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Abstract— In this paper, we propose a new self-supervised
learning method for competitive learning as well as self-
organizing maps. In this model, a network enhances its state
by itself, and this enhanced state is to be imitated by another
state of the network. We set up an enhanced and a relaxed state,
and the relaxed state tries to imitate the enhanced state as much
as possible by minimizing the free energy. To demonstrate the
effectiveness of this method, we apply information enhancement
learning to the SOM. For this purpose, we introduce collective-
ness, in which all neurons collectively respond to input patterns,
into an enhanced state. Then, this enhanced and collective state
should be imitated by the other non-enhanced and relaxed state.
We applied the method to an artificial data and three data from
the well-known machine learning database. Experimental results
showed that the U-matrices obtained were significantly similar
to those produced by the conventional SOM. However, better
performance could be obtained in terms of quantitative and
topological errors. The experimental results suggest the possibility
for self-supervised learning to be applied to many different neural
network models.

I. INTRODUCTION

A. Self-Supervised Learning

In this paper, we propose a new self-supervised learning in
which a target is itself creased within a network. We suppose
that a network can take two kinds of states, that is, an enhanced
and a relaxed state. An enhanced state is one where units
respond explicitly to input patterns, whereas a relaxed state
is one where units respond almost equally to input patterns.
The enhanced state is considered to be a goal to be attained
by the relaxed state. Thus, this is a new learning model, in
which targets are not given from the outside but are to be
created by networks themselves. Though some attempts have
been made to unify supervised and unsupervised learning or to
include unlabeled data with label data in learning, for example,
semi-supervised learning [1], [2], the concept of target-creating
learning and spontaneous target-generation has not been much
considered in neural networks nor in machine learning.

B. Relations to Competitive Learning

Self-supervised learning is the one most suited for com-
petitive learning [3], because an enhanced state is considered
to be one where one neuron wins the competition. Competi-
tive learning has been one of the most important techniques

used in neural networks, and it has been applied to several
well-known models [4], [5], [6], [7], [8]. Many methods to
refine competitive learning have been proposed [9], [10], [11],
[12], [13], [14], [15], [16] [17], [18]. Our method of self-
supervised learning is easily applied to competitive learning. In
competitive learning, the winner-take-all algorithm picks up a
best-matching unit, and connection weights only into the best-
matching unit are updated [3]. We can immediately see that the
state realized by this winner-take-all algorithm is considered
to be an enhanced state to be attained by a relaxed state. In
competitive learning, the winner-take-all algorithm is an outer
operation to create, in our sense, an enhanced state. In self-
supervised learning, an enhancement operation is considered
to be an inner operation. Thus, an enhanced state is realized
not by the outer winner-take-all algorithm, but by information
enhancement with an inner enhancement parameter.

C. Information-Theoretic Interpretation

Self-supervised learning is considered to be a method to
attain a state with larger information content on input patterns.
We have seen that competitive learning is one of the typical
examples of self-supervised learning. We have found so far that
competitive learning has been realized by maximizing mutual
information between competitive units and input patterns [19],
[20], [21], [22], [23], [24]. Thus, it is possible to interpret
self-supervised learning from an information-theoretic point
of view. An enhanced state is considered to be a state with
maximum information on input patterns; on the other hand,
a relaxed state is one with minimum information. Using the
concept of competitive learning, self-supervised learning can
itself create a higher information state in which competitive
units respond explicitly to input patterns and a lower informa-
tion state in which competitive units respond to input patterns
almost equally. Then, self-supervised learning tries to attain
the higher information state from the lower information state.

D. Free Energy for Learning

To minimize the difference between an enhanced and a non-
enhanced state, we introduce the cross entropy between two
probabilities observed in two states. We must minimize this
cross entropy in learning. Update rules obtained by directly
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differentiating the cross entropy become computationally com-
plex. Thus, to simplify computation, we introduce a free energy
similar to that used in statistical mechanics. The free energy
was first (to the best of our knowledge) introduced by Rose,
Gurewitz and Fox [25], [26]. The same type of deterministic
annealing was proposed by Ueda and Nakano [27], [28] to
overcome the local maxima problem associated with the EM
algorithm [29]. In those methods, the free energy is to be
minimized at each temperature point. Then, Gaepel, Burge
and Obermayer [30] took the cooling or annealing process
further to derive a soft topographic vector quantization to be
applied to SOM. In addition to those approaches, Heskes [31]
made explicit the relations between vector quantization and
self-organizing maps in terms of the free energy. Kamimura
attempted to formulate the free energy to simplify mutual
information maximization[32], [33]. Thus, many attempts have
already been made to apply the free energy to neural network
research. In our model, the free energy is used to minimize
the cross entropy between an enhanced and a relaxed state.

E. Collective Activations

One of the main characteristics of self-supervised learning
is that it can incorporate many constraints observed in ap-
plications. In a basic form, self-supervised learning is suited
for competitive learning, as already mentioned. However, we
use the self-organizing maps to demonstrate the applicability
of our method, because it is easy to demonstrate the good
performance of the method intuitively, that is, by some visual-
ization techniques. In the conventional SOM, the winner-take-
all algorithm is used to select winners, and connections to the
winners and to their neighboring neurons are updated [34], [7],
[8]. In the SOM, objective functions are not explicitly given
in the original approaches, and there have been many attempts
to explicitly identify objective functions and to reformulate
them in the framework of an information-theoretic approach,
Bayesian approach, statistical mechanical approach and mix-
ture models [35], [36], [31], [37], [38], [39], [32], to cite a
few.

In our approach, the objective function is explicit, because
the network must imitate an enhanced state. The difference
between enhanced probabilities and non-enhanced probabilities
is one to be minimized. To realize self-organizing maps,
we should incorporate lateral interactions among neurons.
Instead of the lateral interactions, we introduce a concept of
collectiveness in a self-enhanced state. With this new term
”collectiveness,” we stress the importance of lateral interac-
tions, and in our model, collectiveness governs competitive
processes, while in the conventional model, lateral interactions
are implicitly built in competitive processes. We suppose
that all neurons collectively respond to input stimuli. This
collectiveness is realized by summing all competitive unit
activations. The summation is actually a weighted sum of all
neurons. This enhanced and collective state should be imitated
by self-supervised learning. In self-supervised learning, we
do not use the winner-take-all algorithm usually used in the
self-organizing maps; we suppose only the collectiveness of
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Fig. 1. Enhancement (b) and relaxation (c) of competitive units for a network
itself.

competitive units. Thus, we think that our model is a more real-
istic and more biologically motivated computational procedure
for competitive learning as well as self-organization. Similar
methods were proposed by Linsker [40], [41], [42], [43] as an
example of his maximum information principle. However, in
Linsker’s methods, only complicated learning rules were for-
mulated, and they have not been used in practical applications,
though some attempts have been made to formulate simple and
local rules. Our methods are simple and practical and can be
applied to large-scale applications.

II. THEORY AND COMPUTATIONAL METHODS

A. Enhancement and Relaxation

For introducing self-supervised learning, we have proposed
information enhancement in which enhancement and relaxation
are identified. Figure 1 shows a process of enhancement and re-
laxation for a network itself. Figure 1(a) shows an original situ-
ation obtained by competitive learning, in which three neurons
are differently activated for input units. With enhancement, as
shown in Figure 1(b), the characteristics of competitive unit
activations are enhanced, and only one competitive unit is
strongly activated. This means that obtained information in
competitive units is larger. On the other hand, Figure 1(c)
shows a state by relaxation, in which all competitive units
respond uniformly to input units. Because competitive units
cannot differentiate between input patterns, no information on
input patterns is stored.

Now, let us compute competitive unit outputs for a network
shown in Figure 1(a). A network is composed of the kth input
unit xs

k for the sth input pattern, and connection weights wjk

from the kth input unit to the jth competitive unit. The jth
neuron output vs

j for the sth input pattern can be defined by a
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Gaussian-like function:

vs
j ∝ exp

{
−1

2
(xs − wj)T Σ−1(xs − wj)

}
, (1)

where Σ denotes the scaling matrix1. The enhanced scaling
matrix can be defined by

Σ = Σ(α)
enh

= (1/α)2I, (2)

where I is an identity matrix and α is an enhancement
parameter. When the relaxation is applied, we have

Σ = Σ(α)
rel

= (α)2I. (3)

B. Self-Enhancing

We have shown that an initial state can be split into an
enhanced and a relaxed state. Then, we must decrease the gap
between two states as much as possible. In the self-enhancing
process, the difference between two probabilities should be as
small as possible.

We now present update rules for self-supervised learning
for a general case. At an enhanced state, competitive units can
be computed by

vs
j,enh ∝ exp

{
−1

2
(xs − wj)T (Σ(α)

enh)−1(xs − wj)
}

. (4)

Normalizing this output, we have enhanced firing probabilities

penh(j | s) =
exp

{
−1

2 (xs − wj)T (Σ(α)
enh)−1(xs − wj)

}
∑M

j=1 exp
{
−1

2 (xs − wj)T (Σ(α)
enh)−1(xs − wj)

} .

(5)
Suppose that p(j|s) denotes the probability of the jth neuron’s
firing in a relaxed state. Then, we should make these proba-
bilities as close as possible to the probabilities of enhanced
neurons’ firing. Thus, we have an objective cross entropy
function defined by

I =
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)

penh(j | s)
, (6)

where M and S denote the number of competitive units and
input patterns, respectively. In addition, we should decrease
quantization errors, defined by

E =
S∑

s=1

p(s)
M∑

j=1

p(j | s)‖xs − wj‖2. (7)

It is possible to differentiate this cross entropy and the quan-
tization error function to obtain update rules [44], [41]. How-
ever, the rules become complicated update rules with heavy
computation required for computing conditional probabilities.

Fortunately, we can omit the complicated computation of
conditional entropy by introducing the free energy used in

1We used the scaling matrix instead of the ordinary covariance matrix,
because the output does not follow exactly the Gaussian function.

statistical mechanics [27], [25], [45], [46], [47], [32], [33].
Borrowing from statistical mechanics, let us introduce free
energy or a free energy-like function, defined by

F = −2α2
S∑

s=1

p(s) log
M∑

j=1

penh(j | s)

× exp
{
−1

2
(xs − wj)T (Σ(α)

rel )
−1(xs − wj)

}
. (8)

An optimal state specifies the output

p(j | s) = penh(j | s)

× exp
{
−1

2
(xs − wj)T (Σ(α)

rel )
−1(xs − wj)

}

×(Zs)−1 (9)

where

Zs =
M∑

j=1

penh(j | s) exp
{
−1

2
(xs − wj)T (Σ(α)

rel )
−1(xs − wj)

}
.

(10)
Then, putting p(j | s) into the cross entropy, we have

F =
S∑

s=1

p(s)
M∑

j=1

p(j | s)‖xs − wj‖2

+2α2
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)

penh(j | s)
. (11)

Thus, to decease the free energy, we must decrease the cross
entropy and the corresponding error function. By differentiat-
ing the free energy, we have

wjk =
∑S

s=1 p(j | s)xs
k∑S

s=1 p(j | s)
, (12)

where p(s) is set to 1/S. We should note that, thanks to
the excellent work of Heskes [31], the free energy can be
interpreted in the framework of an EM algorithm.

In the above formulation, we have dealt with a general case
of self-supervised learning. However, this is a self-supervised
learning version of competitive learning. In application to com-
petitive learning, an enhanced state is one where a winner takes
all in the extreme case. This is realized by the enhancement
parameter 1/α. On the other hand, a relaxed state is one where
competitive units respond to input patterns almost equally,
which is realized by setting the enhancement parameter to α.
The self-supervised learning in terms of competitive learning
tries to attain a state where the winner-take-all is predominant.

C. Collective Enhancement

To demonstrate clearly the performance of our method, we
use self-organizing maps, because it is easy to interpret final
results intuitively. In the previous section, we applied self-
supervised learning to competitive learning. Thus, it is possible
to apply it to self-organizing maps just by introducing lateral
interactions in an enhanced state. Instead of lateral interactions,
we introduce the concept of collectiveness in an enhanced
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state. Then, we introduce collectiveness, as shown in Figure
2(c). Collectiveness means that all competitive units are related
to each other. In the conventional approach [7], [8], competitive
learning plays a central role in learning, and lateral interactions
are introduced to include topological maps. In our approach,
lateral interactions or collective activations play central roles,
and these interactions and activations should be imitated by
competition, that is, competitive learning. To stress the priority
of lateral interactions in our model, we have introduced the
concept of collectiveness.

Now, let us explain collective activations. Figure 2 shows a
network architecture that is composed of a competitive and
a collective layer. An enhanced output from an individual
competitive unit can be computed by

vs
j,enh ∝ exp

{
−1

2
(xs − wj)T (Σ(α)

enh)−1(xs − wj)
}

. (13)

Figure 2 shows that the jth neuron cooperates with all the
other neurons on the map and responds to input patterns. We
realize this cooperation by summing all the neighboring units’
activities. Then, we have collected activations

V s
j =

M∑
m=1

Wjmvs
m,enh, (14)

where Wjm denotes connection weights from the mth compet-
itive unit to the jth competitive unit, and M is the number of
competitive units. We can imagine many kinds of collective-
ness on the map; however, we usually use distance between
competitive units for expressing collectiveness. For example,
when competitive units are closer to their neighbors, they
should be linked to them more intensely. A distance function
between two neurons can be defined by

Wjm = exp
(
−1

2
‖rj − rm‖2

)
, (15)

where rj denotes a position for the jth unit, and rm denotes
a position for the mth neighboring neuron. Thus, we have

V s
j =

M∑
m=1

exp
(
−1

2
‖rj − rm‖2

)
vs

m,enh. (16)

We can compute a normalized activity

pcoll(j | s) =
V s

j∑M
m=1 V s

m

. (17)

This normalized activity is considered to represent collective
firing rates. Then, we can introduce the free energy:

F = −2α2
S∑

s=1

p(s) log
M∑

j=1

pcoll(j | s)

× exp
{
−1

2
(xs − wj)T (Σ(α)

rel )
−1(xs − wj)

}
.(18)

Competitive units

sv
j,enh

sVj

svm,enh

Collective layer

Competitive layer

Collective
activations

Fig. 2. A concept of self-enhanced collective activations.

III. RESULTS AND DISCUSSION

In this section, we present the experimental results of using
self-supervised learning. The results can be summarized by
two points. First, self-supervised learning with a larger en-
hancement parameter can produce U-matrices and component
planes similar to those produced by the conventional SOM.
Second, self-supervised learning shows better results in terms
of quantization and topological errors. For easy interpretation,
comparison and reproduction, we used the SOM toolbox with
default parameter values [48] where no special options were
used for easy reproduction. All data in this experiment were
normalized, with a range between zero and one. The number
of competitive units was automatically determined by the
software package. In self-supervised learning, no special tech-
niques, for example, to accelerate learning, were used. Thus,
experimental results presented here can easily be reproduced.
We computed the quantitative measures for performance com-
parison: the quantization error and the topological error. The
quantization error is simply the average distance from each
data vector to its BMU. The topographic error is the percentage
of data vectors for which the BMU and the second BMU are
not neighboring units [48]. In addition, all the data except
the first artificial data were taken from the well-known UCI
machine learning database 2 for easy reproduction of the
experimental results.

First, we applied the method to an artificial and symmetric
data. Figures 3(a) and (b) show input patterns and quantization
errors, respectively. As shown in Figure 3(b), quantization
errors by the enhancement learning are gradually decreased
as the enhancement parameter α is increased and finally the
error becomes 0.428, while the error by the conventional
SOM is 0.445. The topological errors are always zero by both
methods. Although the difference is small, we can say that the
enhancement learning shows better performance. Figures 4 (a)
and (b) show the U-matrix and a map with labels by SOM and
self-supervised learning, respectively. The almost same feature
maps can be obtained. However, if we closely examine the
maps, we can say that warmer-colored boundaries on the map
by the self-supervised learning is more emphasized or more
intensified than those by the conventional SOM. In addition,

2http://www1.ics.uci.edu/ mlearn/MLRepository.html
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the labels by the self-supervised learning in Figure 4(b2) show
the clearer and more natural ordering of the input data.

Figure 5 show quantization errors by the SOM in red and
self-supervised learning in blue for the SPECTF heart database
in the machine learning database where the numbers of input
patterns and units are 80 and 22, respectively. Because the
topological errors were zero by both methods, a figure for the
topological errors was omitted. As shown in the figure, the
quantization error is gradually decreased and finally the error
is 1.121 when the enhancement parameter α is 14. On the
other hand, by the conventional SOM, the quantization error is
1.133. Thus, the self-supervised learning shows slightly better
performance in terms of quantization error. Figures 6(a) and
(b) show U-matrices and labels by the SOM and the enhanced
information, respectively. When we see labels, we can see that
the maps can be divided into two parts: an upper and a lower
part. However, in both U-matrices, we cannot see the clear
boundaries separating two groups.

Figures 7(a) and (b) show quantization and topological er-
rors by the SOM and self-supervised learning, respectively for
the wine problem of the machine learning data base. The num-
bers of patterns and input units are 178 and 13, respectively.
As shown in Figure 7(a), the minimum quantization error by
the self-supervised learning is 0.364 when the enhancement
parameter α is 16. On the other hand, the quantization error
by the SOM is 0.373. Thus, the self-supervised learning shows
slightly better results compared with the SOM. Figure 7(b)
shows topological errors by self-supervised learning in blue
and SOM in red. As can be seen in the figure, the topological
errors become zero by using the self-supervised learning when
the enhancement parameter α is increased beyond the level of
13. On the other hand, the topological error by the SOM is
0.028. Thus, the self-supervised learning shows much better
performance in terms of topological errors. Figures 8(a) and
(b) show U-matrices and maps with labels by the conventional
SOM and the self-supervised learning, respectively. We can
say that the same kind of U-matrices and labels can be
obtained. However, the boundaries between groups by the self-
supervised learning are clearer ones than those by the SOM.

We finally use a data of breast cancer also extracted from
the machine learning data base and the numbers of input units
and patterns are 10 and 699, respectively. Figure 9(a) shows
quantization error by the SOM and self-supervised learning.
As shown in the figure, by the self-supervised learning, quan-
tization errors become smaller and reaches its lowest point of
0.272, when the enhancement parameter α is 25. Figure 9(b)
shows the topological error by the SOM, and the error by the
conventional SOM is 0.042. On the other hand, while the error
by the self-supervised learning is far below the level by the
SOM and the lowest point is 0.009 when the enhancement
parameter is four.

These results show that the self-supervised learning shows
slightly better performance in terms of quantization error, while
the self-supervised learning shows significantly better results
for two problems in terms of topological errors.
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Fig. 7. Quantization errors (a) and topological errors (b) as a function of
the parameter α.
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IV. CONCLUSION

We have proposed a new learning model of self-supervised
learning. In the model, a state can be viewed as an enhanced
or relaxed state. This relaxed state tries to attain the enhanced
state. These states can be realized by changing the Gaussian
wdith or the enhancement parameter α. The self-supervising
learning processes have been realized by free energy mini-
mization in which the cross entropy between two states is
minimized, and at the same time, the errors between input
patterns and connection weights are minimized.

We applied self-supervised learning to competitive learning,
especially to the SOM, because it is easy to demonstrate the
good performance of our method intuitively and quantitatively
by its visualization techniques [49], [50], [51]. When applied
the method to the SOM in which enhanced competitive units
behave collectively. The self-supervised must imitate this col-
lective behavior of the enhanced state. We applied the method
to the artificial data and three databases from the well-known
machine learning database. Experimental results showed that
the U-matrices and labels obtained by self-supervised learning
were significantly similar to those obtained by the conventional
SOM when the enhancement parameter was large. However,
better performance was obtained in terms of quantization
and topological errors. Thus, our method has shown good
potentiality for producing explicit self-organizing maps.

However, one problem, that of the optimal value of the
enhancement parameter, should be solved, or we should de-
velop a method in which we can easily determine the optimal
value of the parameter. In addition, to better understand the
results, we used the SOM, but this method has been primarily
developed for competitive learning. Thus, comparison studies
with competitive learning should be done in future studies.
Though some problems can be solved for this method to be
applicable to practical problems, our model surely opens up a
new perspective for self-supervised learning.
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[49] S. Kaski, J. Nikkilä, and T. Kohonen, “Methods for interpreting a self-
organized map in data analysis,” in Proceedings of ESANN’98, 6th
European Symposium on Artificial Neural Networks, Bruges, April 22–24
(M. Verleysen, ed.), pp. 185–190, Brussels, Belgium: D-Facto, 1998.

[50] J. Vesanto, “SOM-based data visualization methods,” Intelligent-Data-
Analysis, vol. 3, pp. 111–26, 1999.

[51] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE-NN, vol. 11, p. 586, May 2000.

125



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


