersections, other cars and so on, 
are correctly recognized automatically, we can get stressfree 
safety driving system. 
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