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Abstract—Aiming at vehicle detection and tracking problems in 
video monitoring and controlling system, this paper mainly studies 
vehicle detection and tracking problems in conditions of high traffic 
density in daytime. This paper is distinguished by two key 
contributions. First, we develop an improvement SEAP(Simple 
but Efficient After Process) which checks the detection results in an 
accurate way and is an after process of Adaboost [1] detector which 
used to detect car in every frame. Second, we propose a tracking 
algorithm named 4-states tracking algorithm based on Kalman[5] 
linear filter. Tracking results turn unsteady as traffic density grows 
higher because of much more false positives and false negatives 
appear. However, 4-states tracking algorithm can solve this problem 
in an easy way by introducing FSM (Finite State Machine) into 
tracking algorithm. Finally, we implement a real-time vehicle 
detection and tracking system with the upper methods. Experiments 
give good results in relative crowded Conditions. 
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I. INTRODUCTION 

Being the most important and fundamental aspects of ITS 
(Intelligent Transportation System), vehicle detection and 
tracking becomes more and more important as the number of 
cars grows in an incredible speed.  

Various vehicle detection algorithms have been proposed in 
the literature. Some algorithms are based on knowledge. They 
employ prior knowledge, like information about symmetry, 
color, shadow, textures, to the process of detection. Symmetry 
is one of the most important signatures of man-made objects. 
As a result, [13] introduce symmetry into detection and solve 
problems using Neural Networks. Some algorithms use color 
information for vehicle segmentation and some others solve the 
detection problem in color spaces like RGB and L*a*b spaces 
[14] [15]. Shadow and some horizontal Edge features are useful 
information for vehicle detection too. As a matter of fact, the 
front view of vehicle contains many horizontal structures and 
the shadow of vehicle has a low intensity  compared with 
vehicle’s body and surface of the road at most of the time. 
Some other algorithms use disparity map or IPM (Inverse 
Perspective Mapping) before trying the upper methods in order 
to introduce some stereo information into vehicle detection. 
There’s many algorithms are based on vehicle movements. But, 
all the algorithms mentioned above are not robust to clutter 

scenes because they don’t get the characteristic feature of 
vehicles. Especially when interactions of vehicles appear in the 
scene, algorithms using symmetry, color and other features turn 
less discriminating because it is hard to separate 2 or 3 
interacted cars with these simple features.  

The most popular vehicle detection algorithm is based on 
statistical learning [6] [7] [8]. In statistical learning algorithms, 
vehicle detection is treated as a two-class pattern classification 
problem. These algorithms try to learn vehicles’ features by 
training computer with large amount of vehicle images and 
non-vehicle images. Adaboost detector and haar-like features 
succeeded in face detection [1]. Therefore, it is reasonable to 
introduce Adaboost and haar-like features to vehicle detection. 
In our experiment, it is more robust then algorithms which use 
simple features, but detection results are not stable in the image 
series. For example, car A is detected in 1-6 and 10-20 frames 
but is missed in 7-9 frames(false negatives in some frames), or 
car A’s size is detected as 30*30 in the first frame but changed 
to 60*60 in the second frame. These occasions appear because 
Adaboost performances well only when the variances in class 
are small and the variances between classes are quite large [3]. 
So it is necessary to add an after process module to optimize 
the detection results. It is why we designed SEAP method 
which will be explained in detail in Section 3. On the other 
hand, we need some other algorithms to help us link the 
detection results of every frame, to solve the false negatives 
problem talked above. As a result, we should employ tracking 
algorithm as well. There has been many effective algorithm 
provided on object tracking, including Kalman filter [9], 
Extended Kalman filter [10], Particle filter [11], Meanshift [12], 
etc. Among all tracking methods, Kalman Linear Filter [5] is 
the most widely used tracking algorithm in the problems like 
tracking vehicles because the size and position of every car 
change linearly [2]. But as the traffic density grows higher, 
much more false positives and false negatives that are 
mentioned above appear in the detection results, and more 
interactions between cars should also be considered. Tracking 
algorithm simply using Kalman filter gives unstable results that 
is unbearable for normal usage when the road is crowded. 

In order to solve the problems mentioned above, we 
implement a complete real-time car detecting and tracking 
system using an improved detector and a tracker called 4-states 
tracker. There are two key contributions in our system. The 
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first contribution is an improvement SEAP(Simple but 
Efficient After Process) which is an after process of Adaboost 
[1] detector and checks the detecting results in an accurate way. 
We select an Adaboost detector that cascades less stages which 
performances high false positives but low false negatives in car 
detection. And then, we add our after process——SEAP 
following the Adaboost detector. SEAP moves away many 
false positives using Harris corner detecting first, then finds the 
cars’ accurate position by detecting the shadow area in the front 
of every car. This after process can be computed rapidly since 
it just computes in the areas that surround every detected car. 
The second contribution is a new approach called 4-states 
tracking algorithm. Our goal is to find a way that can give 
stable tracking results when more false positives and false 
negatives appear in the scene. Therefore, FSM (Finite State 
Machine) is introduced in our tracking algorithm. We design 
four kinds of states called ‘Detecting state’, ’Preparing Locking 
state’, ‘Locking state’ and ‘Preparing Unlocking state’ for a 
single car’s tracking process.  

The rest of this paper is organized as follows: Section 2 
gives a specific explanation of SEAP method. Section 3 
discusses the 4-states tracking algorithm in detail. In section 4 
we show the experimental results and analysis. 

II. SYSTEM STRUCTURE

The system described in this paper is introduced for traffic 
flow surveillance in intersection. As shown in Figure 1, the 
system is composed by three parts: moving objects detecting 
and tracking, detection regions setting, traffic movements 
detecting. In the first part, the moving objects are accurately In 
our system shown in Figure 1, Adaboost detector searched 
objects in each frame.  Then the output information is 
improved by SEAP in the next module. After the detection and 
improvement, the system sends all of the information into 4-
States tracker. There are many FSMs in the tracker and each 
FSM will tracks one detected object using 4-States algorithm. 
If the tracker finds a new object, new FSM will be assigned. 

Figure 1. System Flow Chart.

III. SEAP METHOD

Adaboost detector has a cascade structure. The false 
positives probability falls down and false negatives probability 
rises up as the number of stages grows. It is a trade-off between 
false negatives and false positives. When facing the problem of 
car detection in crowded roads, Adaboost detector can’t find 
the perfect trade-off, the results have either too many false 
positives or false negatives, neither meets our demands. In 
order to overcome the problem, we add an after process 
module(SEAP) behind a normal Adaboost detector. In this case 
the Adaboost detector has less stages and remains low false 
negatives probability. 

SEAP moves away some false positives first. When we 
analyze the feature selected by Adaboost detector, we find the 
most important Haar-like feature of a car is the vertical gradient 
in the shadow area at each car’s front (see Figure 2.(a). Another 
important Haar-like feature is the vertical gradient shown in 
Figure 2.b.as a result, false positives rise when the Adaboost 
detector finds apparent vertical gradient in a detecting window. 
We can find that lots of false positives take the car window for 
car or just take a crowd of cars for one object (see Figure 3). 

Figure 2. The specific Haar-like feature.

Figure 3. Lots of false positives take the car window or just take a crowd of 
cars.

Based on this observation, we designed the false positive 
checking method below: 

Check all the windows ( ~i jw w ) that detected 

by Adaboost detector, if iw interacts with jw  and 

1
( ) ( ) ( )

2i j iarea w area w area w

(
1

( ) ( ) ( )
2i j jarea w area w area w ), start checking 

false positive in these two windows. 
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Detecting corner using Harris corner detector [4] 
in ,i jw w .

Calculate the center of gravity based on these corner 
points (or we can some other statistics to present a 
car), compared two center to decide which one is a 
false positive. Normally, we choose the one that its 
center of gravity is closer to the center of the window. 

minmax
 areamax min

min0  areamax min

max0

0 0

1 ( )

1

( , )

1  / 2 *   / 2 *

0                                                                      else

shadow

shadow
x

y

a x xy y

xy y

y

window x y

x x a a and y y a a

where  is a parameter for adjusting the final 
window size. 

After moving away the false positives, SEAP needs to find 
the accurate position of each car. As we have mentioned above, 
the most important Haar-like feature of a car is the vertical 
gradient in the shadow area at each car’s front (see Figure 
2.(a)). We suppose that a car’s contour looks much like a 
square in the front or from its back. So we search the obvious 
vertical gradient in each detected window and measure its 
average width, then take it as the square edge length (see 
Figure 4). This method makes the size of a car stable, so that 
we can use the size information in tracking algorithm. 

Figure 4. Accurate object size using shadow information. 

SEAP is the module between Adaboost detector and 4-
states tracker. Its function is to make the output of Adaboost 
detector more stable and accurate. SEAP finishes its job in an 
easy way, and it is efficient in ordinary occasions though it 
seems not smart enough yet. In our experiments, it cut off over 
85% false positives probability with no apparent change in 
detection rates. 

IV. 4-STATES TRACKING ALGORITHM ECTION

When traffic density grows higher, more false positives and 
false negatives appear in detector’s results, and the interactions 
between cars can’t be ignored. All these problems lead to 
difficulties for tracking cars. Traditional tracking algorithm 
divided the whole frame into two parts: detecting area and 

tracking area. A traditional tracker only track a detected object 
in tracking area. It has a strong assumption which is the cars 
will be detected in the detecting area. Actually, lots of 
uncertainties makes it’s possible to detect an object for the first 
time everywhere in a frame (see Table1. maybe due to some 
false negatives and false positives, maybe when a small car 
finally speed up and appears in the camera from behind a large 
bus ). 

TABLE I. SEVERAL OCCASIONS OF A CAR’S APPEAR AND DISAPPEAR 

OCCASIONS DESCRIBE IN DETAIL

Car  
disappear 

Move out of camera Disappear at image edges 

Car interaction One car moves behind the other 
car 

False negatives False negative won’t last for 
many frames 

Disappear of false 
positives

Car  
appear 

Move into camera Appear at image edges 

Car interaction One car appears from behind the 
other car 

False positives False positives won’t last for 
many frames 

Think of how people get to know a new friend. When 
person D (Detector) meet person O (Object) for the first time, 
D don’t know anything about O. Is O a student or a waiter? D 
has no idea. As they meet each other frequently in the 
following days, D knows O’s living customs and O’s 
uncertainty becomes smaller and smaller. Finally D confirms 
that O is a student based on his continually observation. In fact, 
D still can forget O slowly if O never shows up in D’s life, but 
it is not an easy process. The process seems likely in our car 
tracking problem. We try to use the relations in a series of 
frames to help us confirm whether an object is a car and make 
sure its track won’t be missed easily.  

So we propose FSM into our car tracking algorithm and 
define four kinds of states: 

State 1: Detecting state. We define the input and output of 
each state first. When we detect a new car or detect an old car 
in its small predicted area, the input of this state is 1, otherwise, 
the input value is 0. When we confirm the object in a car’s 
predicted area is the car, the output of this state is 1, otherwise 
is 0. At detecting state, the FSM turns to Preparing Locking 
state when the input is 1 (detect a new car), or remains at 
Detecting state if the input is 0. 

State 2: Preparing Locking state. This state is an N times’ 
confirmation. Counter1 starts when the FSM turns into this 
state which counts the number of frames in which the FSM 
stays in this state. Counter2 starts when the state’s begins to 
output 0 and Counter2 will be back to 0 when the output turns 
to 1 before Counter 2 counts to M. Counter1 will stop when 
Counter2 counts to M or counts to N itself (N>=M). Actually, 

there are
1

* * ( 1) * ( 2)
2

M N M M  sub-states, they are 

present as follow. 

Sub-state1: counter1 = 1, counter2 = 0; 

Sub-state2: counter1 = 1, counter2 = 1; 
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Sub-state3: counter1 = 2, counter2 = 0; 

Sub-state4: counter1 = 2, counter2 = 1; 

Sub-state5: counter1 = 2, counter2 = 2; 

Sub-state6: counter1 = 3, counter2 = 0; 

……. 

If Counter1 gets to N, we turn all the output in the former N 
frames to 1, otherwise to 0. 

State 3: Locking state. In this state, we are quite sure that 
the detected object is a not a false positive. The state output is 1 
no matter the input is 1 or 0. The FSM remains in Locking state 
when the input is 1 but turns into Preparing Unlocking state if 
the input is 0. 

State 4: Preparing Unlocking state. In this state, the FSM 
still think the detected object is not a false positive, but it starts 
to suspect. It is a Q times’ confirmation which likes the 
Preparing Locking. The difference is we are confirming 
whether the object is a false positive instead of whether it is an 
expected car in this state. Counter3 starts when the FSM turns 
into this state and will be back to 0 if it gets to Q or re-tracks 
the car before Counter3 turns to Q. It is also a set of sub-states 
like the Preparing Locking state and has totally Q states. 

We can analyze the algorithm using Markov chain theory 
(see Figure 5). 

Figure 5. Transport graph. 

We define the probability of states 1 to 4 as 

1 2 3 4

~
( , , , ) , while the transport matrix is 

1 1

2 2

1 0 0
0 1 0

0 0 1
0 1 0

r r

r r

p p
p p
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p  is the detect rate of the detection.  

We assume that / 2N M N , then obtain  
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by the following steps. 
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The probability of 1  tells us how frequency an object’s 

FSM turns to state 1. A low 1  stands for less tracking-loss 

conditions. And Figure 6 shows the 1 p curve. As we can 

see, 1  turns rather low while detect rate is not very high. 

As we can see, state 2 takes quite a long time to confirm 
about the object, it keeps the response of false positives in a 
low level. State 3 and state 4 make our system be possible to 
handle the common false negatives in frames. The hops 
between these 4 states are shown in Figure 8 

Figure 6. 1 - p Curve(N=12,M=6,Q=4). 

V. EXPERIMENTAL RESULT

In our system, we designed a 10 stages cascaded classifier 
following with a SEAP module and a 4-state tracker (N=12, 
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M=6, Q = 6). The images for training are 24*24 pixels, and there are totally 1600 positive samples and 2000 negative  

TABLE II. EXPERIMENT FOR TESTING SEAP MODULE

TABLE III. EXPERIMENT FOR TESTING 4-STATE TRACKER WITH VIDEO 3

Figure 7. Some detection and tracking results. 

Frame number Average car 
number

Without SEAP SEAP added 

Detect probability False positives number Detect probability False positives number

1 230-240 3 90.0% 7 86.7% 2 
280-290 4 76.3% 16 84.7% 1 

2 5-15 11 86.1% 6 88.0% 1 
80-90 7 98.6% 30 97.1% 0 

3 230-240 7 83.4% 10 85.5% 1 
370-380 8 70.0% 15 68.8% 0 

Frame

number

With traditional tracker With 4-states tracker 

Detect probability False positives 
number 

Track failure 
number 

Detect probability False positives 
number 

Track failure
number 

100-110 93.3% 5 3 93.3% 0 0 
150-160 96.0% 0 2 100% 0 0 
410-420 94.3% 2 3 92.9% 0 0 
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Figure 8. Hops between the 4 states. 

samples. The testing videos are 320*240 pixels and the frame-
rate is 25 fps. Testing results are as follow Tables: 

Statistic shows, the average time consumed on one frame is 
45.8ms, the maximum and minimum times consumed on one 
frame are 78ms and 15ms.So our system almost is a real-time 
system. 

Analyze: as the data shows, SEAP can keep the output of 
Adaboost detector in a fairly low false positive probability so 
that helps our 4-states tracker to solve tracking problem more 
easily. And 4-state tracker makes the false positive probability 
lower with almost no cost. As we have state, our system makes 
the detecting and tracking results stable and usable. In most of 
the conditions, our system lowers the false positives probability 
while keeps the detect probability or makes it grow a little bit 
higher. Only in a few conditions, the detect probability falls 
down obviously in our system. 

VI. CONCLUSION 

In this paper, we implement a complete real-time car 
detecting and tracking system with the upper methods and 
experiments with our system give a more stable and accurate 
result compared with the old algorithm. We discussed detecting 
and tracking cars in a relatively crowded road which has lots of 
false positives and false negatives in Adaboost detector’s 
output. We designed SEAP method and 4-state tracking 
algorithm which makes our detecting and tracking results more 

accurate and stable. As experiments shows, our methods are 
effective and efficient at the same time. 
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