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Abstract—Palmprint has been widely studied as its high 
accuracy and low cost. Most of the previous studies are based on 
two dimensional (2D) image of the palmprint. However, 2D image 
can be easily forged, which will threaten the security of palmprint 
authentication system. Furthermore, 2D image can be easily 
affected by noise, such as scrabbling and dirty in the palm. To 
overcome these shortcomings, we develop a three dimensional 
(3D) palmprint identification system. The structured-light 
imaging technology is adopted to collect the 3D palmprint data, 
from which the stable Mean Curvature Image (MCI) is extracted. 
Then the Competitive Coding (CompCode) technique is used to 
code the 3D palmprint pattern according the MCI. By using score 
level fusion of MCI and its CompCode, promising recognition 
performance is achieved on our established 3D palmprint 
database. 

Keywords—3D palmprint identification, biometrics, mean 
curvature, feature coding

I. INTRODUCTION

Automatic personal authentication using biometric 
information is playing a more and more important role in 
applications of public security, access control, forensic, 
banking, etc. Many kinds of biometric authentication 
techniques have been developed based on different biometric 
characteristics, which can be generalized into two classes: 
physiological-based (such as fingerprint, face, iris, palmprint, 
hand shape, etc.) and behavioral-based (such as signature, 
voice, gait, etc.) characteristics. Palmprint has been widely 
studied in the past decade and it has proven to be a unique 
biometric identifier. Palmprint systems have merits of high 
accuracy, low cost, user friendliness, etc. However, most of the 
palmprint recognition techniques are based on the two 
dimensional (2D) palm images, despite the fact that the human 
palm is a three dimensional (3D) surface. Although 2D 
palmprint recognition techniques can achieve high accuracy, 
the 2D palmprint can be easily counterfeited and much 3D 
palm structural information is lost. Therefore, it is of high 
interest to explore new palmprint recognition techniques. 

Recently, 3D techniques have been applied to biometric 
authentication, such as 3D face [1] and 3D ear recognition [2]. 
Range data are usually used in these 3D biometric applications. 
Most of the existing commercial 3D scanners use laser 
triangulation to acquire the 3D depth information. Nonetheless, 
the laser triangulation based 3D imaging technique has some 
shortcomings for the biometric application. For example, the 
resolution of 3D cloud points may not be high enough for the 

accuracy requirement in biometric authentication; if we want to 
improve the data resolution, the laser scanning speed must be 
decreased and the requirement of real-time authentication is 
hard to meet. 

With the above considerations, we propose to use 
structured-light imaging [3] to establish the 3D palmprint data 
acquisition system. The structured-light imaging is able to 
accurately measure the 3D surface of an object but use less 
time than laser scanning. In the developed system, when the 
user put his/her palm on the system, an LED projector will 
generate structured light stripes and project them to the palm. A 
series of grey level images of the palm with the stripes on it are 
captured by a CCD camera, and then the depth information of 
the palm surface is reconstructed from the stripe images. 

As shown in our previous work [4], mean curvature is a 
stable and valuable feature of the 3D palmprint. By 
normalizing and mapping the mean curvature value to a plane, 
we can get a Mean Curvature Image (MCI) which can be used 
for matching. Meanwhile, Competitive Coding (CompCode) [5] 
is a very efficient method for 2D palmprint identification. 
However, it’s hard to be extended to 3D palmprint directly 
because the 3D Gabor filter is not easy to be designed and 
implemented for the 3D palmprint data. The MCI can well 
represent 3D palmprint information on the 2D plane, which 
makes it suitable to introduce the Competitive Coding method 
into 3D palmprint recognition. By fusing the MCI and 
Competitive Code results on the matching score level, we can 
achieve much better performance than any single one of them. 
A 3D palmprint database with 8000 samples from 200 people 
is established and a series of experiments are conducted to 
evaluate the performance of the proposed scheme. 

The rest of the paper is organized as follows. Section II 
describes the acquisition of 3D palmprint data. Section III 
discusses the ROI region determination and the 3D feature 
extraction from 3D palmprint. Section IV gives the feature 
matching methods. Section V presents the experimental results 
and Section VI concludes the paper. 

II. 3D PALMPRINT DATA ACQUISITION

The commonly used 3D imaging techniques include multi-
viewpoint reconstruction [6], laser scanning [7] and structured 
light scanning [3]. Structured-light scanning can measure the 
object surface in a high accuracy and in a relatively short time 
period. Considering the requirements of accuracy and speed in 
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biometric authentication, we choose to use structured-light 
scanning to acquire the palm depth information. 

In structured-light imaging, a light source projects some 
structured light patterns (stripes) onto the surface of the object. 
The reflected light is captured by a CCD camera and then a 
series of images are collected. After some calculation, the 3D 
surface depth information of the object can be obtained. Fig. 1 
illustrates the imaging principle of the structured-light 
technique [3]. Interested readers can refer to [3] for more 
details about structured-light imaging. In Fig. 1, there is a 
reference plane whose height is 0. By projecting light through 
grating to the object surface, the relative height of a point D at 
spatial position (x, y) to the reference plane can be calculated 
as follows [3] 
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where P0 is the wavelength of the projected light on the 
reference plane, 0 is the projecting angle, n is the angle 
between the reference plane and the line which passes through 
the current point and the CCD center, and CD is the phase 
difference between points C and D. Because the phase of point 
D on the 3D object is equal to the phase of point A on the 
reference plane, CD can be calculated as: 

OAOCCACD                              (3)

By using (1) and the phase shifting and unwrapping 
technique [8], we can retrieve the depth information of the 
object surface by projecting a series of phase stripes on it (13 
stripes are used in our system). Some sample patterns of the 
stripes on the palm are illustrated in Fig. 2. 

Figure 1. The principle of structured-light imaging. 

Figure 2. Sample patterns of the stripes on the palm. 

With the above processing, the relative height of each point, 
i.e. h(x,y), could be calculated. The range data of the palm 
surface can then be obtained. In the developed system, the 
spatial resolution of the 3D image is set as 768 576, i.e. there 
are totally 442368 cloud points to represent the 3D palmprint 
information. Fig. 3 shows an example 3D palmprint image 
captured by the system. The gray level in Fig. 3 is related to the 
value of h(x,y) and it is rendered by OpenGL automatically for 
better visualization. 

Figure 3. An example of captured 3D palmprint image. 

III. FEATURE EXTRACTION FROM 3D PALMPRINT

A. Region of Interest Extraction 
From Fig. 3, we can see that in the 3D palmprint image of 

resolution 768 576, many cloud points, such as those in the 
boundary area and those in the fingers, could not be used in 
feature extraction and recognition. Most of the useful and 
stable features locate in the center area of the palm. In addition, 
at different times when the user puts his/her hand on the 
collecting device, there will be some relative displacements of 
the positions of the palm, even that we impose some constraints 
on the users to place their hands. Therefore, before feature 
extraction it is necessary to perform some preprocessing to 
align the palmprint and extract the central area of it, which is 
called the Region of Interest (ROI) extraction. 

By using the developed structured-light based 3D imaging 
system, the 2D and 3D palmprint images can be obtained 
simultaneously, and there is a one-to-one correspondence 
between the 3D cloud points and the 2D pixels. Therefore, the 
ROI extraction of the 3D palmprint data can be easily 
implemented via the 2D palmprint ROI extraction procedure. 
In this paper, we use the algorithm in [9] to extract the 2D ROI. 
Once the 2D ROI is extracted, the 3D ROI is obtained by 
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grouping the cloud points that are in correspondence to the 
pixels in the 2D ROI. Fig. 4 illustrates the ROI extraction 
process. Fig. 4a shows a 2D palmprint image, the established 
local coordinate system by using the algorithm in [9] and the 
ROI (i.e. the rectangle); Fig. 4b shows the extracted 2D ROI; 
Fig. 4c shows the 3D palmprint image and Fig. 4d shows the 
obtained 3D ROI by grouping the cloud points corresponding 
to the pixels in 2D ROI. 

(a)                                                 (b) 

(c)                                                 (d) 

Figure 4. The ROI extraction of 3D palmprint from its 2D counterpart. (a) 
The 2D palmprint image, the adaptively established coordinate system and the 
ROI (i.e. the rectangle); (b) the extracted 2D ROI; (c) the 3D palmprint image, 
whose cloud points have a one-to-one correspondence to the pixels in the 2D 
counterpart; (d) the obtained 3D ROI by grouping the cloud points 
corresponding to the pixels in 2D ROI. 

By using ROI extraction procedure, the 3D palmprint 
images are aligned so that the small translation and rotation 
introduced in the data acquisition process are corrected. In 
addition, the data amount used in the following feature 
extraction and matching process is significantly reduced. This 
will save much computational cost. 

B. Curvature Calculation 
With the ROI obtained from the original 3D palmprint data, 

stable and unique features are expected to be extracted for the 
following pattern matching and recognition. The depth 
information in the acquired 3D palmprint reflects the relative 
distance between the reference plane and each point in the 
object. The z-values of the 3D cloud points are affected by the 
position of hand in scanning. However, each time the users put 
their hands, the 3D space locations will be different. The ROI 
extraction process can only correct, to some extent, the rotation 
and translation displacements in the x-y plane but not the z-axis. 
Moreover, the human palm is not a rigid object and it can have 
some deformation. Those factors introduce much noise in the 
3D palmprint cloud points and make the well-known ICP 
algorithms [10] not suitable for 3D palmprint recognition. 
Instead, the local invariant features, such as the curvatures of a 
surface, will be much more stable in representing the 
characteristics of 3D palmprint. 

Let p be a point on the surface S. Consider all curves Ci on 
S passing through the point p. Each curve Ci will have an 
associated curvature Ki at p. Among those curvatures Ki, at 
least one is characterized as maximal k1 and one as minimal k2,
and these two curvatures k1 and k2 are known as the principal 
curvatures of point p on the surface [11]. The Mean curvature 
H and the Gaussian curvature K of p are defined as follows 
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The Mean and Gaussian curvatures are intrinsic measures 
of a surface, i.e. they depend only on the surface shape but not 
on the way how the surface is placed in the 3D space [11]. 
Thus such curvature features are robust to the rotation, 
translation and even some deformation of the palm. The 
captured 3D palmprint data are organized range data. We adopt 
the algorithm in [12] to estimate the Mean and Gaussian 
curvatures for its simplicity and effectiveness as follows 
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where h is the height of the points on the palmprint to the 
reference plane, hx, hy, hxx, hyy and hxy are the first, second and 
hybrid partial derivatives of h to x and y coordinates separately. 

With (5) and (6), the Mean and Gaussian curvatures of a 3D 
palmprint image can be calculated. For better visualization and 
more efficient computation, we convert the original curvature 
images into grey level images with integer pixels. We first 
transform the curvature image C (Gaussian curvature K or 
Mean curvature H) to C  as follows 

( , ) 0.5( ( , ) ) /(4 ) 0.5C i j C i j                    (7) 

where  and  are the mean and standard deviation of the 
curvature value. With (7), most of the curvature values will be 
normalized into the interval [0,1]. We then map ),( jiC  to an 
8-bits grey level image G(i,j): 

0 ( , ) 0

( , ) 255 ( , ) 0 ( , ) 1

255 ( , ) 1

C i j

G i j round C i j C i j

C i j          (8) 

We call images G(i,j) the Mean Curvature Image (MCI) 
and Gaussian Curvature Image (GCI), respectively for Mean 
and Gaussian curvatures. Fig. 5 illustrates the MCI and GCI 
images of three different palms and Fig. 6 illustrates the MCI 
and GCI images of a palm at different acquisition times. We 
can see that the 2D MCI and GCI images can well preserve the 
3D palm surface features. Not only the principal lines, which 
are the most important texture features in palmprint recognition, 
are clearly enhanced in MCI/GCI, but also the depth 
information of different shape structures is well preserved. 
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Figure 5. The 3D ROI images (first row) of three different palmprints and 
their MCI (second row) and GCI (third row) images. From left to right, each 
column shows the images of one palm, respectively. 

Figure 6. The 3D ROI images (first row) of the same palmprint but collected 
at different times and their MCI (second row) and GCI (third row) images. 
From left to right, each column shows the images for each time, respectively. 

C. Competitive Coding 
There are plenty of directional and structural information on 

palmprint which can be used for identity identification. The 
Gabor filters, which are derived from harmonic functions 
multiplied by Gaussian functions, have excellent ability to 
extract these features. By using several Gabor filters with 
different directions to convolute the image, the direction along 
which the Gabor filter has the greatest response can be set as 
the direction of that point in the image. The directional features 
can then be matched by angular distance for identification. This 
process is called the Competitive Coding scheme [5]. In this 
paper, the following Gabor filter is used for extracting the 
directions [13]: 
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and (x0, y0) is the center of the function;  is the radial 
frequency in radians per unit length and  is the orientation of 
the Gabor functions in radians; and  is a coefficient defined 
by  

2 12ln 2
2 1

                              (10) 

where  is the half-amplitude bandwidth of the frequency 
response. 

Fig. 7 shows the different directional Gabor filter templates 
used in this paper. Considering the accuracy and efficiency, we 
choose six different directions 

6/5,6/4,6/3,6/2,6/,0

respectively. Convolving the six templates with the MCI, and 
selecting the direction which leads to the greatest response, we 
get the directional features of MCI as shown in Fig. 8, from 
which we can see that the extracted directions can well 
represent the line structure of its neighboring region. 

Figure 7. The directional Gabor filter templates used in this paper. From top 
left to bottom right, 6/5,6/4,6/3,6/2,6/,0
respectively. 

Figure 8. Illustration of directions plotting on MCI. 

4995



       SMC 2009 

IV. FEATURE MATCHING

In Section, there are two kinds of features extracted, 
location and direction, each of which can be used for matching. 
Apparently, they can also be fused for better results. 

A. Location Matching 
The principal lines and strong wrinkles are the most stable 

and significant features in the palmprint. Their locations in the 
palmprint are important information for matching. With (11) 
we convert the MCI into binary images, which can then be 
directly used for matching 

1 ( , )
( , )

0
GG i j c

B i j
others                      (11) 

where c is a constant and G  is the mean value of G(i ,j). With 
our experience, we set c = 0.7 in the experiments. Fig. 9 shows 
the binarized versions of the MCI images in Fig. 5 and Fig. 6. 

Figure 9. The binarized MCI images. The white areas represent the high 
mean curvature region position. 

We use the AND operation to calculate the matching score 
of location features. Denote by dB  the binarized MCI image in 
the database and by tB  the input MCI binary image. Suppose 
the image size is n m. The matching score between dB  and tB
is defined as: 
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where symbol “ ” means the AND logic operation. 

B. Direction Matching 
Denote by integers 0, 1, 2, 3, 4 and 5 the six directions 

6/5,6/4,6/3,6/2,6/,0 respectively. Intuitively, 
the distance between parallel directions should be 0, while the 
distance between perpendicular directions should be 3. In other 
cases, the distance should be 1 or 2. Let dD and tD  be the 
direction sets of the MCI images. The matching score between 
them can be defined as: 
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C. Score Level Fusion 
There are many score level fusion methods, such as Min-

score, Max-score, Weight-score, SVM, etc. [14, 15]. Here, we 
use the Average-score method which is simple but efficient. 
The fusion of the two scores is then 

2/)( DPF RRR                               (15) 

V. EXPERIMENTAL RESULTS

A 3D palmprint database has been established by using the 
developed 3D palmprint imaging device. The database contains 
8000 samples from 200 volunteers, including 136 males and 64 
females. The youngest one is 10 years old and the oldest one is 
55 years old. Most of them are students and staff in our 
institutes. The 3D palmprint samples were collected in two 
separated sessions, and in each session 10 samples were 
collected from both the left and right hands of each subject. 
The average time interval between the two sessions is one 
month. The original spatial resolution of the data is 768 576. 
After ROI extraction, the central part (256 256) is used for 
feature extraction and recognition. The z-value resolution of the 
data is 32 bits. 

We performed two types of experiments on the established 
database: verification and identification. In verification, the 
class of the input palmprint is known and each of the 3D 
samples was matched with all the other 3D samples in the 
database. A successful matching is called intra-class matching 
or genuine if the two samples are from the same class. 
Otherwise, the unsuccessful matching is called inter-class 
matching or impostor. Using the established database, there are 
31,996,000 matchings in total. The verification experiments 
were performed by using each of the location and direction 
features, as well as the fusion of them at the score level. The 
ROC curves are shown in Fig. 10. The EER values are listed in 
Table I, where the feature extraction and matching time by 
using different features are also listed. 

The experiments of identification were also conducted on 
the 3D palmprint database. In identification, we do not know 
the class of the input palmprint but want to identify which class 
it belongs to. In the experiments we let the first sample of each 
class in the database be template and use the other samples as 
probes. Therefore, there are 7600 probes and 400 templates. 
The probes were matched with all the templates models, and 
for each probe, the matching results were ordered according to 
the matching scores. Then we can get the cumulative match 
curves as shown in Fig. 11. The cumulative matching 
performance, rank-one recognition rate and lowest rank of 
perfect recognition (i.e. the lowest rank when the recognition 
rate reaches 100%) are listed in Table II. From the 
experimental results we can see that the performance of feature 
fusion is much better than using any single one of them. 
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TABLE I. VERIFICATION PERFORMANCE, FEATURE EXTRACTION TIME AND 
MATCHING TIME BY DIFFERENT TYPES OF FEATURES

 Location Direction Fusion 
EER 0.688% 0.495% 0.284% 

Feature 
extraction time 112ms 97ms 209ms 

Matching time 0.86ms 0.15ms 1.01ms 

TABLE II. IDENTIFICATION PERFORMANCE BY DIFFERENT TYPES OF 
FEATURES

 Location Direction Fusion 
Rank-one recognition 

rate 98.46% 99.11% 99.68% 

Lowest rank for 
perfect recognition 71 46 36 

VI. CONCLUSIONS

In this paper, we explored a new technique for palmprint 
based biometrics: 3D palmprint recognition. First a structured-
light based 3D palmprint data acquisition system was 
developed. After the 3D palmprint image was captured, the 
region of interest (ROI) was extracted to roughly align the palm 
and remove the unnecessary cloud points. We then developed 

the curvature based feature extraction algorithms to obtain the 
Mean Curvature Image (MCI), Gaussian Curvature Image 
(GCI) features. We then extracted the location and direction 
features from MCI. At last, a score level feature fusion strategy 
of the two types of features was used to classify the palmprints. 
A 3D palmprint database with 8000 samples from 200 
individuals (400 palms) was established, on which a series of 
verification and identification experiments were performed. 
The experimental results show that both of the location and 
direction features of 3D palmprint can achieve high recognition 
rate and fusing them can get much higher performance. In the 
future, more advanced and powerful feature extraction and 
matching techniques are to be developed for a better 
recognition performance. 
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