
An Analysis of the History of Classical Software
Development and Agile Development

 Li Jiang Armin Eberlein
 School of Computer Science

The University of Adelaide
Adelaide, SA, 5000, Australia

ljiang@cs.adelaide.edu.au

 Department of Computer Science & Engineering
American University of Sharjah,

Sharjah, UAE
eberlein@ucalgary.ca

Abstract: The ongoing debate over the merits of classical
Software Engineering (SE) methodologies and agile
methodologies has so far resulted in no clear benefits for the SE
community. This paper uses the CHAPL1 framework developed
in our previous research to analyse the history of classical SE
methodologies and agile methodologies. Our historical analysis
focuses on the following three perspectives: the practices, the
principles, and the technological context. The analysis reveals
that both approaches to software development have similar roots
and that their proponents have ample ground for constructive
discussions. In fact, both approaches can be seen as
complementary and their integration could contribute to project
success.

Keywords: software engineering, software process, traditional
software engineering, agile development, historical analysis.

I. INTRODUCTION

Significant effort has been invested over the last decades in
identifying good practices, models and methods2 that lead to more
efficient software development. The large number of
methodologies has also led to heated debates amongst software
developers who now tend to classify SE methodologies into two
categories:
1) Classical SE methodologies: They are also often referred to as

heavy-weight or plan-driven and require upfront requirements
definition, documentation and detailed plans. Two prominent
examples are the waterfall model [26] and the spiral model
[33]. Larger frameworks, such as the CMM, generally support
classical SE methodologies [1].

2) Agile methodologies: They are often called light-weight or
agile. This category includes e.g., (Extreme Programming) XP
[2] and Scrum [58], which follow the 12 agile principles as
described in Beck [2] and Cockburn [3].
These two categories appear to have conflicting ideas and are

supported by two groups of proponents that have rarely engaged
in constructive discussions. With the continuous growth of size
and complexity of software applications, we believe it is time to
systematically examine the differences and relationships between
the two categories and their associated development philosophies.
Our initial research shows that there are multi-dimensional
relationships between SE methodologies. The five dimensions
that we use in our analysis are Contextual, Historical, Analysis by

1 See [4] for more information
2 For a detailed discussion on the differences between the terms SE method,
SE methodology, software process model and software lifecycle, please see
[5, 6].

Analogy, Phenomenological, and Linguistic [4]. They are typical
analysis methods used in philosophy [7; 8]. This paper focuses on
the historical dimension.

We believe that a better understanding of the historical links
between the different SE methodologies is of great value to the
SE community. Klein states that historical analysis increases
awareness of the shared history, and a shared history can reduce
hostility, increase commitment and make communication easier
across boundaries [9]. It also supports reflection and avoids
dogmatism as witnessed by many of us [10]. Therefore, this paper
makes an initial step towards addressing the historical link
between the methodologies. To achieve this, we selected and
analysed over 100 books and papers on SE methodologies
published at major IEEE SE conferences and journals, such as
ICSE conferences, IEEE Transactions on SE, and ACM
Transactions on SE and Methodology. The research described in
this paper focuses on the historical analysis of some typical
practices, principles3 and technological context of methodologies
from the two categories discussed above.

The rest of the paper is organised as follows: The historical
analysis of the practices used in classical SE and in agile
development is presented in Section II, and the principles in
Section III. Analysis of the technological context of SE
methodologies is presented in Section IV. Related work is
described in Section V. Conclusions and discussion of future
work are summarised in Section VI.

II. HISTORICAL ANALYSIS OF THE PRACTICES USED IN
CLASSICAL SE AND AGILE DEVELOPMENT

The terms “agile” and “agility” can be traced back to the
manufacturing industry in 1991 when “lean development”
emerged in manufacturing with the aim of eliminating waste,
amplifying learning, delivering as fast as possible and
empowering teams [11]. Youssef [12] even coined the term “agile
manufacturing” around that time. It therefore appears that the
roots of agile methodologies can be traced back to traditional
engineering disciplines.

The idea of iterative and incremental development used in
most agile process models can be found as early as the 1930s
when a quality expert at Bell Labs used this practice to improve
product quality [13]. A complete definition and explanation of

3 According to the Webster English Dictionary, a principle is a comprehensive
and fundamental law, doctrine, or assumption. In this paper, we define a
principle as an idea, insight or objective behind a practice, while practices are
the activities that carry out the principle. A good discussion about the
differences between principle and practice can be found in [17].

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3833

this practice for software development is given by Basili in 1975
[14]. Gladden and Gilb have proposed the practice of “delivering
working software early” in the early 1980s [15, 16] to address the
issue of late delivery of software products resulting in customer
dissatisfaction. These practices can be directly mapped to the
agile practice “frequent delivery” and “continuous integration”
(see Table 1).

The practice of using a prototype of working software as the
primary measure of progress is one of the principles in agile
modelling. A similar idea can be found in manufacturing as early
as 1982 when Gladden stated that a physical object conveys more
information than a written specification [15]. Prototyping has
been extensively used in classical SE for feasibility studies and
elicitation of requirements. For instance, Rapid Application
Development (RAD) is a development approach that is based on
this practice [18].

Requirements engineering (RE) practices are a very important
part of most engineering disciplines since having a good
understanding of requirements is the first step towards delivering
a product that meets customer expectations. However, RE is not
an easy process as uncertainty and volatility of requirements are
two problems that challenge developers. Joint Application Design
(JAD) is a practice used in IBM Research Labs in Toronto in the
late 1970’s [19]. The fundamental objective of this practice is to
get quality business requirements through active participation of
stakeholders. Some ideas used in JAD are similar to stakeholder
collaboration used in Dynamic Systems Development Method
(DSDM) [20], another representative of agile methodologies.

The importance of having a work environment that helps
improve communication among team members has been
discussed by Weinberg in [21]. He argued that face-to-face
communication can help exchange information efficiently. The
practice in XP of having an “open workspace” also emphasizes
the importance of face-to-face communication.

The historical analysis of practices used in agile development
and traditional SE shows that there are clear similarities and
significant overlap in the use of practices. Our findings based on
the historical analysis of practices is summarised in Table 1.

III. HISTORICAL ANALYSIS OF THE PRINCIPLES USED IN
CLASSICAL SE AND AGILE DEVELOPMENT

The ultimate goal of SE theories, techniques and
methodologies is to help developers produce high-quality
products in an economical and timely manner [22]. However,
there is not one ideal process that works in all situations. In fact,
development processes and techniques tend to change at least
slightly each time when a new product is designed and produced
[23] even within the same company. Dijkstra states that any piece
of software to be developed is new and its development process is
an innovation process [24]. Thus, the software process has to be
customized according to the specific needs of the project [25].

In this section, we want to examine the fundamental principles
used in classical SE and in agile development irrespective of the
terminology used. This is because those SE principles tend to be
enduring [17] and can be instantiated into different practices.

In [26] where the classical waterfall model was presented,
Royce emphasized that a designer “must communicate with

interfacing designers, with his management and the customers”
and needs to “maintain customer involvement in specification and
certification”. This principle shares the same values with the
practices of “Active user involvement” and “stakeholder
collaboration” in DSDM [27], and “On-site customer” in XP. As
another example, “using better and competent people in software
development” is one of the prominent principles of agile, which
has also been discussed as a principle in a lot of classical SE
literature (e.g., [28; 29; 24]).

Furthermore, the underlying principle behind “Product
backlog” and “Sprint backlog” in Scrum and “User story card” in
XP is similar to requirements specification in waterfall,
cleanroom [30] and spiral models. All of them assume that at least
some requirements need to be known before implementation can
start. However, there is significant disagreement in practice
between the two schools of thought on the extent to which
requirements have to be determined and documented. For a big
project with high requirements availability and low requirements
volatility it is useful to first get a clear picture of all system
requirements. However, for a smaller or a medium sized project
with uncertain requirements it makes sense to scale down
requirements specification to its minimum format by using
incremental and iterative processes that help discover
requirements gradually.

Based on the analysis of some fundamental principles used in
classical SE methodologies and agile methodologies, we can see

TABLE 1. LINKS BETWEEN PRACTICES USED IN TRADITIONAL SOFTWARE
DEVELOPMENT AND AGILE DEVELOPMENT

Practice in Traditional Software Development and Other
Disciplines (shown in italics)

Practice in Agile Development

Delivering working software early [15, 16] Continuous integration [XP]
Frequent delivery [DSDM]

Iterative development [13] [14] Iterations and increments [Scrum]
[DSDM] [XP]

A "flexible" approach that embraces change is preferable [43]
Accommodate rapid requirements change [44] [45]

Product backlog [Scrum]

Get the software into production in a matter of weeks [46] Small releases [XP]
Iteratives development [13] [14] Continuous integration [XP]

Sprint backlog [Scrum]
Iterations and increments [DSDM]

People who occupy a building should (in conjunction with a
professional) be the ones to make the high-impact decisions [47]

Active user involvement (DSDM)
On-site customer [XP]

The motivation of developer is the inner directing force for
designing better software [21]

Empowered teams [DSDM]

1) An adequate environment contributes to the improvement of
quality [21] 2) Face-to-face communication helps transmit
information efficiently [21]

Open workspace [XP]

Evolution of a plan in response to business or technical changes
[48]

Planning game [XP]

Daily scrums [Scrum]
Regular build schedule [FDD]

Software Configuration Management [49] Configuration management [FDD]
Reversible changes [DSDM]

Test-driven design iterations [43] Tests-driven development [XP]
Integrated testing [50] Integrated testing [DSDM]
Baselined requirements [51][52] Baselined requirements [DSDM]
Involving stakeholder in design [19] Stakeholder collaboration [DSDM]
Better software design [24] Refactoring [XP]
Software inspections [53] Inspections [FDD]

Reversible changes [DSDM]
Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away [54]

Simple design [XP]
Fitness (DSDM)

1) Self-organizing teams increase the speed of new product
development [55] 2) Self-managing groups can be expected to be
more successful in turbulent environments [56]
3) Self-organizing teams create a culture of innovation [57]

Self managed teams [Scrum]
Empowering teams [DSDM]
Feature teams [FDD]

 Notes: (1) [XP], [Scrum], [DSDM], [FDD] represent eXtreme Programming [2], Scrum [58], Dynamic
Systems Development Method [20], Feature Driven Development [59] respectively

 (2) The references in the left column are the sources that the practices or principles of traditional
Software Development have been discussed

3834

that agile methodologies have at least some historical links to
classical SE methodologies. This is a further indication that we
should not dogmatically separate classical SE from agile
development. Fig. 1 illustrates the results of our analysis of the
historical links between the practices of the two schools through
fundamental SE principles.

IV. HISTORICAL ANALYSIS OF THE TECHNOLOGICAL
CONTEXT OF CLASSICAL SE AND AGILE DEVELOPMENT

In this section, we want to investigate how technology
influenced the development and use of SE methodologies over
the years. Some researchers have argued that context is the key
reason for deciding which methodology is suitable [10, 31]. One
needs to consider historical, organisational, cultural and project
contexts.

In this research, we analysed the history of the technological
context of several classical SE and agile methodologies. For the
purpose of this paper, the discussion of context focuses on the
technology available when a SE methodology was developed,
used, and evolved. We will take several methodologies as
examples.

A. Technological Context of the Waterfall Model
The waterfall model emerged in the late 1960s when

programming languages were inefficient and hardware consisted
of mainframe computers with slow CPUs and very limited
memory. The waterfall model mainly addresses management

issues which include well-defined development phases and some
basic SE principles, such as involving customers and producing
quality requirements specifications. It is suitable within the
technological context of that time and for large, long-term
projects that require extensive upfront contracts between
developers and customers. However, after contracts have been
established, requirements are not supposed to change any more.
Technical writers would be hired to handle the large amount of
documentation required for the project. A librarian would keep
track of code libraries and other paper documents as electronic
storage space was expensive and no document management
systems were available [29]. Having well-defined requirements
documents was an important means for effective communication
among developers in big teams [32]. With the availability of
configuration management and documentation tools nowadays,
the instantiation of the waterfall model in practice has to change.

B. Technological Context of Agile Methodologies
When agile methodologies emerged in software engineering,

the technological landscape had drastically changed:
• Very powerful PCs are available at low cost
• Storage space is easily available
• Network facilities have increased capabilities
• Very powerful object-oriented languages, such as C++, Java

and J2SE techniques, have been developed
• Internet and Web technologies are widely available
• Visual programming technologies and highly interactive GUI

Examples of Classical Software
Engineering Practices

Software Engineering
Principles Examples of Agile Practices

Identify requirements and functions [C]
Requirements specification development [W]
Determination of requirements [S]

Invest in the understanding of the
problem [17]

Product backlog [Scrum]
Sprint backlog [Scrum]
User story card [XP]

Peer review of individual work [C]
Code should be subjected to a simple visual scan
by a second party who was not involved in
writing the original code [W]

Inspect code [60]
Pair programming [XP]
Inspections [FDD]

Maintain customer involvement in specification
and certification [W]
Designer must communicate with interface
designers, with his management and the
costumers [W]

Involve the customers [26]
Active user involvement and
stakeholder collaboration [DSDM]
On-site customer [XP]

Determination of plans [S]
Identification and resolution of risks during the
entire software development process [S]
Rapidly revise incremental plans for new
requirements and respond to schedule and
budget changes [C]

Risk management [46]
Identify and manage uncertainty

[17]

Regular build schedule [FDD]
Planning game [XP]

Incremental development cycle [C]
Iterative and incremental development [S]

Iterative and incremental
development [13, 46]

 Iterative and incremental
development [Scrum] [DSDM]
[XP]

Development and testing is accomplished by
small teams [C]

Use better and fewer people [28]
People are the key to success [60]

Empowering teams [DSDM]

Team frequently reviews and discusses design
strategies [C]

Establish a software process that
provides flexibility [17]

Daily scrums [Scrum]
Open workspace [XP]
Reporting/visibility of results
[FDD]

Requirements management [S] Change is inherent to software, plan
for it and manage it [17, 28] Baselined requirements [DSDM]

Configuration management [S] Maintain disciplined product control
[28]

 Configuration management [FDD]

Team strives for design simplification [C] Manage quality throughout the life
cycle as formally as possible [17]

Simple design [XP]

Stepwise system integration process [C] Produce software in a step-wise
fashion [17]

Continuous integration [XP]
Integrated testing [DSDM]

3835

and programming environments help design interactive user
interfaces and allow the fast implementation of prototypes.

These advancements increased the ambitions of the software
industry and enabled developers to deal with a wide range of
applications from small software projects that need 2 to 3
developers for 3 to 6 months to extremely complex and large
systems that require hundreds or even thousands of developers.
Over the last decade, software developers have found that it is
hard to plan the entire system development process in advance
due to the fact that many systems, especially web-based or web-
related systems, change and grow rapidly in their requirements,
functionality and contents during their life cycle, much more than
what they encountered before [36].

To deal with the challenge of rapid change, agile
methodologies were developed. They could immediately address
some challenges of many small to medium-sized software
projects. More importantly, these methodologies evolved and
matured into a new category of SE technologies with tremendous
possibilities to maximise developers’ potential [37]. They are now
supported by new technologies that allow them to:

• model requirements and system behaviour early on
• accommodate requirements change at much lower cost and

manage and control requirements changes with support of
requirements management tools

• conduct automated testing with the support of tools
• easily contact and involve customers throughout the world

using mobile phones, video conferencing, and high-speed
internet

• manage and plan software projects very efficiently with the
support of project management tools

• produce new software releases within a short period of time
using efficient and effective programming and configuration
management tools.

Furthermore, the advent of J2EE, .NET and various other
technologies provides support to developers to apply agile
practices in software projects.

The detailed analysis of the historical context of other SE
methodologies shows that the technological context and the
project context play important roles in the emergence and
evolution of SE methodologies. A summary of our research
results is given in Table 2.

V. RELATED WORK

To the best of our knowledge, very little research has
investigated in depth the historical links between classical SE
methodologies and agile methodologies. The closest related work
was done by Abbas et. al. [38] who studied the roots of some
agile practices. Abbas et. al. argued that some agile practices have
their historical roots in older SE practices. However, their work
did not investigate links between classical and agile SE
considering the principles and the technological context.

Other related work is the work by Larman and Basili [13]
who discussed the historical roots of the practice “iterative and
incremental methodology” in great detail. Abrahamsson et. al.
conducted a comparative analysis of several agile methodologies
and their relationships [39]. However, no historical analysis of the
relationship between classical methodologies and agile

methodologies is provided. Turner and Jain show that agile
practices support 11 Process Areas and Generic Practices of
CMMI which indicates some links between CMMI and agile
development [40]. We hope this paper provides a more
comprehensive analysis of this issue.

TABLE 2. HISTORICAL ANALYSIS OF THE TECHNOLOGICAL CONTEXT
OF MAJOR SOFTWARE DEVELOPMENT METHODOLOGIES

Time
period

Name of major
new

methodologies
emerged

Technologies available Examples of
types of software

projects
Examples of several major

program languages and/or SE
tools used

Examples of
computer hardware

Before
1968

Waterfall [26] (1) Languages: first, second and
partial third generation
languages such as FORTRAN,
ALGOL, COBOL, BASIC, PL/I

(2) Tools: No significant tool
support available

• Mainframe
computers

• Storage space is
very limited, slow
and expensive.

Large software
projects (e.g. military
projects), system
software, new
languages, and
operation systems

1970-
1979

• Structured
programming
[61]

• Modularization
& information
hiding [62]

• Abstract Data
Types [63]

• Model data and
algorithms
separately [64]

(1) Languages: third generation
language, e.g., C, FORTRAN,
COBOL
(2) Tools:

• Compilers run on
microcomputer

• Unix system, DOS

• Some text editors for program
languages

• Some tools provided isolated
support for single activity,
like editing programs,
debugging, etc. [73]

• Microcomputers
and workstations
are available

• Storage space is
still very limited

• Other hardware
facilities are
available such as
various monitor,
printers,
interfaces, etc.

•Software projects
increase size and
complexity.

• Information systems
increase size and
complexity.

•Computer games

•Large number of
software projects of
medium size and
complexity

1980-
1989

• Structured
Systems Analysis
and Design
Method
(SSADM) [65]

• Prototyping [34,
35]

• JAD [19]

(1) Languages: third and fourth
generation languages such as:
Pascal, C, Ada, dBASE II, and
Foxbase
(2) Tools or Environments:

• Unix, MSDOS, Windows,

• Increased computational
power of PC

• Graphical user interfaces
(GUI) that have tremendous
commercial impact at SE
communities (starting in mid-
1980s)

• Increasing number of
compilers, program editors
and debugging tools

• Some interactive
programming environments

• Increased power
and popularity of
Personal
Computers (PCs)
and workstations

• Storage space is
easily available,
but still constraint

• The functionality
and efficiency of
hardware facilities
were increased

Software industry
grows very fast [74]

• The size and
complexity of
many software
projects continue
to grow.

• Information
systems with
further increasing
size and
complexity.

• Increasing
popularity of PC
applications

• Computer games
with increasing
size and
complexity

• Evolutionary
development [16]

• Spiral model [33]

1990-
1999

• Capability
Maturity Model
(CMM) [66, 67]

• ISO 9000-3 [68]

• Object-Oriented
SE[69]

• C++

• PowerBuilder is an effective
tool to construct interactive
interfaces that help implement
prototypes quickly

• Informix-4GL

• Components engineering and
middleware

• Script languages

• Java and J2SE

• Internet and Web
technologies emerged

• “Open source paradigm”
started [77]

• Visual programming
technologies and highly
interactive GUI.

• Integrated Software
Development Environments
[73; 76]

• Powerful PCs are
available at much
lower cost and
much higher
capability

• Storage space is
easily available

• Network facilities
available

• The functionality
and efficiency of
hardware
facilities continue
to increase

Software industry
continue to grow very
quickly [74]

• The size and
complexity of
software projects
continue to grow.
e.g. space projects

• PCs applications
keep becoming
more popular and
powerful

• Various business
software
applications
(including MIS
system) associated
with internet
applications
flourish

• Many software
projects are related
to web applications

• Rapid
Application
Development
[18]

• Scrum [58]

• DSDM [20]

• Synch and
stabilize process
[70]

• XP [2, 71]

• Feature driven
development [59]

2000-
Now

• CMMI

• Rational Unified
Process (RUP)
[72]

• Agile modelling
[78]

• Proliferating of open source
development [75]

• Web technologies were
improved very quickly

• Middleware, components,
and COTS technologies

• J2EE and Microsoft's .NET
technology

• Rational Rose

• Intellectual visualized GUI
and SE environments

• Powerful script languages
and visual environments for
web application development

• Very powerful
PCs with
enormous
hardware and
software resources

• Huge storage
space is available
at low cost

• Very powerful
internet facilities

• The functionality
and efficiency of
hardware facilities
continue to
improve

• Software projects
associated with
military purposes

• Software products
used almost
everywhere

• Projects related to
everyday life

• Large number of
software projects
that are related to
advanced web
application

Note: The time period of the methodologies and techniques emergence shown in the table refers to the time
that they became popular.

3836

VI CONCLUSION AND FUTURE WORK

Unfortunately, all SE methodologies still have significant
limitations [41]. Thus, we should stand back and look at the origin
of these methodologies, the philosophy behind the methodologies,
and the technologies and social environment which supported the
generation of these methodologies. Research into the historical
links between classical SE methodologies and agile
methodologies can help us understand the relationships between
the practices in the two development philosophies. This paper
presented our findings of the historical links from three
perspectives: the practices, the principles, and the technological
context.

A number of implications of this investigation are
summarised below:

• There is significant evidence that practices used in SE
methodologies and in agile methodologies have historical
links. Moreover, many practices in both approaches have
roots in other disciplines as well as in traditional engineering
disciplines as shown in Table 1.

• An analysis of the fundamental principles behind some
practices used in agile methodologies shows that the same
principles are used in the practices of classical SE
methodologies, i.e. we can see links between the
fundamental principles behind practices in both categories of
methodologies.

• The technological context has a significant impact on the
emergence, evolution and change of methodologies. A
methodology that works well in the context of one
organization with its particular social, technological,
managerial and cultural environment does not guarantee that
it will also work well in another context. This means that any
SE methodology has to be adapted to the context of its usage.

Historical links between existing methodologies indicate that
classical SE methodologies and agile methodologies share the
same values, and therefore, are all valuable assets of the SE
discipline. This holistic view is very important since it will:

• provide information about the relationships between SE
methodologies which can provide developers a good position
to understand deeply, judge objectively and use SE
methodologies wisely in practice,

• allow developers to study valuable practices of all SE
methodologies and integrate them to address today’s SE
problems. The benefits of integrating practices used in
classical SE and in agile methodologies have already been
reported by Boehm in [42].

We argue that the disparities between SE methodologies
reflect the fact that different practices are required to tackle the
different challenges in a large array of software projects. The
failure of a software project is not caused by a software
methodology but by the development team that selected an
inappropriate development methodology.

Already in 1996, Basili emphasized that we need models that
help us reason about the suitability of SE practices and
methodologies for a specific software project [41]. However, still
very little research has been done in this area [31]. We argue that,
based on an understanding of the relationships between classical
SE and agile methodologies, it is possible and beneficial to SE to

develop a reasoning mechanism that assists with the selection of
best practices, techniques and methodologies for software projects.

REFERENCES

[1] M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, ”The Capability
Maturity Model: Guidelines for improving the software process”,.
Addison-Wesley, Reading, Mass., 1995.

[2] K. Beck, C. Andres, “Extreme programming explained: Embrace
change”. Addison-Wesley, Boston, 2005.

[3] A. Cockburn, “Agile software development, the people factor”,
Computer, 34 (11), p.131-133.

[4] L. Jiang, A. Eberlein, “Towards a framework for understanding the
relationships between classical software engineering and agile
methodologies”. In: APSO 2008,:In conjunction with 30th International
Conference on SE, Leipzig, Germany, 10 – 18, May 2008.

[5] C. Floyd, “A comparative evaluation of system development methods”.
In Olle, T.W., Sol, H.S., and Verrijn-Stuart, A.A., (eds) (North-Holland,
Amsterdam), pp. 19-54, 1986.

[6] L. Jiang, “A framework for requirements engineering process
development”, University of Calgary, PhD Thesis, Sept. 2005

[7] B. Dahlbom, L. Mathiassen, “Systems development philosophy”, ACM
SIGCAS, Computers and Society, Vol. 22 , Issue 1-4, pp: 12 – 23, 1992

[8] C. Mitcham, “The importance of philosophy to engineering”, Teorema
XVII(3):pp. 27-47, 1998

[9] H. Klein, R. Hirschheim, “The structure of the IS discipline
reconsidered: Implications and reflections from a community of practice
perspective”, Information and Organization, 18 (4), p. 280,. 2008

[10] P. Kruchten, “Voyage in the agile memeplex” ACM Queue: Tomorrow’s
Computing Today, 5 (5):38–44, July 2007.

[11] M. Poppendieck, T. Poppendieck, “Lean software development: An
agile toolkit”, Addison Wesley, The Agile Software Development
Series, New York, NY., 2003.

[12] M.A. Youssef, “Agile manufacturing: a necessary condition for
competing in global markets”, Industrial Engineering, Dec., 18(20),
1992.

[13] C. Larman, V.R. Basili, “Iterative and incremental development: A brief
history”, IEEE Computer, 36(6): 47-56, 2003.

[14] V. Basili, J. Turner, “Iterative enhancement: A practical technique for
software development” IEEE Trans. Software Eng., pp. 390-396, 1975.

[15] G.R. Gladden, “Stop the life-cycle: I want to get off”, Software
Engineering Notes, 7(2): pp. 35-39, 1982.

[16] T. Gilb, “Evolutionary delivery versus the waterfall model”, ACM
SIGSOFT Software Engineering Notes, 10(3): pp. 49-61, 1985.

[17] P. Bourque, “Fundamental principles of software engineering–A
journey”, Journal of Systems and Software, 62 (1), p. 59, 2002.

[18] J. Martin, “Rapid application development” Macmillan Publishing, New
York, 1991.

[19] J. Wood, D. Silver, “Joint application development”, John Wiley and
Sons, NY., 1989.

[20] D. Millington, J. Stapleton, “Developing a RAD standard”, IEEE
Software, 12(5), 54-56, 1995.

[21] G.M. Weinberg, “The psychology of computer programming”, New
York : Van Nostrand Reinhold, 1971

[22] G. Cugola, C. Ghezzi,”Software processes: A retrospective and a path to
the future”, Journal of Software Process - Improvement and Practice,
vol. 4, pp. 101-123, 1998.

[23] T. Jarratt, C. Eckert, P.J. Clarkson, “Pitfalls of engineering change,
change practice during complex product design”, Advances in Design,
Springer London, 2006.

[24] E.W. Dijkstra, “The humble programmer”, Communication of the ACM,
15(10): p. 859-866, 1972.

[25] R.L. Glass, “Matching methodology to problem domain”.
Communications of the ACM, 47 (5), p. 19, 2004.

[26] W. Royce, “Managing the development of large software systems”.
Proceedings of Westcon, IEEE CS Press, pp. 328-339, 1970.

[27] J. Stapleton, “Dynamic systems development method”, Addison Wesley,
Longman, Reading, Mass., 1997.

3837

[28] B. Boehm, “Seven basic principles of software engineering”, State of
The Art Report on SE Techniques, Infotech International Ltd.,
Mmdenhead, UK, 1976.

[29] M.V. Zelkowitz “Perspectives on software engineering”, Computing
Surveys. (ACM) 10(2), 197-216, 1978.

[30] S.J. Prowell, C.J. Trammell, R.C. Linger, J.H. Poore, “Cleanroom
software engineering: technology and process”, Addison-Wesley, 1999.

[31] L. Jiang, A. Eberlein, B.H. Far “A case study validation of a knowledge-
based approach for the selection of requirements engineering
techniques”, Journal of Requirements Engineering, 13(2), pp. 117-146,
2007.

[32] F.P. Brooks, “The mythical man-month: Essays on software
engineering”, Addison-Wesley, 1995.

[33] B. Boehm, “A spiral model of software development and enhancement”,
Computer, May, pp. 61-72, 1988.

[34] H. Gomaa, D.B.H. Scott “Prototyping as a tool in the specification of
user requirements”, International Conference on Software Engineering,
p. 333, 1981.

[35] H. Gomaa, “The impact of rapid prototyping on specifying user
requirements", Software Engineering Notes, 8 (2), p. 17, 1983.

[36] A. Ginige, S. Murugesan, “Web wngineering: an introduction”, IEEE
Multimedia, Special Issues on Web Engineering, vol 8, no 1, pp 14-18,
2001.

[37] R. Cowan, “Software wngineering technology watches”, IEEE Software,
19 (4), p. 123, 2002.

[38] N. Abbas, A. Gravell, G. Wills “Historical roots of agile methods: where
did “agile thinking” come from?” In Proceedings of Agile Processes and
eXtreme Pogramming in Software Engineering, Limerick, Ireland, 2008.

[39] P. Abrahamsson, J. Warstab, M.T. Siponenb, J. Ronkainena, “New
directions on agile methods: A comparative analysis”, Proceedings of
the 25th International Conference on Software Engineering, pp. 244–
254, 2003).

[40] R. Turner, A. Jain, “Agile mMeets CMMI: culture clash or common
cause?” In D. Wells and L. Williams (Eds.): LNCS , XP/Agile Universe
2002, pp. 153–165, 2002.

[41] V.R. Basili, “The role of experimentation in software engineering: past,
current, and future”, 18th International Conference on SE, Berlin,
Germany, pp: 442 – 449, 1996.

[42] B. Boehm, “Using risk to balance agile and plan-driven methods”, IEEE
Computer, 36 (6), p. 57, 2003.

[43] S. Thomke, “The role of flexibility in the development of new products:
An empirical study”, Research Policy, 26, pp. 105–119, 1997

[44] M. Aoyama, “Agile software process and its experience”, 20th
international conference on software engineering, 1998.

[45] M. Aoyama, “Web-based agile software development”, IEEE Software,
15 (6), p. 56, 1998.

[46] T. Gilb, “Principles of software engineering management”, Addison-
Wesley, 1988.

[47] C. Alexander, “The timeless way of building”, Oxford University Press,
New York, 1979.

[48] H. Takeuchi, I. Nonaka, “The new product development game”, Harvard
Business Rev., Jan./Feb., pp. 137-146, 1986

[49] E. Bersoff, V. Henderson, S. Siegel, “Software configuration
management”, Prentice-Hall, Englewood Falls, NJ, 1980.

[50] I. Sommerville “Software engineering”, Addition Wesley, 8/e, 2006.
[51] T.E. Bell, T.A. Thayer “Software requirements: are they really a

problem?” 2nd International Software Engineering Conference, October
1976.

[52] M.C. Paulk, B. Curtis, M.B. Chrissis, “Capability maturity model for
software”, Software Engineering Institute, CMU/SEI-91-TR-24,
ADA240603, August 1991.

[53] M.E. Fagan, “Design and code inspections to reduce errors in program
development”. IBM System Journal, 15(3), pp. 182–211. 1976.

[54] A.D. Saint-Exupery, “Wind, sand and stars”, London: Heinemann, 1954.
[55] D.D. Dill, A.W. Pearson, “The self-designing organization: structure,

learning, and the management of technical professionals” Technology
Management: the New International Language (p. 33), 1991.

[56] C. Smith, D. Comer “Self-organization in small groups: A study of
group effectiveness within non-equilibrium conditions”, Journal of
Human Relations. 47:553–81, 1994.

[57] K. Imai, I. Nonaka, H. Takeuchi, “Managing the new product
development Process: How Japanese companies learn and unlearn”, In
K.B. Clark, R. H. Hayes. and C. Lorenz (eds.), The Uneasy Alliance:
337-376, Boston: Harvard Business School Press, 1985.

[58] K. Schwaber, “Scrum development process”, In 10th Annual ACM
Conference on OOPSLA 1995, Austin, Texas, USA, 117-134, 1995.

[59] S.R. Palmer, J.M. Felsing, “A practical guide to feature driven
development”, Upper Saddle River, NJ: Prentice Hall, 2002.

[60] A.M. Davis, “Fifteen principles of software engineering”, IEEE
Software, Volume: 11, Issue: 6, pp: 94-96, 1994.

[61] O.J. Dahl, E.W. Dijkstra, “C.A.R. Hoare, “Structured programming”,
Academic Press, London; New York, 1972.

[62] D.L. Parnas, “Abstract types defined as classes of variables”, ACM
SOGMOD Record, Vol. 8, No. 2, pps. 149-154, 1976.

[63] B. Liskov, S. Zilles, “Programming with abstract data types”, Proc.
ACM SIGPLAN Symposium, pps. 50-59, 1974.

[64] M.A. Jackson, “Principles of program design”, London; NY : Academic
Press, 1975.

[65] J.R. Cameron, “JSP & JSD: the Jackson approach to software
development”, IEEE Computer Society Press, 1983.

[66] W.S. Humphrey, “Managing the software process”, Addison-Wesley
Longman Publishing Co., Inc. 1989.

[67] M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber, “Capability maturity
model, version 1.1”, IEEE software 10 (4), p. 18, 1993.

[68] D. Hoyle, “ISO 9000 Quality Systems Handbook”, 2nd ed., Oxford:
Butterworth-Heinemann, 1994.

[69] I. Jacobson, “Object-oriented software engineering: A use case driven
approach”, Addison-Wesley, New York, 1992.

[70] M.A. Cusumano, R.W. Selby, “Microsoft secrets: How the world’s most
powerful software company creates technology, shapes markets, and
manages people”, The Free Press, 1995.

[71] K. Beck, M. Fowler “Planning extreme programming”, Boston:
Addison-Wesley, 2001.

[72] P. Kruchten, “The Rational unified process”, 2nd ed., Addison Wesley,
2001.

[73] W. Harrison, H. Ossher, P. Tarr, “Software engineering tools and
environments”, International Conference on Software Engineering, pp.
263–277, 2000.

[74] W.E. Steinmueller, “The U.S. software industry: An analysis and
interpretative history”, in David C. Mowery (ed.), "The International
Computer Software Industry," Oxford University Press, 1995.

[75] A. Mockus, R.T. Fielding, J.D. Herbsleb “Two case studies of open
source software development: Apache and Mozilla”. ACM Transactions
on Software Engineering and Methodology, 11 (3), p. 309, 2002.

[76] B. Myers, “Past, present, and future of user interface software tools”,.
ACM Transactions on Computer-Human Interaction, 7 (1), p. 3. 2000.

[77] E. Raymond, “The cathedral and the bazaar. knowledge, technology, &
policy”, 12 (3), p. 23, 1999.

[78] S. Ambler “Agile modeling: effective practices for extreme
programming and the unified process”, John Wiley & Sons, Inc., New
York, NY, 2002.

3838

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

