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Abstract—This paper mainly discusses learning in pursuit-
evasion game. In the pursuit-evasion model, one robot pursues
another one in a partially known environment. Partially known
environment means that each robot knows the instant position
of the other robot but at the same time none of them knows its
control strategy. Therefore, both robots have to self-learn their
control strategies on-line by interaction with each other. A new
hybrid learning technique is proposed. The proposed technique
combines reinforcement learning with both a fuzzy controller
and genetic algorithms in a two-phase structure. The proposed
technique is called a Q(λ )-learning based genetic fuzzy controller
(QLBGFC). To test the performance of our proposed technique, it
is compared with the optimal strategy, the Q(λ )-learning, and the
reward-based genetic algorithms. Computer simulations show the
usefulness of the proposed technique. In addition, the convergence
and the boundedness of the Q-learning algorithm used in the
proposed technique are shown.

Index Terms—Fuzzy control, genetic algorithms, hybrid learn-
ing, multi-robot system, pursuit-evasion game, Q(λ )-learning,
reinforcement learning.

I. INTRODUCTION

Reinforcement learning (RL) is a computational approach
to learning through interaction with the environment. The main
advantage of RL is that it does not need either a teacher,
training data or known model [1], [2]. RL is suitable for
intelligent robot control [3], [4] especially in the field of
autonomous mobile robots [5]–[10].

Limited studies have applied RL alone to solve environ-
mental problems but its use with other learning algorithms
has increased [11]. In [2], a RL approach is used to tune the
parameters of a fuzzy logic controller (FLC). This approach
is applied to a single case of one robot following another
along a straight line. In [12], the use of RL in the multi-agent
pursuit-evasion problem is discussed. The individual agents
learn a particular pursuit strategy. However, the authors do
not use a realistic robot model or robot control structure. In
[13], a multi-robot pursuit-evasion game is investigated. The
model consists of a combination of aerial and ground vehicles.
However, the unmanned vehicles are not learning. They just do
the actions that they received from a central computer system.
In the work by [14], Q-learning is used to obtain training data.
This training data is used to tune the weights of an artificial
neural network (ANN) controller which is applied to a mobile
robot path planning problem.

In this paper we investigate a new scenario where both the
pursuer and the evader simultaneously and independently learn
their optimal control strategies. To accomplish this, we propose
a novel hybrid learning technique called a Q(λ )-learning based
genetic fuzzy controller (QLBGFC). The proposed technique
is applied to a pursuit-evasion game in a partially known
environment. Partially known environment means that each
robot can know the instant position of the other robot but at the
same time none of them knows its control strategy. We assume
that we do not even have a simplistic PD controller strategy.
The learning process of the proposed technique consists of
two phases. In phase 1, the pursuer and the evader self-learn
their control strategies on-line by interaction with each other.
In this phase, Q(λ )-learning is used to obtain an estimation
for the optimal strategy then the states and their corresponding
actions are stored in a lookup table. In phase 2, the state-action
pairs stored in the lookup table are used as training data to
tune the parameters of a FLC using GAs. Then, we run the
pursuit-evasion game with the tuned FLC and use GAs again
to fine tune the FLC parameters during the interaction process
between the pursuer and the evader.

This paper is organized as follows: in Section II, the
pursuit-evasion game is described. In Section III, the problem
statement is discussed. Some basic terminologies for RL, FLC,
and GAs are reviewed in Section IV. The proposed technique
is described in Section V. Section VI represents computer
simulation and the results are discussed in Section VII.

II. PURSUIT-EVASION GAME

The pursuit-evasion game is one application of differential
games [15] in which a pursuer tries to catch an evader in
minimum time where the evader tries to escape from the
pursuer [16]. The pursuit-evasion game is shown in Fig. 1.
Equations of motion for the pursuer and the evader robots are
[17], [18]

ẋi = Vi cos θi

ẏi = Vi sin θi

θ̇i =
Vi

Ri
tan ui

(1)

where ”i” is ”p” for the pursuer and is ”e” for the evader,
(xi,yi) is the position of the robot, Vi is the velocity, θi is the
orientation, Ri is the turning radius, and ui is the steering angle

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2690



where ui ∈ [−uimax ,uimax ].
Our strategies are to make the pursuer faster than the evader

(Vp > Ve) but at the same time to make it less maneuverable
than the evader (upmax < uemax ). The control strategies of the
pursuer and the evader are discussed in Section III. The capture
occurs when the distance between the pursuer and the evader is
less than a certain amount, �. This amount is called the capture
radius which is defined as

� =
√

(xe − xp)2 +(ye − yp)2 (2)

III. PROBLEM STATEMENT

The problem assigned in this paper is that we assume that
the pursuer and the evader do not know their control strategies.
The pursuer and the evader are not told which is the correct
action to take. We assume that we do not even have a simplistic
PD controller strategy. The learning goal is to make both the
pursuer and the evader able to self-learn their control strategies.
They should do that on-line by interaction with each other.

From several learning techniques we choose reinforcement
learning (RL). RL methods learn without a teacher, without
anybody telling them how to solve the problem. RL is related
to problems where the learning agent does not know what it
must do [19]. It is the most appropriate learning technique for
our problem.

One reason for choosing the pursuit-evasion game is that
the time-optimal control strategy is known [20] so, it can be
a reference for our results. By this way, we can check the
validity of our proposed technique.

IV. PRELIMINARIES

A. Reinforcement Learning

Reinforcement learning (RL) is an interaction between
agent and environment as shown in Fig. 2 [21]. It consists
mainly of two blocks, an agent which tries to take actions so
as to maximize the discounted return, R, and an environment
which provides the agent with rewards. The discounted return,
Rt , at time t is defined as

Rt =
τ

∑
k=0

γkrt+k+1 (3)

x

y

The pursuer

The evader

( xp , yp )

( xe , ye )
Vp

p

e

Ve

Fig. 1. The pursuer evader dynamics

where rt+1 is the immediate reward, γ is the discount factor,
(0 < γ ≤ 1), τ is the terminal point. Any task can be divided
into independent episodes, τ is the end of an episode. The
performance of an action, a, taken in a state, s, under policy,
π , is evaluated by the action value function, Qπ(s,a),

Qπ(s,a) = Eπ(Rt |st = s,at = a)

= Eπ

(
∞

∑
k=0

γkrk+t+1|st = s,at = a

)
(4)

where Eπ(·) is the expected value under policy, π .

How to choose the reward function is very important in RL
because the agent depends on the reward function in updating
its value function. The reward function differs from one system
to another according to the desired task. In our case, the
pursuer wants to catch the evader in minimum time. In other
words, the pursuer wants to decrease the distance to the evader
at each time step. The distance between the pursuer and the
evader at time t is calculated as follows

D(t) =
√

(xe(t)− xp(t))2 +(ye(t)− yp(t))2 (5)

The difference between two successive distances, ΔD(t), is
calculated as

ΔD(t) = D(t)−D(t +1) (6)

A positive value of ΔD(t) means that the pursuer approaches
the evader. The maximum value of ΔD(t) is defined as

ΔDmax = VrmaxT (7)

where Vrmax is the maximum relative velocity of the pursuer
with respect to the evader (Vrmax = Vp + Ve) and T is the
sampling time. So, we choose the reward, r, to be

rt+1 =

⎧⎪⎨
⎪⎩

ΔD(t)
ΔDmax

, for the pursuer;

− ΔD(t)
ΔDmax

, for the evader.
(8)

The way to choose an action is a trade-off between exploita-
tion and exploration. The ε−greedy action selection method is
a common way of choosing the actions. This method can be
stated as

at =
{

a∗, with probability 1− ε;
random action, with probability ε.

(9)

Agent

Environment

reward
tr

state
ts

1tr

1ts

action
ta

Fig. 2. Agent-environment interaction in RL
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where ε ∈ (0,1) and a∗ is the greedy action defined as

a∗ = argmax
a′

Q(s,a′) (10)

The RL method is searching for the optimal policy, π∗, by
searching for the optimal value function, Q∗(s,a) where

Q∗(s,a) = max
π

Qπ(s,a) (11)

Many methods have been proposed for estimating the optimal
value functions. Here, we focus on the temporal difference
method (TD). The TD method has several control algorithms.
The most widely used and well-known control algorithm is
Q-learning which is known as the best RL algorithm [22]. In
addition, it is widely used in learning for most mobile robot
applications [23], [24].

Q-learning, which was first introduced by Watkins in his
Ph.D [25], is an off-policy algorithm. This means that it has
the ability to learn without following the current policy. The
state and action spaces are discrete and their corresponding
value function is stored in a lookup table known as a Q-table.
To use Q-learning with continuous systems (continuous state
and action spaces), one can discretize the state and action
spaces [4], [10], [14], [23], [26] or use some types of function
approximations such as fuzzy systems [3], [27]–[29] and GAs
[30], [31].

A one-step update rule for Q-learning is defined as

Q(st ,at) ← Q(st ,at)+α �t (12)

where α is the learning rate, (0 < α ≤ 1), and �t is the
temporal difference error (TD-error) defined as

�t = rt+1 + γ max
á

Q(st+1, á)−Q(st ,at) (13)

Here, (12) is a one-step update rule that updates the value
function according to the immediate reward obtained from the
environment. To update the value function based on a multi-
step update rule one can use eligibility traces [21].

Eligibility traces are used to modify a one-step TD algo-
rithm, TD(0), to be a multi-step TD algorithm, TD(λ ). One
type of eligibility traces is the replacing eligibility trace defined
for all s, a, as

et(s,a) =

⎧⎨
⎩

1, if s = st and a = at ;
0, if s = st and a �= at ;
λγet−1(s,a), if s �= st .

(14)

where eo = 0, and λ is the trace-decay parameter, (0 ≤ λ ≤ 1).
Eligibility traces are used to speed up the learning process

and hence to make it suitable for on-line applications. Now
we will modify (12) to be

Q(st ,at) ← Q(st ,at)+α et �t (15)

B. Fuzzy Logic Controller

A block diagram of a fuzzy logic controller (FLC) system
is shown in Fig. 3. We will construct two FLCs, one for the
pursuer and the other for the evader. Each FLC has two inputs,
the error in angle, δi, and its derivative, δ̇i, and the output is

the steering angle, ui, where

δi = tan−1
(

ye − yp

xe − xp

)
−θi (16)

where ”i” is ”p” for the pursuer and is ”e” for the evader. For
the inputs of the FLC, we use the gaussian MF described by

μ(x) = exp

(
−1

2

(
x− c

σ

)2
)

(17)

where σ is the standard deviation and c is the mean. We use a
zero order Takagi-Sugeno-Kang fuzzy inference system (TSK-
FIS) in which the consequent part is a constant function and
the rule is described as follows

Rl : IF x1 is Al
1 AND x2 is Al

2 AND ... AND xN is Al
N

T HEN fl = Kl (18)

where Rl is the lth rule, Al
j is the fuzzy set for the input variable

x j, and Kl is the consequent parameter for the rule output fl .
The crisp output which is the steering angle, ui, is calculated
using the weighted average defuzzification method as follows

ui =

L

∑
l=1

((
N

∏
n=1

μAl
n(xn))Kl

L

∑
l=1

(
N

∏
n=1

μAl
n(xn))

(19)

where L is the number of rules and N is the number of input
variables.

C. Genetic Algorithms

Genetic algorithms (GAs) are search and optimization tech-
niques that are based on a formalization of natural genetics
[32], [33]. GAs have been used to overcome the difficulty and
complexity in the tuning of the FLC parameters such as MFs,
scaling factors and control rules [34]–[36].

GAs search a multidimensional parameter space to find
an optimal solution. A given set of parameters is referred
to as a chromosome. The parameters can be either decimal
or binary numbers. The GA is initialized with a number of
randomly selected parameter vectors or chromosomes. This set
of chromosomes is the initial population. Each chromosome is
tested and evaluated based on a fitness function, in control
engineering we would refer to this as a cost function. The
chromosomes are sorted based on the lowest cost function or
the ranking of the fitness functions. One then selects a number
of the best, according to the fitness function, chromosomes to
be parents of the next generation of chromosomes. A new set
of chromosomes is selected based on reproduction.

)(i
reference

signal
)(i+

-
)(iu

Robot(i)FLC(i)
dt
d

Fig. 3. Block diagram of a FLC system
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In the reproduction process, we generate new chromosomes,
which are called children. We use two GA operations. The first
operation is a crossover in which we choose a pair of parents
and select a random point in all of their chromosomes and
make a cross replacement from one parent to another. The
second operation is a mutation in which a parent is selected
and we change one or more of its parameters to get a new
child. Now, we have a new population to test again with the
fitness function. The genetic process is repeated until the last
iteration is reached.

V. THE PROPOSED Q(λ )-LEARNING BASED GENETIC
FUZZY CONTROLLER (QLBGFC)

We propose a novel hybrid learning technique that combines
Q(λ )-learning with FLC and GAs. The proposed technique
is called a Q(λ )-learning based genetic fuzzy controller (QL-
BGFC). The proposed technique is applied to a pursuit-evasion
game in a partially known environment. Partially known envi-
ronment means that each robot can know the instant position
of the other robot but at the same time none of them knows
its control strategy. The learning process passes through two
phases as shown in Fig. 4.

In phase 1, Q(λ )-learning is used to obtain a suitable
estimation for the optimal strategy of the pursuer/evader. The
state, s, consists of the error, δi, defined by (16) and its
derivative, δ̇i, and the action, a, is the steering angle, ui. The
states and their corresponding greedy actions are then stored
in a lookup table. The reward function used is defined by (8).

Phase 2 consists of two stages. In stage 1, the state-action
pairs stored in the lookup table are used as the training data
to tune the parameters of a FLC using GAs. In this stage, the
mean square error (MSE) defined by (20) is used as the fitness
function. GAs in this stage are used as supervised learning.
In stage 2, we run the pursuit-evasion game with the tuned
FLC. GAs are then used to fine tune the parameters of the
FLC during the interaction process between the pursuer and

flciu )(

)(

)(

i

i )(iu

)(is
tis )(

tir )(
tia )(

)(ia

Phase 1

GAs

FLC(i)
Phase 2
Stage 1

Phase 2
Stage 2

capture time

Pursuit 
evasion 
model

GAs

FLC(i)

1)( tir

1)( tis

Self-learning 
controller

Pursuit evasion 
model

Fig. 4. The proposed QLBGFC technique

the evader. In this stage, the capture time, which the pursuer
wants to minimize and the evader wants to maximize, is used
as the fitness function. In other words, at this stage we do the
final search for the Nash equilibrium. Here, GAs are used as
reward-based learning with a priori knowledge obtained from
stage 1.

Q-learning alone has the limitation in that it is too hard
to visit all the state-action pairs [14]. We try to cover most
of the state-action space but we can not cover all the space.
In addition, there are hidden states that are not taken into
consideration due to the discretization process. Hence Q-
learning alone can not find the optimal strategy. Therefore, we
extend the learning algorithm by using a FLC to generalize Q-
learning over the continuous state space [37]. In addition, GAs
are used as an optimization technique to tune the parameters
of the FLC. Both FLC and GAs are used to compensate for
the limitation of the Q-learning. The learning process in phase
1 and phase 2 are described in Algorithm 1 and Algorithm 2,
respectively. Note that the procedures in the two algorithms are
used for both the pursuer and the evader. In these algorithms
”i” is ”p” for the pursuer and is ”e” for the evader.

Algorithm 1 (Phase 1: Q(λ )-learning)

1) Discretize the state space, S(i), and the action space, A(i).
2) Initialize Q(i)(s(i),a(i)) = 0.
3) Initialize e(i)(s(i),a(i)) = 0.
4) For each episode

a) Initialize (xp,yp) = (0,0).
b) Initialize (xe,ye) randomly.
c) Calculate s

(i)
t = (δi, δ̇i) according to (16).

d) Select a(i) randomly.
e) For each play

i) Receive rt+1.
ii) Observe s

(i)
t+1.

iii) Select a
(i)
t+1 using the ε−greedy method.

iv) Calculate e
(i)
t+1.

v) Update Q(i)(s
(i)
t ,a

(i)
t ).

f) End
5) End
6) Q(i) ← Q∗

(i).
7) Assign a greedy action, a(i)∗, to each state, s(i).
8) Store the state-action pairs in a lookup table.

In the case of large continuous state space, which is not
our case, the discrete representation of RL is intractable. In
our case, the state values represent the error in angle, δi,
and its derivative, δ̇i, where δi ∈ [−1,1] for both the pursuer
and the evader. The action is the steering angle, ui, where
up ∈ [−0.5,0.5] and ue ∈ [−1,1]. These values are relatively
coarsely discretized such that the state and the action spaces
are not prohibitively large.
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Algorithm 2 (Phase 2: GAs learning)
• Stage 1

1) Get the state-action pairs from the lookup table.
2) Initialize a population, P(i), randomly.
3) For each iteration

a) For each set of chromosomes in the population
i) Construct two FLCs from the population

chromosomes (one for the pursuer and the
other for the evader).

ii) For each state, s(i),
– Calculate the FLC output, u

(i)
f lc.

iii) End
iv) Calculate fitness function using MSE as

MSE(i) =
1

2L

L

∑
l=1

(u(i)l
d −u

(i)l
f lc)

2 (20)

where u
(i)l
d is the lth greedy action, a(i)∗.

b) End
c) Sort the entire chromosomes of the population

according to their fitness values.
d) Select a portion of the sorted population as the

new parents.
e) Create a new generation for the remaining por-

tion of population using crossover and mutation.
4) End

• Stage 2
1) Initialize a population, P(i), from the tuned FLCs

obtained from stage 1.
2) For each iteration

a) Initialize (xe,ye) randomly.
b) For each set of chromosomes in the population

i) Initialize (xp,yp) = (0,0).
ii) Compute the state (δi, δ̇i) according to (16).

iii) Construct two FLCs from the population
chromosomes (one for the pursuer and the
other for the evader).

iv) For each play
A) Calculate the FLC output, ui.
B) Observe the next state.

v) End
vi) Observe the fitness function which is the

capture time.
c) End
d) Sort the entire chromosomes of the population

according to their fitness values (ascending for
the pursuer and descending for the evader).

e) Select a portion of the sorted population as the
new parents.

f) Create a new generation for the remaining por-
tion of population using crossover and mutation.

3) End

A. Comparison of reward-based GA Learning to the Proposed

Technique

For comparative purposes, we will also implement a general
reward-based GA learning method. The reward-based GA
learning method will be initialized with randomly chosen FLC
parameters. The GAs adjust the parameters using the closing
distance reward given by (8) as the fitness function which both
the pursuer and the evader want to maximize.

In the proposed technique the GAs are used in phase 2
stage 1 to tune the FLC parameters as determined from Q(λ )-
learning in phase 1. The GAs use an MSE criterion given
by (20) that measures the difference between control or action
defined by Q(λ )-learning and the output of the FLC. The FLC
parameters are then tuned by the GAs to achieve the greedy
actions defined by Q(λ )-learning in phase 1. Then, in phase
2 stage 2, the GAs fine tune the FLC parameters to achieve
a minimizing capture time for the pursuer and a maximizing
capture time for the evader.

VI. COMPUTER SIMULATION

At the beginning of each episode, the pursuer starts motion
from the position (0,0) with an initial orientation θp = 0 rad
and turning radius Rp = 1 m. The velocity of the pursuer Vp = 1
m/s and the steering angle up ∈ [−0.5,0.5] rad. The evader
starts motion from a random position for each episode with an
initial orientation θe = 0 rad and turning radius Re = 1 m. The
velocity of the evader Ve = 0.5 m/s which is half that of the
pursuer (slower) and the steering angle ue ∈ [−1,1] rad which
is twice that of the pursuer (more maneuverable). The capture
radius � = 0.10 m.

To build the state spaces for the pursuer, we discretize the
ranges of the inputs, δp and δ̇p, by 0.2. The ranges of δp and
δ̇p are set to be from -1 to 1 so the discretized values for
δp and δ̇p will be (−1.0,−0.8,−0.6, . . . ,0.8,1.0). There are
11 discretized values for δp and 11 discretized values for δ̇p.
These values are combined to form 11× 11 = 121 states for
the pursuer. The state space of the evader is identical to that
of the pursuer since the ranges of δe and δ̇e are set also to
be from -1 to 1. To build the action space of the pursuer, we
discretize the range of the action, up, by 0.1. The range of the
action is set to be from -0.5 to 0.5 so the discretized values
in the action space are (−0.5,−0.4,−0.3, . . . ,0.4,0.5). There
are 11 actions and the dimension of the Q-table of the pursuer
will be 121×11. To build the action space of the evader, we
discretize the range of the action, ue, by 0.1. The range of the
action is set to be from -1 to 1 so the discretized values in
the action space are (−1,−0.9,−0.8, . . . ,0.9,1). There are 21
actions and the dimension of the Q-table of the evader will be
121×21. We choose the number of games or episodes to be
1000, the number of plays or steps in each episode is 6000, the
discount factor γ = 0.8, and the trace-decay parameter λ = 0.3.
We make the learning rate, α , decrease with each episode such
that

α =
1
i

(21)

2694



and we also make ε decrease with each episode such that

ε = 0.2−0.2
(

i

maximum # of episodes

)
(22)

where i is the current episode.
In phase 1, the position of the evader, (xe,ye), and the

actions taken by both the pursuer and the evader are chosen
randomly at the beginning of each episode to cover most of
the states and the actions. At the end of phase 1, the states
of the pursuer and the evader and their corresponding greedy
actions, a∗, are stored in two lookup tables to be used in the
learning process of phase 2.

In phase 2, GAs are used to tune the parameters of two
FLCs (one for the pursuer and the other for the evader). Each
FLC to be learned has 2 inputs, (δp, δ̇p) for the pursuer and
(δe, δ̇e) for the evader. Each input variable has 3 MFs for a total
of 6 MFs. We use gaussian MFs which have 2 coefficients to
be tuned. The total number of premise parameters to be tuned
per each FLC is 6×2 = 12 parameters for a total of 24 premise
parameters for the two FLCs. We have 3×3 = 9 rules. We use
the zero-order TSK-FIS defined in (18) and modify it to be

Rl : IF δ is Al
1 AND δ̇ is Al

2 T HEN fl = Kl (23)

where l = 1,2, ...,9. The crisp output of the system, which is
the steering angle , ui, is calculated using (19) as follows

ui =

9

∑
l=1

((
2

∏
n=1

μAl
n(xn))Kl

9

∑
l=1

(
2

∏
n=1

μAl
n(xn))

(24)

The consequent parameters to be tuned are 9 for each FLC
with a total number of 18 consequent parameters to be tuned
for the two FLC. The total number of FLC parameters to be
tuned is 24+18 = 42 parameters for the inputs and the output
of the two FLCs.

Learning in phase 2 consists of two stages. In stage 1, GAs
are used as supervised learning. All the FLC parameters are
initialized randomly. The fitness function used is the MSE
defined in (20). The desired output, ud , is the greedy action,
a∗, obtained from the lookup table of phase 1 and the actual
output is the output of the FLC, u f lc, so the results of this
stage will not be better than those of phase 1 therefore we
need to perform stage 2. In stage 2, GAs are used as reward-
based learning with a priori knowledge obtained from stage
1 i.e. we initialize the FLC parameters from those obtained
in stage 1. In this stage, the capture time, which we want to
minimize for the pursuer and to maximize for the evader, is
used as the fitness function instead of the MSE used in stage
1. To validate our proposed technique, we compare its results
with the results of the optimal strategy, the Q(λ )-learning only,
and the reward-based GA learning where the reward function
is given by (8). The values of the GAs parameters used in
stage 1 of phase 2, stage 2 of phase 2, and reward-based GA
learning are shown in Table I. Notice that in stage 2 of phase
2 we already have a tuned FLC and we just fine tune it but in

the reward-based GA learning we have no idea about the FLC
parameters so we initialize them randomly and of course this
random initialization will increase the learning time as we see
in Section VII.

We will test the convergence of the Q-learning algorithms
used in phase 1. In addition we will test the boundedness of
the Q values. The importance of these tests is that the learning
in phase 2 with its two stages depends on the results obtained
from phase 1. Therefore we want to be sure that the Q-learning
algorithms for both the pursuer and the evader did well in phase
1. To test the convergence of the Q-learning, we calculate L1

norm, ‖Q‖1, which is defined as

‖Q‖1 = ∑
s,a

|Q(s,a)| for all s,a (25)

VII. RESULTS

To execute our computer simulations, we use a core 2 duo
computer with a 2.0 GHz clock frequency and 4.0 Gigabytes of
RAM. We do the computer simulations in MATLAB program.
In phase 1, we run the simulation of the Q(λ )-learning which
takes on average 2.88 minutes. At the end of phase 1, we
store the states, sp = (δp, δ̇p) and se = (δe, δ̇e), and their
corresponding greedy actions, a∗p and a∗e , in two look-up tables
to use them as training data in phase 2.

Phase 2 consists of two stages. In stage 1, the state-
action pairs stored at the end of phase 1 are used to tune
the parameters of a FLC using GAs. This process takes on
average 0.16 minutes. In stage 2, we put the FLC tuned in
stage 1 in our pursuit-evasion game then we run the system
simulation and fine tune the parameters of the FLC during the
interaction process between the pursuer and the evader using
GAs. The initial population of the GAs is generated from the
FLC tuned in stage 1. The learning process in this stage takes
on average 12.91 minutes with a total time of 15.95 minutes
for the learning process in our proposed QLBGFC technique.

Fig. 5 and Fig. 6 show the tuned MFs for the two inputs,
δp and δ̇p for the pursuer and δe and δ̇e for the evader,
respectively. Table II and Table III show the fuzzy decision
tables after the learning process for the pursuer and the
evader, respectively. Fig. 7 shows the paths of the pursuer
and the evader using the Q(λ )−learning only. Fig. 8 shows
the paths of the pursuer and the evader using the optimal
strategy, the reward-based GA learning, and our proposed
QLBGFC. The pursuer starts from position (0,0) and the

TABLE I
VALUES OF GAS PARAMETERS

Phase 2 Reward-based
Stage 1 Stage 2 GA learning

Number of iterations 300 200 500
Population size 200 100 200
Number of plays - 600 600
Crossover probability 0.2 0.2 0.2
Mutation probability 0.1 0.1 0.1
Fitness function MSE capture time reward function
Fitness function minimize minimize for pursuer maximizeobjective & maximize for evader
Learning time (minutes) 0.16 12.91 29.55
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evader starts from position (6,7). From Fig. 7 we can see
that the Q(λ )-learning only is not enough to get the desired
performance in comparison with the optimal strategy and the
other techniques. From Fig. 8 we can see that the reward-based
GA learning gets better performance than the Q(λ )-learning
only and its performance approaches the performance of our
proposed technique but it takes on average 29.55 minutes in
the learning process. Our proposed technique has the best
performance which approaches the performance of the optimal
strategy. We can see that there is only a slight difference in the
paths between the optimal strategy and the proposed QLBGFC
technique. In addition, it takes 15.95 minutes in the learning
process which is about 54 % of the time taken by the reward-
based GA learning. Fig. 9 shows the convergence of the Q-
learning for both the pursuer and the evader. We can see that
the Q-learning of the pursuer converges to a value of 24 and
the Q-learning of the evader converges to a value of 15. Fig. 10
shows the maximum and the minimum Q values for the pursuer
and the evader. Notice that the Q values of the pursuer are in
the range from -0.6 to 0.45 and the Q values of the evader are
in the range from -0.28 to 0.37 and therefore they are bounded.

VIII. CONCLUSION

In this paper we propose a novel hybrid learning technique
in which RL is combined with FLC and GAs. This combi-
nation exploits the advantage of RL in which no expert or
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Fig. 5. Tuned MFs for the inputs of the pursuer
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Fig. 6. Tuned MFs for the inputs of the evader

TABLE II
FUZZY DECISION TABLE AFTER TUNING FOR THE PURSUER

δ̇ N Z P
δ
N -0.6864 -1.0896 0.0105
Z -0.5703 0.2660 -0.6728
P 0.3509 1.4113 -0.1126

training data is needed, the advantage of FLC as a function
approximation, and the advantage of GAs which is a powerful
optimization technique. The proposed technique is applied to
a pursuit-evasion game. We assume that the pursuer and the
evader do not know their control strategies. However they can
self-learn their control strategies by interaction with each other.

TABLE III
FUZZY DECISION TABLE AFTER TUNING FOR THE EVADER

δ̇ N Z P
δ
N -0.1045 -1.6240 0.2204
Z -0.8479 -0.4161 0.2949
P -0.3151 1.4953 1.1489
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0 2 4 6 8 10 12
0

5

10

15

The reward based
GA learning

The proposed
QLBGFC

The optimal
strategy

The evader
start position

The pursuer
start position

Fig. 8. The paths of the pursuer and the evader using the different techniques

0 200 400 600 800 100010

12

14

16

18

20

22

24

26

Episodes

N
or

m
 (Q

)

The evader

The pursuer

Fig. 9. The convergence of the Q-learning algorithms of both the pursuer
and the evader

2696



0 200 400 600 800 1000-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Episodes

Q
 v

al
ue minimum Q value

for the evader
maximum Q value

for the evader

maximum Q value
for the pursuer

minimum Q value
for the pursuer

Fig. 10. The upper and lower boundaries of the Q values for both the pursuer
and the evader

Computer simulations and the results show that the proposed
QLBGFC technique has the best performance among all other
techniques compared with the optimal strategy.

In future work, we will test our proposed technique in more
complex multi-robot pursuit-evasion games that have a team
of pursuers and a team of evaders.
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