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Abstract—Motivated by overcoming the drawbacks of 
traditional decision tree and improving the efficiency of  large 
margin learning based multi-stage decision tree when dealing 
with multi-class classification problems, this paper proposes a 
novel Multi-stage Decision Tree algorithm based on inter-class 
and inner class margin of SVM. This new algorithm is well 
designed for multi-class classification problem based on the 
maximum margin of SVM and the cohesion and coupling theory 
of clustering. Considering the multi-class classification problem 
as a clustering problem, this new algorithm attempts to convert 
the multi-class classification problem into a two-class 
classification problem such that the highest cohesion degree 
within classes while lowest coupling degree between classes, 
where the margin of SVM is considered as the measurement of 
the degree. Then for each two-class problem, this paper uses 
traditional C4.5 algorithm to generate each stage decision tree 
which splits a dataset into two subsets for the further induction. 
Recursively, the Multi-stage decision tree is obtained. Numerical 
simulations and theoretical analysis show this new multi-stage 
decision tree improves the performance of traditional decision 
tree and decreases the computational complexity a lot compare 
with large margin learning based multi-stage decision tree.   

Keywords—inter-class margin, inner-class margin, SVM, 
multi-stage decision tree

I. INTRODUCTION

Multi-stage decision tree is a new inductive learning 
algorithm which aims to better deal with multi-class 
classification problems. Traditional decision tree algorithm is 
suitable for two-class problem. Due to its robustness to noisy 
data, capability of learning disjunctive expression and good 
readability, traditional decision tree plays a very important role 
in inductive inference and has been successfully applied to 
broad practical areas. The most famous algorithm among the 
family of decision tree is Quinlan’s C4.5, which is an extension 
of the basic ID3 algorithm, because its simplicity and 
practicability. Quinlan’s C4.5 algorithm is very efficient to deal 
with the two-class problems. However, it has a serious 

disadvantage--the poor ability to solve the multi-class problems 
[1, 2]. There are two drawbacks of Quinlan’s C4.5 when 
dealing with multi-class problems: the training speed will 
become slow and the classification accuracy will decrease 
acutely. 

In order to improve the decision tree’s ability of cooping 
with multi-class classification problems, Huo et al. [2] 
proposed the large margin learning based multi-stage decision 
tree, each time the algorithm converts the multi-class problem 
into a two-class problem using the large margin learning of 
SVM hyper-planes [3,4,5], which improves the accuracy a lot. 
However, when the number of class becomes large, the 
enumeration method to search the maximum margin leads to 
very slow training speed.  Motivated by reducing the 
computational complexity while keeping the high accuracy, 
this paper presents the multi-stage decision tree based on the 
inter-class and inner-class margin of SVM, which is simply 
called IIMDT. Because the conversion of multi-class 
classification problem into two-class problem can be 
considered as a clustering problem, this new method combines 
the large margin of SVM hyper-planes and clustering idea-high 
cohesion degree within classes and low coupling degree 
between classes. 

The paper has the following organization. Section II briefly 
reviews some preliminaries about decision tree and SVM. 
Section III proposes the multi-stage decision tree based on 
inter-class and inner-class margin of SVM. Section IV gives 
the simulation results and theoretical discussion. Finally, the 
last section concludes the paper. 

II. DECISION TREE AND SVM 

A. Brief Review of Decision tree Algorithm 
Decision tree learning methods search a completely 

expressive hypothesis space, which can avoid the partial 
optimization. Given a training set, a general procedure for 
generating a decision tree can be briefly described as follows. 
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The entire training set is first considered as the root node of the 
tree. Then the root node is split into two sub-nodes based on 
some heuristic information. If the instances in a sub-node 
belong to one class, then the sub-node is regarded as a leaf 
node, else continue to split the sub-node based on the heuristic 
information. This process repeats until all leaf nodes are 
generated.   

C4.5 is extended from the basic ID3, and their main ideas 
of are similar. The difference between them is C4.5 algorithm 
is more applicable and overcome some drawbacks of traditional 
ID3 [6]. Both of them generate a single decision tree, and the 
tree divides the training set into several subsets. Each subset is 
a leaf node, and each path from the root to leaf node can 
convert into a rule. The decision tree can be expressed by a set 
of rules finally. Quinlan’s C4.5 works well in managing two-
class problem, however, when it comes to a dataset with multi-
class, it often generates a tree with too many leaf nodes. So the 
decision tree will become serious complicated, which leads to 
poor generalization capability.  

B. The basic problem of SVM 
Considering a two-class classification problem, the basic 

problem of SVM is to construct an optimal hyper-plane that 
maximizes the margin between the two classes [3,7,8,9]. Given 
a training set 1 1 2 2{( ), ( ),..., ( )}N NU x , y x , y x , y=  where   

n
ix R∈  and {-1,1}iy ∈ for 1,2,...i N= . The optimization 

problem for linear SVM is  

1min ( )    s.t. ( ) 1, 1,2,...,
2 i iw w y w x b i N⋅ ⋅ + ≥ = (1) 

The optimal hyper-plane ofU is defined as 0)( =xf ,

where 0 0( ) ( )f x w x b= ⋅ + (2)

with 0
0 1

N
i i ii

w y xα
=

= (3)
0

0 1

N
i i j j jj

b y x y xα
=

= − (4) 

where Eq. (3) and Eq. (4) are obtained by the dual problem of 
maximizing the margin. For the original problem is an 
optimization problem with inequality constraints, Lagrange 
method is used to convert it into its dual problem, which is 
easier to solve. In Eq. (3), N i i

0 0i=1
w x w x⋅ ⋅  is the inner 

product of the two vectors, where 1 2
0 0 0 0( , ,..., )nw w w w= ,

and 1 2( , ,..., )nx x x x= .

    For the non-linearly separable dataset, the slack variable iξ
is introduced as the bound of the number of errors. The 
parameter C  is a constant and works as a tradeoff parameter 
between error and margin. The optimization problem becomes 

1

1min ( )     
2

s.t. ( ) 1 , 1,2,...,

N
ii

i i i

w w C

y w x b i N

ξ

ξ
=

⋅ +

⋅ + ≥ − =
(5)

Use Lagrange method, its dual problem is obtained: 

( )1 , 1

1

Maximum

Subject to

1( )
2

0; 0, 1,2, ,

N N
i i j i j i ji i j

N
j j ij

W y y x x

y C i N

α α αα

α α

= =

=

= − ⋅

= ≥ ≥ =
(6)

where ix  is a support vector. Then the vector 0w can be 
determined according to the quadratic programming (6) and 
the separating function becomes: 

( )0
01

( ) N
i i ii

f x y x x bα
=

= ⋅ + (7)
By checking whether the following inequalities,  

0[( ) ] 1, 1, 2,..., .i iy w x b i l⋅ + ≥ = (8) 
holds well or not, we can get whether the two subsets are 
separable or not. It has been proved that the margin of hyper-
plane which classify the samples without error can be 
calculated by 

1margin=
w (9)

The procedure to compute maximum margin for two subsets is 
described below [5]. 
Procedure . The constant C  in Eq. (6) is selected to be large 
at first. 

Step1. Solve the quadratic programming (6). 
Step2. Determine the separating hyper-plane (7) according 

to (4). 
Step3. Check the separability between two subsets 

according to inequalities (8). 
Step4.Let the margin be 0 if the two subsets are not 

separable. 
Step5. Compute the maximum margin according to (9) for 

the separable case where the vector w is determined by (3). 

To improve the performance of SVM, Vapnik extended the 
SVM from the original space to the feature space [3] by using 
kernel function, which is a nonlinear function 1 2( , )K x x . Then 
the optimal separating hyper-plane becomes the following 
form: 

( )0
01

( ) ,N
i i ii

f x y K x x bα
=

= + (10)

C. The inverse problem of SVM 
The basic problem of SVM is given labeled data to 

calculate the maximum margin, while, the inverse problem of 
SVM [5] is given unlabeled data, finding maximum margin 
(large margin) separating hyper-plane. The whole process is 
called large margin learning. It is motivated by finding an 
optimization solution to split the dataset without class labels 
into two subsets. For a given dataset without class labels, it 
can be randomly split into two subsets, the inverse problem of 
SVM is to solve how to split the dataset such that the margin 
attains maximum. The inverse problem of SVM can be 
mathematically formulated as follows:  

 The dataset 1{ , ..., }NU x x= , where , 1,...,n
ix R i N∈ = and 

{ f| f is a function from U  to {-1, 1}}Ω = . Given a 
function f ∈ Ω  , the dataset can be split into two subsets and 
then the margin can be calculated by Procedure1.  The 
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calculated margin is denoted by Margin( )f . Then the inverse 
problem of SVM is formulated as 

M aximum (M argin ( ))f f∈Ω (11)
 Due to the increased complexity, it is not feasible to 

enumerate all possible function in Ω  when the number of 
samples are very large. 

III. MULTI-STAGE DECISION TREE BASED ON INTER-CLASS 
AND INNER-CLASS MARGIN OF SVM 

The main idea of multi-stage decision tree is as follows: 
For a given dataset with multi-class, it first converts the multi-
class problem into a two-class problem and re-labels each 
sample positive or negative. Then for each two-class problem, 
it uses traditional decision tree algorithm to generate a 
decision tree, which splits a dataset into two subsets for the 
further induction. Therefore each stage it generates a decision 
tree, do this recursively, it obtains a set of decision trees 
finally.  

The inverse problem of SVM was applied to the 
conversion of multi-class to two-class classification problem 
[2]. Its drawback is the number of possible conversion 
solutions by enumeration increase dramatically when the 
number of class increases. It needs enumerate ( -1)2 1k −
possibilities when deal with an k -class problem [2]. Thus, the 
inter-class and inner-class margins are proposed to solve the 
conversion problem in this section. We first construct the 
inter-class margin matrix by calculating the margin between 
each two class. Then the definitions of inter-class and inner-
class margin are given. Their reciprocals are called coupling 
degree between classes and cohesion degree within classes 
respectively. Our aim is to convert the multi-class problem 
into two-class problem such that the largest inter-class margin 
between classes and the minimum inner-class margin within 
classes, i.e. the lowest coupling degree inter classes and the 
highest cohesion degree inner classes [10, 11, 12]. 

A. Conversion algorithm based on inter-class margin and 
inner-class margin 
Suppose given a dataset 1 2{ , , ..., }NU x x x= with 

classes { , , ...., }1 2 kC c c c=

Definition1. The number of classes for dataset U is
represented by cN .

( )cN U k=  ,U is a dataset (12) 

If ( )cN U k=  , the conversion problem needs calculate 
( -1)2 1k −  times. When k  becomes large, there is a great need to 

have a new algorithm to enhance the computational efficiency. 
Even the number of class k  is always small enough, each time 
calculating the margin of f ∈Ω  needs to solve a quadratic 
programming problem as Eq. (6), which costs much time and 
with exponential complexity. 

Definition2. Assume  (where , 1, 2,..., )ijm i j k∈  denotes the 
margin between data belongs to class ic  and class jc , which 

is calculated by only using samples belong to ic  and jc . The 
inter-class margin matrix M is represented as follows (the 
matrix is symmetrical, so for simplicity we just keep the upper 
triangular matrix): 

12 1

2

( 1)

0 ...
0 0 ...
... ... ... ...
0 0 ...
0 ... ... 0

k

k

k k

m m
m

M
m −

= (13) 

Definition3. Given a dataset 1 2{ , , ..., }NU x x x= with 
classes { , , ...., }1 2 kC c c c= , C is divided into two subsets 
( , )p nC C and accordingly U is divided into two 
subsets ( , )U U+ − , the inter-class margin is defined as: 

interMargin ( , ) min{ , , }p n ij i p j nC C m c C c C= ∈ ∈ (14)

where pC is the positive super class set and nC  represents the 
negative super class set; all the data belong to class pC  forms 
U +  and the rest dataset belong to class nC  is called U − . The 
reciprocal of interMargin ( , )p nC C  is called the coupling degree 
between class pC  and nC . Obviously, the margin between two 
super classes should be larger than any margin inner the super 
class, which can be formulated: 

interMax( ,  ,  or , ) Margin ( , )ij i j p i j n p nm c c C c c C C C∈ ∈ ≤ (15)

Definition4. Given a dataset 1 2{ , , ..., }NU x x x= with 
classes { , , ...., }1 2 kC c c c= , C is divided into two subsets 
( , )p nC C and accordingly U is divided into two subsets 
( , )U U+ − ,  the inner-class margin is defined as: 

innerMargin ( ) ij ijm m
C

l l

+ −

+ −

+
=

+
(16)

where (where , 1,2,..., )ijm i j k+ ∈ represents the elements of 
M +  and M +  denotes the inter-class margin matrix of 
U + ; l + is the number of nonzero elements in M + ; M −

represents the inter-class margin matrix of U − , and  
(where , 1, 2,..., )ijm i j k− ∈  denotes its elements, l − is the 

number of nonzero elements in M − . The reciprocal of 
innerMargin ( )C is also called cohesion degree within class. 

Our task is to convert the multi-class into a two-class 
classification problem such that the maximum of inter-class 
margin and meanwhile minimal of inner-class margin. In the 
point view of clustering, it means the high cohesion degree 
within each super class and low coupling degree between 
super classes. The new conversion algorithm will first assume 
all the classes belong to pC , and the negative super class is 
null. Each step it chooses a proper class to add to negative 
super class. Then check whether the two new super classes 
satisfy the inequality in Eq. (15), if not, continue this step 
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because this means there are still some classes in pC can be 
separated into nC . Otherwise, the conversion algorithm stops. 
Thus the criterion of selecting the class which is added to 
negative super class becomes an important topic. The class 
which minimizes the inner-class margin will be added to 
negative super class. The change of inner-class margin will be 
the measurement.

Definition5. Given a dataset 1 2{ , , ..., }NU x x x= with  
{ , , ...., }1 2 kC c c c= , C is divided into two subsets ( , )p nC C ,

the original inner-class margin is innerMargin ( )C , then choose 
a class ( 1,2,..., )ic i k= from super positive class set pC  and 
add it to super negative class set nC , the inner-class margin 
becomes innerMargin ( ) 'C , the change of inter-class margin is 
defined as: 

inner inner innerMargin ( , ) Margin ( ) Margin ( ) 'iC c C CΔ = − (17)

Each time choose class ic  from super positive class which 
satisfies to  

inner1,...,
max{ Margin ( , ), }i i pi k

C c c C
=

Δ ∈ (18)
i.e. choose the class which decreases the inner-class margin 
most quickly. The conversion algorithm based on the inter-
class and inner-class margin can be described as follows: 

Procedure2. 
Step1. Calculate the inter-class margin matrix M . Label 

all the classes positive and let nC  be null.  

Step2. Choose the class ic from the super positive class 

pC which satisfies to equation (18). Check whether the values 
of Eq. (18) greater than zero, if yes, add class ic  to nC ;
otherwise, stop. 

Step3. Check whether the new subsets pC  and nC  satisfy 
to the inequality in Eq. (15) or not. If not, go to step 2; if yes, 
stop. 

Compare with the enumeration method, this conversion 
algorithm based on the inter-class and inner-class margin of 
SVM just needs to calculate the inter-class margin matrix M. It 

needs calculate 2 ( 1)
2k

k kC −=  times instead of ( -1)2 1k −  times 

when deal with an k -class problem. When k is large, the 
advantage of this new algorithm is more prominent.  Besides, 
its calculation only needs to use two class datasets each time. 
While the enumeration method will use equal to or greater 
than two class datasets each time, even the whole dataset. The 
quadratic programming with smaller dataset will be easier and 
quicker to solve, so the induction of inter-class margin and 
inner-class margin enhance the computational efficiency a lot. 
Procedure 2 uses the change of inner-class margin to split the 
multi-class to a two-class problem. The computational 
complexity of addition operation is much lower than the 
complexity of quadratic programming. Thus this method is 
more efficient. 

B. Multi-stage decision tree algorithm based on inter-class 
and inner-class margin of SVM 
The main idea of multi-stage decision tree algorithm based 

on inter-class and inner-class margin of SVM is to convert the 
multi-class classification problem into a two-class problem by 
procedure 2 and re-label the initial dataset. Then for each two-
class problem, it uses traditional C4.5 algorithm to generate a 
decision tree, which splits a dataset into two subsets for the 
further induction. Therefore, a decision tree is generated in 
each stage and the decision tree will split the dataset into two 
subsets--positive and negative subset. After this, we need to 
check whether each subset is still a multi-class classification or 
not. If yes, the data is treated as the initial dataset. If it 
becomes a two-class classification problem, C4.5 is used to 
generate one stage decision tree directly. This procedure will 
continue recursively until a set of decision trees are obtained 
completely. 

Each individual decision tree will be converted into a set of 
rules, and the method of generation of rules is the same as 
C4.5 algorithm [2, 6]. Because the decision tree is hierarchical, 
the matching process of the rules is orderly. If a sample 
matches one stage decision tree successfully with a super class 
contains more than one class, it needs a further match to the 
next stage decision tree. An instance matches succeed if and 
only if it reaches a leaf node labeled just by a single class.   

IV. SIMULATIONS AND DISCUSSIONS

A. An illustrative example 
Take Glass database [13] for example to show how the 

inter-class and inner-class margin based method works, where 
RBF kernel function is used in the simulations and let the 
parameter C in Eq. (6) be 10000. Following the procedure 2, 
first the inter-class margin matrix is obtained: 

0 0.0057 0.0088 0.6201 0.4482 0.0242
0 0 0.0102 0.2355 0.1947 0.0962
0 0 0 0.7211 0.5920 0.0783
0 0 0 0 0.4461 0.4503
0 0 0 0 0 0.3415
0 0 0 0 0 0

M =

Then the initial class set is 1 2 3 4 5 6{ , , , , , }pC c c c c c c= and 

nC =null. From the inner-class margin definition, the follow 
equation holds true:  

inner

0
Margin ( ) 0.28486

15 0
ij ij ijm m m

C
l l

+ − +

+ −

+ +
= = =

++
Next, follow the step 2, choose ( 1, 2,3, 4,5,6)ic i = to add to 

nC  and check innerMargin ( , )iC cΔ . Taking 1c  for example, add 

1c to nC   then the two class subsets 
become 2 3 4 5 6{ , , , , }pC c c c c c=  and 1nC c= .

inner

0
Margin ( ) ' 0.31659

10 0
ij ij ijm m m

C
l l

+ − +

+ −

+ +
= = =

++
then the change of inner-class margin becomes: 
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inner 1 inner innerMargin ( , ) Margin ( ) Margin ( ) '
                             =0.28486 0.31659<0

C c C CΔ = −
−

Similarly, check the change of inner-class margin when 
add ( 2,3,4,5,6)ic i =  to nC  and we get: 

inner inner 4max{ Margin ( , ), } Margin ( , ) 0i i pC c c C C cΔ ∈ = Δ > .   

Accordingly, the new subsets are 1, 2 3 5 6{ , , , }pC c c c c c=  and 

4{ }nC c= , furthermore, interMargin ( , ) 0.2355p nC C = . It is 
easy to check that the new subsets do not satisfy to Eq. (15), so 
go to step2 to continue to choose. Now the inter-class margin 
matrix becomes: 

0 0.0057 0.0088 0.4482 0.0242
0 0 0.0102 0.1947 0.0962
0 0 0 0.5920 0.0783
0 0 0 0 0.3415
0 0 0 0 0

M =

Because nC just includes one class now,  innerMargin ( )C
becomes 0.17998. Similarly, calculate the change of inner-
class margin when add ( 1, 2,3,5,6)ic i = to 4{ }nC c= ,at the 
end of this step we get:

inner inner 5max{ Margin ( , ), } Margin ( , ) 0i i pC c c C C cΔ ∈ = Δ > .
Then we have 1, 2 3 6{ , , }pC c c c c= and 4 5{ , }nC c c= . Next, check 

interMargin ( , )p nC C  and find out it still does not satisfy to the 
condition (15), so continue the step2. The inter-class margin 
matrix becomes: 

0 0.0057 0.0088 0.0242
0 0 0.0102 0.0962
0 0 0 0.0783
0 0 0 0

M =

For this step, innermax{ Margin ( , ), } 0i i pC c c CΔ ∈ < , thus, 
procedure 2  stops with 1, 2 3 6{ , , }pC c c c c=  and 

4 5{ , }nC c c= .Treating 1, 2 3 6{ , , }pC c c c c= as positive class and

4 5{ , }nC c c= as negative class, we use traditional C4.5 
algorithm to get the first stage decision tree. Then check the 
function ( )cN U + and ( )cN U − . We get ( ) 2cN U − = , which 
means a two-class problem, now we use C4.5 to generate the 
next stage decision tree directly. The 
fact ( ) 4 2cN U + = > means pC  is still a multi-class problem, 
consider 1, 2 3 6{ , , }pC c c c c=  as a new multi-class problem and 
follow procedure 2 to convert it into a two-class problem, and 
then generate the next stage decision tree. Finally a multi-stage 
decision tree is obtained by this recursive process. 

B. Simulation results on UCI database 
Numerical simulations are implemented on four multi-

class UCI datasets [13]. Table I shows the features of the 
databases. The comparison results of training accuracy and 
testing accuracy among the C4.5, large margin learning based 

multi-stage decision tree (LMMDT) and IIMDT are listed in 
Table II, where 10-fold cross validation is used.  

TABLE I. FEATURES OF THE DATASETS

Name of 
Databases

Number 
of cases 

Number of 
attributes 

Number of 
classes 

Car 1728 6 4 
Derm 396 33 6 
Glass 214 9 6 
Ecoli 336 7 8 

TABLE II. COMPARISON OF TRAINING AND TESTING ACCURACY BASED 
ON 10-FOLD CROSS VALIDATION

Database 
Name 

C4.5 LMMDT IIMDT 
Train  Test  Train Test Train Test 

Car 99% 88.5% 99.2% 92.7% 98.7% 91.4% 
Derm 97.6% 90.6% 98.0% 94.1% 97.82% 94.5% 
Glass 70.9% 60.0% 78.8% 69.5% 78.5% 67.5% 
Ecoli 83.2% 71.2% 87.5% 74.5% 86.0% 73.9% 

Compare to C4.5, the IIMDT algorithm improves the test 
accuracy a lot when treating with multi-class classification 
problems; meanwhile, compare with LMMDT, IIMDT keeps 
or even exceeds the testing accuracy of LMMDT. While as 
analysis at the end of section III A, the IIMDT decreases the 
computational complexity a lot. Therefore, when the number 
of class k  is large, IIMDT takes advantages of both accuracy 
and computational efficiency, which is more feasible.  

C. Discussions 
Here are some discussions about the generalization 

capability of IIMDT algorithm compare to traditional decision 
tree and LMMDT. Since the multi-stage decision tree 
generates a set of decision trees instead of only one decision 
tree, the obtained rules become simpler and shorter comparing 
to C4.5, which implies a better generalization capability 
according to Occam’s razor theorem [6].  

IIMDT first converts the multi-class problem into a two-
class problem by calculating inter-class and inner-class margin 
of SVM. It guarantees the minimum margin within classes and 
the maximum margin between super classes. The 
measurement of cohesion degree and coupling degree becomes 
more reasonable by using the margin of SVM. It considers not 
only the margin between classes but also the margin within 
classes. For a clustering problem, this comprehensive 
consideration often leads to better results. Therefore, this 
conversion decreases the complexity of classification for 
decision tree even more and provides better heuristic 
information for multi-stage decision tree.  It often leads to 
simpler rules with a higher truth level and improves 
generalization capability.  

V. CONCLUSION

In order to improve the computational efficiency and 
classification accuracy of multi-stage decision tree, this paper 
proposes a new algorithm called multi-stage decision tree 
based on inter-class and inner-class margin of SVM to deal 
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with multi-class classification problems. After a brief review 
of decision tree and SVM, this paper presents a new multi-
class to two-class conversion algorithm for multi-stage 
decision tree, which uses the margin of SVM as measurement 
and takes into account the clustering criterion-high cohesion 
degree within classes and low coupling degree between classes. 
Later, an example is given to show how this new algorithm 
works. Finally, the simulation results and theoretical 
discussions verify its effectiveness and feasibility. In the future, 
its application to text classification and pattern recognition 
will be investigated. 
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