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Abstract—Many applications of wireless sensor networks
(WSNs) require location information of the randomly deployed
nodes. A common solution to the localization problem is to deploy
a few special beacon nodes having location awareness, which help
the ordinary nodes to localize. In this approach, non-beacon nodes
estimate their locations using noisy distance measurements from
three or more non-collinear beacons they can receive signals from.
In this paper, the ranging-based localization task is formulated as
a multidimensional optimization problem, and addressed using
bio-inspired algorithms, exploiting their quick convergence to
quality solutions.

An investigation on distributed iterative localization is pre-
sented in this paper. Here, the nodes that get localized in an
iteration act as references for remaining nodes to localize. The
problem has been addressed using particle swarm optimization
(PSO) and bacterial foraging algorithm (BFA). A comparison of
the performances of PSO and BFA in terms of the number of
nodes localized, localization accuracy and computation time is
presented.

Index Terms—bacterial foraging algorithm, localization, par-
ticle swarm optimization, wireless sensor networks

I. INTRODUCTION

Wireless sensor networks (WSNs) are networks of dis-
tributed autonomous nodes that can sense their environment
cooperatively [1]. WSNs are used in diverse applications
such as environment and habitat monitoring, structural health
monitoring, healthcare, home automation, and traffic surveil-
lance. In monitoring applications, WSN nodes perceive their
environment through onboard sensors.

Location is critically important in the WSNs used in
monitoring and tracking applications. Location information is
used to detect and record events, or to route packets using
geometric-aware routing [2], [3]. Equipping each node with a
global positioning system is not an attractive solution because
of cost, size and energy constraints. Node localization, which
refers to creating location awareness in all the deployed sensor
nodes, is an area of active research.

Definitions and Problem Formulation: A WSN consists
of N nodes, each having a communication range of r, dis-
tributed in a mission field. The WSN is represented as the
Euclidean graph G = (V,E), where V = {v1, v2, . . . , vn} is
the set of sensor nodes. 〈i, j〉 ∈ E if the distance between vi

and vj is dij ≤ r. Unknown nodes (also known as free or
dumb nodes) are the set U of non-beacon nodes that do not

know their localization information. Settled nodes are the set
S of nodes that managed to estimate their positions using the
localization algorithm. Given a WSN G = (V,E), and a set
of beacon nodes B and their positions (xb, yb), for all b ∈ B,
it is desired to find the position (xu, yu) of as many u ∈ U as
possible, transforming the unknown nodes into settled nodes
S.

WSN localization is a two-phase process. In the first phase
known as ranging, nodes estimate their distances from beacons
(or settled nodes) using the signal propagation time or the
strength of the received signal. Precise measurement of these
parameters is not possible due to noise; therefore, results of the
localization algorithms that use these parameters are likely to
be inaccurate. In the second phase, position estimation of the
nodes is carried out using the ranging information. This is done
either by solving a set of simultaneous equations, or by using
an optimization algorithm that minimizes the localization error.
In iterative localization algorithms, the settled nodes serve as
beacons and the localization process is repeated until either all
nodes are settled, or no more nodes can be localized.

This paper proposes two bio-inspired optimization algo-
rithms for distributed iterative node localization in a WSN.
The first algorithm is the particle swarm optimization (PSO)
[4], and the second is the bacterial foraging algorithm (BFA)
[5]. Both the algorithms have become popular in recent years
as simple but efficient multidimensional search algorithms.

The rest of this paper is organized as follows: Section II
presents a survey of previous research in WSN localization.
Section III explains PSO and BFA, the optimization algorithms
used for localization in this study. Section IV explains how the
localization problem is approached using the above mentioned
optimization methods. Section V discusses numerical simu-
lation and the results obtained. Finally, section VI presents
conclusions and makes a projection on possible future research
path.

II. RELATED WORK

Article [6] is a survey of localization systems for WSNs.
An efficient localization system that extends GPS capabilities
to non-GPS nodes in an ad hoc network is proposed in [7].
In this approach, anchors flood their location information to
all nodes in the network. Then, each dumb node estimates its
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location by triangularization. In the approach presented in [8],
nodes improve their localization accuracy by measuring their
distances from their neighbors. The issue of error accumulation
is addressed in [9] through Kalman filter based least-square
estimation. Node localization problem is addressed using con-
vex optimization based on semi-definite programming in [10].
The semi-definite programming approach is further extended
to non-convex inequality constraints in [11], and to a gradient
search technique in [12].

WSN localization is treated as a multidimensional opti-
mization problem and addressed though population-based tech-
niques recently. PSO is proposed for centralized localization of
WSN nodes in [13]. Performance evaluation of the approach
shows that it provides more accurate localization compared
to simulated annealing algorithm proposed in an earlier study
[14]. This approach requires a large number of beacons in
order to localize all dumb nodes. A genetic algorithm (GA)
based node localization algorithm is presented in [15]. This
centralized algorithm determines locations of all non-anchor
nodes by using an estimate of their distances form all one-hop
neighbors. A two-phase centralized localization scheme that
uses simulated annealing and GA is presented in [16]. The two-
phase centralized localization method that uses a combination
of GA and simulated annealing algorithm proposed in [17]
addresses the flip ambiguity problem.

Complexity and scalability issues in a WSN call for dis-
tributed localization algorithms which are executed on indi-
vidual sensor node, rather than on a central base station. Each
target node performs localization under imprecise measure-
ment of distances from three or more neighboring anchors or
settled nodes. The method proposed in this paper has following
advantages over some of the earlier methods.

1) Each node estimates its location independently. This
obviates communication with a central node, thus con-
serves energy and prevents congestion.

2) Localization accuracy is good.
3) Localization is robust against the noise associated with

distance measurements.
4) Localization method is iterative. In each iteration, more

nodes get settled. Thus, each node gets more references
in its transmission range. This leads to correction of
errors due to flip ambiguity, the situation that arises when
the references are in near-collinear locations.

III. BIO-INSPIRED TECHNIQUES PSO AND BFA FOR WSN
LOCALIZATION

Biology is a rich source of ideas for computer scientists.
Popularity of bio-inspired algorithms is attributed to their
accuracy, and their modest computational burden. The bio-
inspired algorithms PSO and BFA are discussed in the fol-
lowing subsections.

A. Particle Swarm Optimization

PSO is a population based iterative parallel search algorithm
that models social behavior of a flock of birds. Since its
introduction in [4], PSO has seen many modifications and has

been adapted to different environments [18]. Many versions
of PSO have been proposed and applied to solve optimization
problems in diverse fields [19].

PSO consists of a population (or a swarm) of s particles,
each of which represents a potential solution. The particles
explore an n-dimensional solution space in search of the global
solution, where n represents the number of parameters to be
optimized, x and y coordinates of a node this problem. Each
particle i occupies a position Xid and moves with a velocity
vid, 1 ≤ i ≤ s and 1 ≤ d ≤ n. Fitness of a particle is
determined from its position in the search space. The fitness
is defined in such a way that a particle closer to the global
solution has higher fitness value than a particle that is far away.
Each particle has a memory to store pbestid, the position where
it had the highest fitness, and gbestd, the maximum of pbestids
of all particles. The gbest particle represents the best solution
found so far. At each iteration k, velocity vid and position Xid

of each particle are updated using (1) and (2).

vid(k + 1) = w · vid(k) + c1 · rand1 · (pbestid − Xid)
+c2 · rand2 · (gbestd − Xid) (1)

Xid(k + 1) = Xid(k) + vid(k + 1) (2)

Here, rand1 and rand2 are random numbers that range
between 0 and 1 with a uniform distribution. A pseudocode
for PSO is given in Algorithm 1.

B. Bacterial Foraging Algorithm

BFA is a new evolutionary optimization algorithm intro-
duced in [5] that mimics the foraging behavior of Escherichia
coli (commonly called E. coli) bacteria that live in human
intestine. There are successful applications of BFA and its
hybrids in optimization problems such as PID controller tuning
[20], and economic load dispatch [21].

An E. coli bacterium moves to a nutrient-rich location using
a pattern of two types of movements, tumbling and swimming.
Tumbling refers to randomly changing the direction of move-
ment; and swimming refers to moving without changing the
direction. A bacterium in a neutral medium alternates between
tumbling and swimming moves. A bacterium that is moving in
a direction towards better nutrient locations keeps moving in
the same direction in a swimming movement. But if swimming
takes it to a location having lower nutrient concentration, it
takes a tumble movement and swiftly changes its direction.
With a tumble followed by a few swimming steps collectively
called a chemotactic round, the bacterium succeeds in attaining
a favorable location. After a series of chemotactic steps, the
bacteria that achieve good foraging split into two; and the
others die. This is called a reproduction step.

Suppose that it is desired to search for a position in a
p-dimensional space where function J(P ), P ∈ �p has the
global minimum. Let Pi be the initial position of bacterium i
in the search space, i = 1, 2, · · · , S, where S is the number
of bacteria. Let J(Pi) represent an objective function. Let
J(Pi) < 0, J(Pi) = 0 and J(Pi) > 0 represent the
bacterium at location Pi in nutrient rich, neutral and noxious
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Algorithm 1 The global-best version of PSO for minimization
of a cost function

1: Initialize w, c1 and c2

2: Initialize maximum allowable iterations kmax

3: Initialize the target fitness fT

4: Initialize Xmin, Xmax, vmin and vmax

5: for each particle i do
6: for each dimension d do
7: Initialize Xid randomly: Xmin ≤ Xid ≤ Xmax

8: Initialize vid randomly: vmin ≤ vid ≤ vmax

9: end for
10: end for
11: Iteration k = 0
12: while (k ≤ kmax) AND (f(gbest) > fT ) do
13: for each particle i do
14: Compute f(Xi)
15: if f(Xi) < f(pbesti) then
16: for each dimension d do
17: pbestid = Xid

18: end for
19: end if
20: if f(Xi) < f(gbest) then
21: for each dimension d do
22: gbestd = Xid

23: end for
24: end if
25: end for
26: for each particle i do
27: for each dimension d do
28: Compute velocity vid(k + 1) using (1)
29: Restrict vid to vmin ≤ vid ≤ vmax

30: Compute position Xid(k + 1) using (2)
31: Restrict Xid to Xmin ≤ Xid ≤ Xmax

32: end for
33: end for
34: k = k + 1
35: end while

environments, respectively. Chemotaxis is a foraging behavior
that captures the process of optimization where bacteria try to
climb up the nutrient concentration (i.e., bacteria try to achieve
positions having lower values of J(Pi)) and avoid being at
positions Pi where J(Pi) ≥ 0) [5]. A detailed pseudocode for
BFA is given in Algorithm 2.

IV. ITERATIVE LOCALIZATION USING PSO AND BFA

The objective of WSN node localization is to perform
distributed estimation of coordinates of the maximum of N
target nodes using M stationary beacons which know their
locations. This study approaches node localization in a WSN
in the following way:

1) N dumb nodes and M beacons are randomly deployed
in a 2-dimensional sensor field. Each dumb node and
each beacon has a transmission radius of r units. Beacon
nodes possess location awareness, and they frequently

Algorithm 2 Bacterial Foraging Algorithm for minimization
of a cost function

1: Initialize bacteria positions C(i), i = 1, 2, · · · , S
2: Initialize p, S,Nc, Nre, Ned, ped, Ns, da, wa, hr and wr

3: Set the loops indices j, k and l to 0.
4: //Elimination-Dispersal loop:
5: while l ≤ Ned do
6: l = l + 1
7: //Reproduction loop:
8: while k ≤ Nre do
9: k = k + 1

10: //Chemotaxis loop:
11: while j ≤ Nc do
12: j = j + 1
13: for each bacterium i = 1, 2, ·, S do
14: Compute J(i, j, k, l)
15: Let J(i, j, k, l) = J(i, j + 1, k, l)+

Jcc(Pi(j, k, l),P(j, k, l))
16: Let Jlast = J(i, j, k, l)
17: //Tumble:
18: Generate a p-dimensional random vector

Δm(i), i = 1, 2, · · · , p on [-1,1]
19: //Move:
20: Let Pi = Pi(j + 1, k, l) + C(i) Δ(i)√

ΔT (i)Δ(i)

21: Compute J(i, J + 1, k, l)
22: Let J(i, j + 1, k, l) = J(i, j + 1, k, l)+

Jcc(Pi(j + 1, k, l),P(j + 1, k, l))
23: Swim: Let m = 0
24: while m < Ns do
25: Let m = m + 1
26: if J(i, j + 1, k, l) > Jlast then
27: Let J(i, j + 1, k, l) = Jlast

28: Let Pi = Pi(j + 1, k, l) + C(i) Δ(i)√
ΔT (i)Δ(i)

29: Use this Pi to compute new J(i, j +1, k, l)
30: else
31: m = Ns

32: end if
33: end while
34: end for
35: end while
36: Compute for each bacterium i, for given k and l

37: J i
health =

Nc+1∑
j=1

J(i, j, k, l)

38: Eliminate Sr bacteria with highest Jhealth and split
the other Sr bacteria at the same locations as the
original ones.

39: end while
40: For each bacterium, with probability Pd eliminate the

bacterium and create a new one at a random position.
41: end while

transmit their coordinates. The nodes that get settled at
the end of an iteration serve as references. They transmit
their location information as the beacons do.
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2) Each node that falls within transmission radii of 3 or
more non-collinear references (beacons or settled nodes)
is referred to as a localizable node.

3) Each localizable node in the deployment estimates its
distance from each of its neighboring beacons or settled
nodes. The effect of measurement noise is simulated as
a Gaussian additive white noise. A node estimates its
distance from a beacon i as d̂i = di +ni, where di is the
actual distance given by di =

√
(x − xi)2 + (y − yi)2.

Here (x, y) is the location of the target node, and (xi, yi)
is the location of the ith beacon in the neighborhood of
the target node. The measurement noise ni has a random
value uniformly distributed in the range di ± di

Pn

100 .
4) Two case studies are conducted: In case study 1, each

localizable node runs PSO to localize itself. In case study
2, each localizable node runs BFA to localize itself. Both
PSO and BFA find the coordinates (x, y) that minimize
the objective function that represents the error defined in
(3).

f(x, y) =
1
M

M∑
i=1

(√
(x − xi)2 + (y − yi)2 − d̂i

)2

,

(3)
where M ≥ 3 is the number of beacons or settled nodes
within the transmission radius of the target node.

5) PSO and BFA search for best values of (x, y) that
minimize the error, therefore the dimensionality of the
search space is 2.

6) After all the NL localizable nodes determine their
coordinates, the total localization error is computed
as the mean of squares of distances between actual
node locations (xi, yi) and the locations (x̂i, ŷi), i =
1, 2, · · · , NL, determined by PSO or BFA. This is com-
puted as (4).

El =
1

NL

L∑
i=1

(
(xi − x̂i)2 + (yi − ŷi)2

)
(4)

7) Steps 2 to 6 are repeated until either all dumb nodes
get localized or no more nodes can be localized. The
performance of the localization algorithm is determined
by the doublet (NNL,El), where NNL = N −NL is the
number of nodes that could not be localized. The lower
the values of NNL and El, the better the performance
is.

As the iterations progress, the number of localized nodes
increases. This increases the number of references available
for already localized nodes. A node that localized using just
three references in an iteration k may have more references in
iteration k+1. This decreases the probability of flip ambiguity.
On the other hand, If a node has more references in iteration
k + 1 than in iteration k, the time required for localization
increases. This is avoided in this study by restricting the
maximum number of reference to six, which is arbitrarily
chosen.

V. NUMERICAL SIMULATION AND RESULTS

Simulation of the WSN and its performance evaluation
is done in MatlabTM. 50 target nodes and 10 beacons are
randomly deployed in a sensor field having dimensions of
100×100 square units. Each beacon has a transmission radius
of r = 25 units. Simulation settings specific to case studies 1
and 2, and the result obtained are presented in the following
subsections.

A. Case Study 1: PSO-based Localization

In this case study, each localizable target node runs a 2-
dimensional PSO to localize itself. PSO parameters are set as
follows:

• Population = 30, Iterations = 150
• Acceleration constants c1 = c2 = 2.0
• Inertial weight is decreased linearly from 0.9 in the first

iteration to 0.4 in the last iteration
• Limits on particle positions: Xmin=0 and Xmax=100

30 trial experiments of PSO-based localization are conducted
for Pn = 2 and Pn = 5. Average of total localization error El

defined in (4) in each iteration in 30 runs is computed. Average
of total localization error El defined in (4) is computed.

B. Case Study 2: BFA-based Localization

In this case study, each localizable target node runs a 2-
dimensional BFA to localize itself. BFA parameters are set as
follows:

• Population = 30
• Number of chemotactic steps Nc = 5,
• Number of swims Ns = 20
• Number of reproduction rounds Nre = 5
• Number of elimination-dispersion rounds Ned = 5
• Fraction of bacteria that split in each reproduction round

Sr = 0.5
• Probability that a bacterium is eliminated in an

elimination-dispersion round ped = 0.1;
30 trial experiments of BFA-based localization are conducted
for Pn = 2 and Pn = 5. Average of total localization error
El defined in (4) is computed. Both the algorithms studied
here are stochastic, therefore they do not produce the same
solutions in all trials even with identical initial deployment.
This is the reason why the results of multiple trial runs are
averaged. Besides, initial deployment is random, so the number
of localizable nodes in each iteration is not the same. This
affects the total computing time.

C. Discussion on the Results

The actual locations of nodes and beacons, and the coordi-
nates of the nodes estimated by PSO and BFA in a trial run
are shown in Figure 1.

The initial deployment of nodes and beacons for PSO and
BFA-based localization is the same in a trial run. Results
of PSO and BFA-based localization summarized in Table I
show that both stochastic algorithms used here have performed
fairly well in WSN localization. The effect of Pn, percentage
noise in distance measurement, on localization accuracy can be
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Fig. 1. Results of a trial run of PSO and BFA-based iterative localization
for the identical deployment with N = 50, M = 10, r = 25 units and the
sensor field size of 100 × 100 square units.

clearly seen. Average localization error in both PSO and BFA
is reduced when Pn is changed from 5 to 2. The performance
metric doublet (NNL,El) for BFA is less than that for PSO,
indicting superior performance of BFA. However, computing
time required for BFA is significantly more than that for
PSO, which is a weakness of BFA. In addition, the amount
of memory required for BFA is more than that for PSO.
This clearly calls for a trade off. A choice between PSO
and BFA is influenced by how constrained the nodes are in
terms of memory and computing resources, how accurate the
localization is expected to be and how quickly that should
happen.

The detailed observations made in the first five trial runs
out of the 30, are summarized in Table II. This table depicts
increasing NL, the number of localized nodes, in each itera-
tion. It also shows the correction of large errors due to flip
ambiguity.

VI. CONCLUSIONS AND FUTURE WORK

This paper has discussed PSO and BFA, bio-inspired algo-
rithms for determining coordinates of the nodes in a WSN in
a distributed and iterative fashion. The localization problem
is treated as a multidimensional optimization problem and
addressed through the aforementioned population-based opti-
mization algorithms. Distributed localization proposed here has
the advantage of reduced number of transmissions to the base
station, which helps the nodes conserve their energy, which
is a serious concern in most WSN applications. The paper
has briefly outlined the algorithms and presented a statistical
summary of their results for comparison. The results show that
the proposed algorithms have a trade off issue. While the PSO
determines the node coordinates more quickly, the BFA does
so more accurately.

This work can be extended in several directions. Literature
is rife with centralized localization algorithms. In a possible
future study, both PSO and BFA can be used in centralized
localization method in order to compare the performances
of centralized and distributed localization methods. Such a
comparison with an emphasis on energy awareness will be
particularly useful. Besides, a comparison of the stochastic
localization methods with the available deterministic methods
can give an useful insight. This can be another outgrowth of
the study conducted in this paper.

In summary, both PSO and BFA have performed fairly well
on distributed iterative localization in WSNs. Both algorithms
have their own strengths and weaknesses, which have been
pointed out in the paper. A judicial choice between the
algorithms depends on memory and computing resources on
the node and desired localization speed and accuracy.
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