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Abstract—Maneuvering target tracking in wireless sensor 
network (WSN) with quantized measurements is investigated. 
The measurement in each local sensor is quantized by uniform 
quantization scheme and then transmitted to a fusion center (FC). 
To estimate the state of the target in the FC, the quantized 
messages are first fused in a weighted average way. Then 
interactive multiple-model (IMM) scheme using sigma-point 
Kalman filtering (SPKF) is employed. Focuses are on tradeoff 
between bandwidth of each sensor and the global tracking 
accuracy. By performing a change of variable and Lagrange 
technique, the closed-form solution to the optimization problem 
for bandwidth scheduling is given, where the mean square error 
(MSE) incurred by weighted average fusion is minimized subject 
to a constraint on the total energy consumption. Simulation 
results reveal that the proposed scheme performs very closely to 
the clairvoyant IMM-SPKF that based on the analog-amplitude 
measurements, while obtaining average communication energy 
saving up to 51.2% and computational burden reduction 31%. 

Keywords—maneuvering target tracking,  wireless sensor 
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I. INTRODUCTION 

Target tracking through wireless sensor network (WSN) is 
a problem with a large spectrum of applications, such as 
surveillance, rescue, traffic monitoring, pursuit evasion games, 
etc [1-3]. The (maneuvering) target tracking problem for 
traditional sensors or multi-sensor systems has attracted much 
attention in the last decades for both theoretical and practical 
reasons (see e.g. [4]-[7], and the references therein).  

However, target tracking in WSN needs collaborative 
communication and computation among multiple sensors since 
information generated by a single sensor node is usually 
incomplete or inaccurate (e.g. [8], [9]). Moreover, each sensor 
node in this circumstance has very limited energy/power source 
and communication bandwidth. Thus, by using quantized 
message for storage or transmission in place of the original 
measurement, considerable savings in storage or transmission 
bandwidth can be realized, at the expense of some distortion. 
The fusion center (FC) will combine the quantized messages 
from local sensors to produce a final estimation of the 
parameter. The problem of decentralized estimation and 

tracking based on quantized measurements has been studied in 
early works such as [10] and [11]. Recently, universal 
decentralized estimation taking into account local signal-to-
noise ratio (SNR) in sensor network is studied [12]. When the 
noise probabilistic density function (PDF) is unknown, the 
problem of estimation based on severely quantized data has 
been also addressed in [13]. A distributed estimation approach 
based on the sign of innovations (SOI) is developed in [14], 
where only the transmission of a single bit per measurement is 
required. Very recently, by optimizing the filter with respect to 
the quantization levels, a multiple-level quantized innovation 
Kalman filter (MLQ-KF) for estimation of linear dynamic 
stochastic systems is proposed in [15]. So far, however, the 
target tracking problem in WSN is mainly focused on the 
constant velocity or random-acceleration target tracking. Little 
work is related to the case of maneuvering target tracking. 
Since the acceleration cannot be observed directly and the 
measurements are always quantized to finite bits for power 
reason, maneuvering target in WSN is usually difficult to attack. 

This paper makes three main contributions. First, after 
receiving the quantized messages from local sensors, the FC 
fuses the quantized measurements in a weighted average way 
(under BLUE fusion rule) instead of the augmented scheme. 
Note that in our approach, the observation vector dimension 
kept unchanged regardless of the number of the sensors 
deployed, which has a lower computational load [16]. This is 
highly desirable in densely deployed WSN since the number of 
actived sensors will be large, which means the observing space 
is high dimension. Second, with the focuses on the tradeoff 
between bandwidth and accuracy of fusion problem of 
quantized measurements, we give a closed-form solution to the 
optimization problem for bandwidth scheduling. In the optimal 
bandwidth scheduling problem, the MSE incurred by weighted 
average approach is minimized subject to a constraint on the 
total energy consumption. Third, due to the fact that usually 
passive sensors are employed in WSNs, nonlinear Gaussian 
discrete-time model following the intera-ctive multiple-model 
sigma-point Kalman filtering (IMM-SPKF) principle is 
investigated for estimate the target state. Some special 
considerations related to the quantized messages and the 
weighted average fusion approach is discussed. 
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II. PROBLEM STATEMENT
Considering the state estimation problem of the following 

nonlinear discrete-time system in a sensor network with N
sensors deployed 
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where nkx )( , m
i ky )(  are the state of the target and the 

measurement of ith ( ,N,,,i 321 ) sensor at the time step 
k , respectively; pk)(  is the noise process caused by 

disturbances and modeling errors, m
i k)(  are additive 

measurement noise vectors of the ith sensor. We assumed the 
independent noise vectors )(k  and )(ki are zero mean and 
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The initial state x(0) with mean 0x  and variance 0P  is 
independent of )(k  and )321(),( ,N,,,iki . To ease the 
analysis, we also assume that all sensors are synchronized and 
have the same measurement rate. 

Due to bandwidth and power limitations, each sensor 
quantizes its observation into a ib –bit message, and transmits 
this locally processed data to a fusion center. Then the FC 
estimates the state vector of the object according to (1) and the 
quantized messages. In this paper, the uniform quantization 
scheme with nearest-rounding [17] is adopted; the quantized 
measurement at the ith sensor can thus be modelled as 

,N,,,iqkykm iii 321,)()(

where iq  is the quantization error uniformly distributed with 

zero mean and variance 12/22
iq Q

i
 [17], where ib

i WQ 2/
is the quantization width or the quantizer resolution, and 

2/,2/ WW  is the available signal amplitude range common 
to all sensors, ib  is the bandwidth to be determined later. The 
adopted quantizer model (3) and the uniform quantization error 
assumption are widely used in the literature due to analytical 
tractability. We assume that the channel link between the ith
sensor and the fusion center is corrupted by a zero-mean 
additive nose i  with variance 2

i
.

The problem is to estimate the target state using the noised 
corrupted quantization messages. The limited bandwidth 
constraints and weighted average approach will be considered. 

III. WEIGHTED AVERAGE APPROACH TO
QUANTIZED MEASUREMENT FUSION 

Taking the channel link noise i into account, the received 
date from the ith sensor output can be expressed as 

,N,,,iqkykz iiii 321,)()(

The existing fusion approach is to merge all the received 
date into a vector form as 
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Then using the BULE scheme to retrieve the original signal 
(see e.g. [12], [18]), or using the Kalman filtering to get the 
estimate of the state vector of the system (see e.g. [19]). Our 
approach will first combine the quantized measurements in a 
weighted average way, and then the IMM scheme with SPKF 
technology is employed to estimate the state of the target.  

By the assumptions above, the sensor noise i , quantization 
noise iq , and the channel link noise )321(, ,N,,,ii  are 
mutually independent. The relationship between the original 
signal of ith sensor and the data received by the FC can be 
reformulated by 
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where iiii qkn )(  are uncorrelated with each other with 
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We approximately consider the noise in  to be a white noise 
[18, 19]. The fused measurement can be obtained by weighting 
quantized measurements using the BLUE scheme 
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The incurred MSE is thus 
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Then, we obtain the weighted measurement in the fusion 
center in the form 

nkkxhkz )),(()(

Remark 1: Note that in our approach, the observation vector 
dimension kept unchanged regardless of the number of the 
sensors deployed, which has a lower computational load [20]. 
This is especially preferable in densely deployed wireless 
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sensor network since the number of actived sensor in a 
snapshot will be large, which makes the dimension of 
observation space high. Furthermore, the cost of calculating 
inverse matrix, which is involved in computing the gain of the 
filter, is in proportion to cubic of dimension of system 
observation space, therefore, the computational burden will 
increase when using the augmented approach as in (5). 

Remark 2: It is easy to see that the accuracy of fused 
quantized measurement is better if the variance of the 
quantized noise is smaller. We can make its upper bound small, 
which means that more bandwidths need to be supplied. 
However, the sensor power and transmission bandwidth are 
limited in a wireless sensor network. In the following, we will 
consider the bandwidth scheduling problem which solves the 
tradeoff between energy/power constraints and required 
tracking performance. 

IV. BANDWIDTH SCHEDULING 

A.  Optimization Problem Setup 
In this section, we consider the bandwidth scheduling 

problem in the network. We assume the channel between the
ith sensor and the FC experiences a pathloss proportional to 

i
ii da , where id  is the transmission distance between the ith 

sensor and the FC. Then the consumed energy of the ith sensor 
at time step k is 

12)( )(kb
ii

ikE

where bii Pd i /2ln  is the energy density [12], in which 
 is a constant depending on the noise profile, and Pb is the 

target bit error rate assumed common to all sensor-to-FC links. 

Our primary goal is to minimize the overall MSE 
performance while meeting total power consumption. A 
secondary goal is to maintain fairness in the bandwidth 
scheduling among sensors. Thus, we consider the following 
optimization 
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where 0TE  is a constant constraint on total energy budget. 

The problem in (13) can be equivalently rewritten as 
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B. Alternative Formulation

To facilitate analysis, we first observe that, since 0ib , it 

follows N

i
b

i
N

i
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i
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1412 : this implies we can 

replace the total energy constraint in (14) by the following one 
without violating the overall energy budget requirement: 
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With the aid of (15) and by performing a change of variable 
with 14 ib

iB , the optimization problem becomes 
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Furthermore, we relax the integer iB  to be a real positive 
number so as to render the problem tractable, and drop the last 
constraint on iB  as they become inactive at the optimum point. 
The major advantage of the alternative problem formulation 
(16) is that it admits the form of convex optimization and can 
moreover lead to a closed-form solution as shown next. 

C. Optimal Solution 
By leveraging the standard Lagrange technique, the optimal 

solution to (16) can be obtained as follows. Without loss of 
generality, we first assume that N21 , and define 

N

Kj
jK

N

Kj
jT

ii

E

Kf

1

221

:)( for NK1

Let NK11  be the unique integer such that )1( 1Kf
1  and 1)( 1Kf ; if 1)(Kf  for all NK1 , then 

simply set 11K . Then simple manipulations of (16) lead to 
the optimal solution given by 
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Once the optimal real-value 14* ib
iB  is computed, the 

associated bit loads can be readily obtained through upper 
integer rounding, as in [12], [18], and [19].  

Remark 3: Recall from (12) that the energy consumption of 
each sensor is proportional to the path loss gain i

id .  Hence, 
large value of the energy consumption corresponds to sensor 
deployed far away from the FC, usually with poor background 
channel gain. In light of this point, the optimal solution (19) is 
intuitively attractive: for those active nodes, the assigned 
bandwidth is inversely proportional to the energy consumption 
of this node [18]. This is intuitively reasonable since sensors 
with better link conditions should be allocated with more bits to 
improve the measurement fusion accuracy. 

V. IMM-SPKF-BASED MANEUVERING TARGET
TRACKING 

Once the optimal bandwidth values opt
ib  are obtained, the 

measurement in each sensor will be quantized according to 
opt
ib  and then be transmitted to the FC. Using the dynamic 

equation (1) and the weighted measurement (11), the state of 
the target can be estimated through IMM scheme with some 
nonlinear filtering technique such as extended Kalman filtering 
and sigma-point Kalman filtering. Here we briefly overview 
single-scan of the recursive IMM algorithm as follows. 

(I) Model-matching reinitialization: the posterior density 
at 1k  for model j is represented by )(
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The weights in (20) and (21), however, are the mixing 
probabilities ji

k
|

1 , defined as 
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where ij  are transitional probabilities and i
k 1  are the model 

probabilities of ith model.  

(II) Model-matched filtering: In this step, nonlinear 
estimation techniques can be used according to the target 
dynamic model (1) and the fusion measurement equation (11). 
The celebrated extended Kalman filtering (EKF) linearizes (1) 
and (11) around a single point ( )1|1(ˆ kkx  for the prediction 
and )1|(ˆ kkx  for the observation update). This solution does 
not account for the spread of the random variables and uses 
only the first-order Taylor expansion of the nonlinear functions. 

Therefore, it often leads to the divergence of the filter. To avoid 
the flaws of the EKF, SPKF is employed as the model-matched 
filter in this paper (see e.g. [21], [22]). 

Remark 4: Note that calculating the inverse matrix of 
)()( kRkPzz  is required to obtain the gain of SPKF, where 

)(kPzz  is the weighted covariance of innovation. However, the 
dimension of innovations is determined by the quantized 
measurements from local sensors. Augmented scheme, in 
which all observation vectors are merged into a vector in the 
form of (5), requires calculation of mNmN inverse matrix. 
While in our approach as (11) only calculation of 

mm inverse matrix is required. It is the shortcoming of 
augmented scheme especially in the case of a large number of 
sensors are deployed since the cost of calculating inverse 
matrix is in proportion to cubic of dimension of system 
observation space. 

(III) Model probability update: Suppose the posterior 
density of mode j at k is represented by )(

|
)(

| ,ˆ;ˆ j
kk

j
kk

j
k PxxN . Using 

the Bayes rule, the model probabilities are updated as follows 
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where j
k

j
k

j
k SN ,0;  is the model conditioned likelihood 

function, j
k  and j

kS  are the innovation and its covariance 
from the model-matched filter j, respectively. 

Remark 5: In the case the dynamic or the measurement 
equation corresponding to model i is nonlinear or non-Gaussian, 
the likelihood function j

k  is not Gaussian anymore. 
Nevertheless, even then, we can approximately consider the 
noises n in (11) to be white Gaussian noise and using the 
Quasi- maximum likelihood estimation (QMLE) to obtain 
likelihood function, and in turn, the model probabilities. In any 
case, this approach is expected to outperform the IMM-EKF 
because the spread of the target state is taken into account in 
the model-matched filtering step (II). 

(IV) Estimation fusion: The output of the IMM is 
computed as follows 
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VI. SIMULATION EXAMPLE 
Consider K=225 sensors randomly deployed in the query 

area, which is 50m 50m with the coordinate from (-25, -25) to 
(25, 25). The layout of the network is illustrated in Fig. 1, 
where a ‘*’ stands for the location of a sensor. The proposed 
weighted quantized measurements scheme using IMM and 
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SPKF (Quan-Weig-IMM-SPKF) is applied to track a 
maneuvering target moving along constant turn model with 
angle velocity [5, 6] 

otherwise.15,0
2000,1.0 k

T

and step-size 25.0T . In Fig. 1, the thick real line is the track 
of the target traveling start from (10, -22), while the dashed line 
represents the estimate of the target state using the proposed 
scheme. The measurement model of the ith sensor is [14] 

)()(),()(),(/)( kiyixkykxaky issi

where 40a  is the assumed known amplitude of the sound 
source (the target), )(),()(),( iyixkykx ss  denotes the 
distance between the target and the ith sensor, and )(ki  the 
measurement noise with distribution ,0);(())(( kNkp ii

)2
i

. The sensor positions are assumed to be known in the FC. 

The nearest-neighbors multi-sensor scheduling scheme is 
used to perform the tracking task. In each time step, the sensors 
lies within the sensing radius are selected to form a temporary 
tasking group with one of them being the leader. All the 
member sensors in the group are assumed to perform the 
sensing task simultaneously. The measurements from those 
sensors who successfully detect the target are quantized and 
transmitted to the leader, who functions as a local FC, in 
addition to its basic sensing function. We assume that the 
sensor messages are perfectly received by the FC, and that all 
of the sensors deployed into an area have the same 
characteristics, i.e. the same sensing radius 8s m, the 

measurement noise covariance 12
i

, and the measuring 
amplitude range W,0  with 20W . The simulation is 
running for 100 Monte Carlo runs each with 350 time steps. 

The initial estimate of the sound source is assumed to be [8, 
2, 0, -20, 1, 0]T with covariance matrix I6. In the FC, the 
bandwidth scheduling is implemented with optimization 
problem (13) where 1.0TE , then the IMM-SPKF is used to 
estimate the state of the target according to (1) and (11). For 
IMM algorithm, we use one constant velocity (CV) model and 
two constant acceleration (CA) models with different 
maneuvering accelerations. The initial model probability and 
the model transitional probability are set to be, respectively, 

T3.03,.0,4.00  and 

0.70.20.1
04.00.92.040
03.005.092.0

For comparison, the following four schemes are also applied: 

1) Quan-Augm-IMM-SPKF: the quantized measurements 
are merged into a vector as in (5); then IMM algorithm using 
SPKF technology is employed to estimate the target state. 

2) Clair-Augm-IMM-SPKF: clairvoyant IMM-SPKF using 
augmented unquantized messages. 

3) Clair-Weig-IMM-SPKF: clairvoyant IMM-SPKF using 
weighted unquantized messages. 

4) Quan-Augm-CV-SPKF: single model (constant velocity 
model) with SPKF is used to estimate the augmented quantized 
measurements.   

The MSE of x-direction over 100 Monte Carlo runs is 
shown in Fig. 2. It is noted that the proposed algorithm 
performs very closely to the Quan-Augm-IMM-SPKF (PAIR 1) 
while the Clair-Weig-IMM-SPKF also performs very closely to 
the Clair-Augm-IMM-SPKF  (PAIR 2). Both pairs of the fusion 
strategy have the similar performance, the difference is that the 
latter ones in both pairs merge the quantized (or unquantized)
measurements into a large vector, which will bring large 
computational burden in the fusion center. Furthermore, it is 
worth mentioned that PAIR1 performances very closely to 
PAIR 2, although the latter are based on analog-amplitude 
measurements. The MSE in y-direction performs similarly, 
therefore, is omitted here for space limitation, as well as for 
Quan-Augm-CV-SPKF since it is divergent. Beside, we 
compare the proposed power scheduling scheme (19) to the 
uniform quantization allocation scheme, in which each sensor 
quantizes the observation into the minimal same number of bits 
to achieve the target MSE distortion [12]. Fig. 3 shows the 
percentage of communication energy saving versus time steps. 
The average percentage of communication energy saving is up 
to 51.2%. On the other hand, computation complexity of the 
four convergent schemes is compared in Tab. 1, which shows 
that both the proposed scheme and the Clair-Weig-IMM-SPKF
that based on weighted measurement have less computational 
burden than both the Quan-Augm-IMM-SPKF and Clair-Augm-
IMM-SPKF. Comparing to the augmented approach, our 
approach save more than 31% computational energy in the 
fusion center, this will prolong the lifetime of the whole 
network abundantly. 

VII. CONCLUSIONS 
The maneuvering target tracking in WSN with quantized 

measurements has been investigated. To estimate the state of 
the target in the FC, the quantized messages from local sensors 
are first combined in a weighted average way in stead of 
merging all the measurements into a large vector. Then IMM 
scheme with SPKF technology is employed. Focuses have been 
on tradeoff between bandwidth of each sensor and the global 
tracking accuracy. By Lagrange technique, the closed-form 
solution to the optimization problem for bandwidth scheduling 
has been given, where the MSE incurred by weighted average 
fusion is minimized subject to a constraint on the total energy 
consumption. 
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Figure 1. The layout of the network with uniform distributed sensors.
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Figure 2. Comparison of MSE of position in x-direction.
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Figure 3. Percentage of communication energy saving.

TABLE I. COMPARISON OF COMPUTATION COMPLEXITY

Algori- 
thms 

Quan-Augm- 
IMM-SPKF 

Clair-Augm- 
IMM-SPKF 

Clair-Weig- 
IMM-SPKF

Quan-Weig-
IMM-SPKF

Time 
(ms) 501.6 471.9 352.7 344.8 

Ratio 1.0 0.94 0.70 0.69 
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