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Abstract—Chaotic catfish particle swarm optimization (C-
CatfishPSO) is a novel optimization algorithm proposed in this 
paper. C-CatfishPSO introduces chaotic maps into catfish 
particle swarm optimization (CatfishPSO), which increase the 
search capability of CatfishPSO via the chaos approach. Simple 
CatfishPSO relies on the incorporation of catfish particles into 
particle swarm optimization (PSO). The introduced catfish 
particles improve the performance of PSO considerably. Unlike 
other ordinary particles, catfish particles initialize a new search 
from extreme points of the search space when the gbest fitness 
value (the best previously encountered value) has not changed for 
a certain number of consecutive iterations. This results in further 
opportunities of finding better solutions for the swarm by guiding 
the entire swarm to promising new regions of the search space, 
and by accelerating search efficiency. In this study, we adopted 
chaotic maps to strengthen the solution quality of PSO and 
CatfishPSO. After the introduction of chaotic maps into the 
process, the improved PSO and CatfishPSO are called chaotic 
PSO (C-PSO) and chaotic CatfishPSO (C-CatfishPSO), 
respectively. PSO, C-PSO, CatfishPSO and C-CatfishPSO were 
extensively compared on six benchmark functions. Statistical 
analysis of the experimental results indicates that the 
performance of C-CatfishPSO is better than the performance of 
PSO, C-PSO, and CatfishPSO. 

Keywords—Chaos, Chaotic map, Swarm Intelligence, Catfish 
Particle Swarm Optimization

I. INTRODUCTION

Generating an ideal random sequence is of great importance 
in the fields of numerical analysis, sampling and heuristic 
optimization. Recently, a technique which employs chaotic 
sequences via the chaos approach (chaotic maps) has gained a 
lot of attention and been widely applied in different areas, such 
as the chaotic neural network (CNN) [1], chaotic optimization 
algorithms (COA) [2, 3], nonlinear circuits [4], DNA 
computing [5], and image processing [6]. All of the above-
mentioned methods rely on the same pivotal operation, namely 
the adoption of a chaotic sequence instead of a random 
sequence, and thereby improve the results due to the 
unpredictability of the chaotic sequence [7]. 

Chaos can be described as a bounded nonlinear system with 
deterministic dynamic behavior that has ergodic and stochastic 
properties [8]. It is very sensitive to the initial conditions and 
the parameters used. In other word, cause and effect of chaos 
are not proportional to the small differences in the initial values. 
In what is called the “butterfly effect”, small variations of an 

initial variable will result in huge differences in the solutions 
after some iteration. Mathematically, chaos is random and 
unpredictable, yet it also possesses an element of regularity [7]. 

Particle swarm optimization (PSO) is a stochastic, 
population-based evolutionary computer algorithm developed 
by Kennedy and Eberhart in 1995 [9]. PSO simulates the social 
behavior of organisms to describe an automatically evolving 
system. PSO has been successfully employed in many areas, 
and generally obtains better results in a faster, cheaper way 
compared to other methods (http://www.particleswarm.info/). 
PSO shows a promising performance on nonlinear function 
optimization and has thus received much attention [10]. 
However, the local search capability of PSO is poor [11] since 
premature convergence occurs often, especially in the case 
complex multi-peak search problems [12]. Recently, numerous 
improvements, which rely on the chaos approach, have been 
proposed for PSO in order to overcome this disadvantage. 
Chaotic maps can easily be implemented and avoid entrapment 
in local optima [13-17]. The inherent characteristics of chaos 
can improve PSO by enabling it to escape from local solutions, 
and thus boost the global search capability of PSO [15]. Most 
PSO methods use the same chaotic map, namely a logistic map 
[16]. Logistic maps were introduced in nonlinear dynamics of 
biological populations evidencing chaotic behavior [18] and are 
often cited as an archetypal example. 

In this paper, we propose chaotic CatfishPSO (C-
CatfishPSO), in which chaotic maps are applied to improve the 
performance of the CatfishPSO algorithm. In CatfishPSO, the 
catfish effect is applied to improve the performance of PSO. 
This effect is the result of the introduction of new particles into 
the search space (“catfish particles”), which replace particles 
with the worst fitness; these catfish particles are initialized at 
extreme points of the search space when the fitness of the 
global best particle has not improved for a certain number of 
consecutive iterations. This results in further opportunities of 
finding better solutions for the swarm by guiding the whole 
swarm to promising new regions of the search space [19]. The 
logistic map was introduced in our study to improve the search 
behavior and to prevent entrapment of the particles in a locally 
optimal solution. The proposed method was applied to six 
benchmark functions from the literature. Statistical analysis of 
the experimental results shows that the performance of C-
CatfishPSO is superior to PSO, C-PSO, and CatfishPSO. 
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II. METHOD

A. Particle Swarm Optimization (PSO) 
In original PSO [9], each particle is analogous to an 

individual “fish” in a school of fish. It is a population-based 
optimization technique, where a population is called a swarm. 
A swarm consists of N particles moving around in a D-
dimensional search space. The position of the ith particle can be 
represented by xi = (xi1, xi2, …, xiD). The velocity for the ith
particle can be written as vi = (vi1, vi2, …, viD). The positions 
and velocities of the particles are confined within [Xmin, Xmax]D

and [Vmin, Vmax]D, respectively. Each particle coexists and 
evolves simultaneously based on knowledge shared with 
neighboring particles; it makes use of its own memory and 
knowledge gained by the swarm as a whole to find the best 
solution. The best previously encountered position of the ith
particle is denoted its individual best position pi = (pi1, pi2, …,
piD), a value called pbesti. The best value of all individual pbesti
values is denoted the global best position g = (g1, g2, …, gD)
and called gbest. The PSO process is initialized with a 
population of random particles, and the algorithm then executes 
a search for optimal solutions by continuously updating 
generations. At each generation, the position and velocity of the 
ith particle are updated by pbesti and gbest in the swarm. The 
update equations can be formulated as: 
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In Eqs. (1) and (2),  r1 and r2 are random numbers between 
(0, 1), and c1 and c2 are acceleration constants which control 
how far a particle will move in a single generation. Velocities 

new
idv  and old

idv  denote the velocities of the new and old particle, 
respectively. old

idx  is the current particle position, and new
idx  is the 

new, updated particle position. The inertia weight w controls 
the impact of the previous velocity of a particle on its current 
one [20]. In general, the inertia weight is linearly decreased 
from 0.9 to 0.4 throughout the search process in order to 
effectively balance the global and local search abilities of the 
swarm [21]. The corresponding equation can be written as: 
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In Eq. (3), wmax is 0.9, wmin is 0.4 and Iterationmax is the 
maximum number of allowed iterations. The pseudo-code of 
the PSO process is shown below. 
PSO pseudo-code 
01: begin 
02:   Randomly initialize particles swarm 
03:   while (number of iterations, or the stopping criterion is not met) 
04:      Evaluate fitness of particle swarm 
05:      for n = 1 to number of particles 
06:         Find pbest
07:         Find gbest
08:         for d = 1 to number of dimension of particle 
09:            Update the position of particles by Eq. 1 and Eq. 2 
10:         next d
11:      next n
12:      Update the inertia weight value by Eq. 3 
13:   next generation until stopping criterion
14: end 

B. Chaotic Particle Swarm Optimization (C-PSO) 
In C-PSO, sequences generated by the logistic map 

substitute the random parameters r1 and r2 in PSO. The 
parameters r1 and r2 are modified by the logistic map based on 
the following equation. 

Cr(t+1) = k × Cr(t) × (1-Cr(t)) (4)

In Eq. (4), Cr(0) is generated randomly for each independent 
run, with Cr(0) not being equal to {0, 0.25, 0.5, 0.75, 1} and k
equal to 4. The driving parameter k of the logistic map controls 
the behavior of Cr(t) (as t goes to infinity). The behavior of the 
logistic map for various values of the parameter k is shown in 
Fig. 1-a. For low values of k (k < 3), Cr eventually converges 
to a single number. When k = 3, Cr oscillates between two 
values. This characteristic change in behavior is called a 
bifurcation. For k > 3, Cr goes through further bifurcations, 
eventually resulting in chaotic behavior. In fact, the bifurcation 
diagram is itself a fractal [22]. As Fig. 1-a shows, when k
equals 4, the chaotic sequence value Cr is bounded within [0, 
1]. Fig. 1-b also shows the chaotic Cr value using a logistic 
map for 100 iterations where Cr(0) = 0.001. 

Bifurcation Diagram of Logistic Map

0

0.2

0.4

0.6

0.8

1

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Parameter k

(a)

C
r

Dynamics of Logistic map

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Number of Generations

(b)

C
ha

ot
ic

 C
r 

va
lu

e

Figure 1. Bifurcation Diagram and Dymamics of Logistic Map 

The velocity update equation for C-PSO can be formulated as: 
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In Eq. (5), Cr is a function based on the results of the logistic 
map with values between 0.0 and 1.0. The pseudo-code of C-
PSO is shown below. 
C-PSO pseudo-code 
01: begin 
02:   Randomly initialize particles swarm 
03:   Randomly generate Cr(0)
04:   while (number of iterations, or the stopping criterion is not met) 
05:      Evaluate fitness of particle swarm 
06:      for n = 1 to number of particles 
07:         Find pbest
08:         Find gbest
09:         for d = 1 to number of dimension of particle 
10:            Update the Chaotic Cr value by Eq. 4 
11:            Update the position of particles by Eq. 5 and Eq. 2 
12:         next d
13:      next n
14:      Update the inertia weight value by Eq. 3 
15:   next generation until stopping criterion
16: end 

C. Catfish Particle Swarm Optimization (CatfishPSO) 
The underlying idea for the development of CatfishPSO 

was derived from the observation of the catfish effect when 
catfish were introduced into large holding tanks of sardines 
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[19]. The catfish—in competition with the sardines—stimulate 
renewed movement amongst the sardines. Similarly, the 
introduced catfish particles stimulate a renewed search by the 
other “sardine” particles in CatfishPSO. In other words, the 
“catfish” particles lead the “sardine” particles, which are 
trapped in a local optimum, on to a new region of the search 
space, and thus to potentially better particle solutions. These 
catfish particles are essential for the success of a given 
optimization task. The pseudo-code of the CatfishPSO is 
shown below. Further details on CatfishPSO mechanisms can 
be found in Chuang et al. [19]. 
CatfishPSO Pseudo-code 
01: Begin 
02:  Randomly initialize particles swarm 
03:  while (number of iterations, or the stopping criterion is not met) 
04:    Evaluate fitness of particle swarm 
05:    for n = 1 to number of particles 
06:      Find pbest
07:      Find gbest
08:      for d = 1 to number of dimension of particle 
09:        Update the position of particles by Eq. 1 and Eq. 2 
10:      next d
11:    next n
12:    if fitness of gbest is the same Seven times then
13:      Sort the particle swarm via fitness from best to worst 
14:      for n = number of Nine-tenths of particles to number of particles 
15:        for d = 1 to number of dimension of particle 
16:          Randomly select extreme points at Max or Min of the search space 
17:          Reset the velocity to 0 
18:        next d
19:      next n
20:    end if
21:    Update the inertia weight value by Eq. 3 
22:  next generation until stopping criterion
23: end 

D. Chaotic Catfish Particle Swarm Optimization (C-
CatfishPSO) 
In C-CatfishPSO, a logistic map is embedded into 

CatfishPSO, which updates the parameters r1 and r2 based on 
Eq. (4) with k equal to 4. The chaotic sequence value Cr is 
bounded within [0, 1] if k equals 4. The logistic map improves 
the search capability of CatfishPSO significantly by ergodic 
and stochastic properties. The particle velocities are updated 
according to Eq. (5). The pseudo-code for C-CatfishPSO is 
shown below. 
C-CatfishPSO Pseudo-code 
01: Begin 
02:  Randomly initialize particles swarm 
03:  Randomly generate Cr(0)
04:  while (number of iterations, or the stopping criterion is not met) 
05:    Evaluate fitness of particle swarm 
06:    for n = 1 to number of particles 
07:      Find pbest
08:      Find gbest
09:      for d = 1 to number of dimension of particle 
10:        Update the Chaotic Cr value by Eq. 4 
11:        Update the position of particles by Eq. 5 and Eq. 2 
12:      next d
13:    next n
14:    if fitness of gbest is the same Seven times then
15:      Sort the particle swarm via fitness from best to worst 
16:      for n = number of Nine-tenths of particles to number of particles 
17:        for d = 1 to number of dimension of particle 
18:          Randomly select extreme points at Max or Min of the search space 
19:          Reset the velocity to 0 
20:        next d
21:      next n
22:    end if
23:    Update the inertia weight value by Eq. 3 
24:  next generation until stopping criterion
25: end 

III. NUMERICAL SIMULATION

A. Benchmark functions 
In order to illustrate, compare and analyze the effectiveness 

and performance of the PSO, C-PSO, CatfishPSO and C-
CatfishPSO algorithms for optimization problems, six 
representative benchmark functions were used to test the 
algorithms. These six benchmark functions are shown below. 
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These six benchmark functions can be grouped into 
unimodal functions (Ellipsoid and Rosenbrock) and multimodal 
functions (Rastrigrin, Griewark, Ackley and Schwefel); in 
multimodal functions the number of local minima increases 
exponentially with the problem dimension. 

B. Parameter settings 
In our experiments, three different dimension (Dim.) sizes 

were tested for each function, namely 10, 20 and 30 dimensions, 
and the corresponding maximum number of generations (Gen.) 
was set to 1000, 1500 and 2000, respectively. In addition, a 
population (Pop.) size of 20 was used for each function. The 
same sets of parameters were assigned for PSO, C-PSO, 
CatfishPSO and C-CatfishPSO, i.e. c1=c2=2 [9]. For each 
experimental setting, we executed 1000 independent runs for 
PSO, C-PSO, CatfishPSO and C-CatfishPSO with different 
random seeds. The parameter settings of the six benchmark 
functions are summarized in TABLE I. 

TABLE I. PARAMETER SETTINGS OF THE SIX BENCHMARK FUNCTIONS

Name Search Space Asymmetric 
Initialization Range Optimal

F1   Ellipsoid -100 xi 100  50 xi 100 0
F2   Rosenbrock -100 xi 100 15 xi 30 0
F3   Rastrigrin -10 xi 10 2.56 xi 5.12 0
F4   Griewark -600 xi 600 300 xi 600 0
F5   Ackley -100 xi 100  50 xi 100 0
F6   Schwefel -500 xi 500 -500 xi -250 0
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C. Experimental Results and Discussion 
In this section, the performances of PSO, C-PSO, 

CatfishPSO and C-CatfishPSO are compared by means of the 
best fitness and the standard deviation among six benchmark 
functions under equal conditions. In order to authenticate 
whether the proposed method is significantly different from 
other methods or not, we adopted a z-test on pairs of groups of 
results. The z-test gives a p-value which is compared to a 
constant called  to determine whether a difference between 
alternative method is significant or not. In our case, we adopted 
a 95% confidence interval in the z-test for all benchmark 
functions. In other words, if p-value <  = 0.05 then a test is 
reported as significant. The mean fitness values and standard 
deviations of PSO, C-PSO, CatfishPSO and C-CatfishPSO for 
these six benchmark functions are listed in TABLE II. If any 
mean fitness values and standard deviations are < 10-300,
TABLE II will display 0.000±0.000 instead. The experimental 
results in TABLE II are divided into three areas for analysis: 

C-PSO compared to PSO 

In C-PSO, a chaotic map was embedded to determine the 
PSO parameters r1 and r2. The PSO parameters r1 and r2 cannot 
ensure optimal ergodicity in the search space because they are 
absolutely random [14] i.e. the r1 and r2 are generated by a 
linear congruential generator (LCG) with a random seed. The 
generated sequence of LCG consists of pseudo-random 
numbers that have periodic characteristics [23]. Furthermore, 
the generated sequence of a logistic map also consists of 
pseudo-random numbers, but there are no fixed points, periodic 
orbits, or quasi-periodic orbits in the behavior of the chaos 
system [22]. As a result, the system can avoid entrapment in 
local optima [15]. In terms of mean fitness values, TABLE II 
indicate that C-PSO outperformed PSO on the Ellipsoid,
Rosenbrock, Rastrigrin, Griewark, Ackley and Schwefel
benchmark functions. Amongst these six benchmark functions, 
C-PSO seems superior to PSO. However, this result is 
misleading since the performance of C-PSO is as the z-test at 
= 0.05 proved, only statistically superior in the Ackley function. 

CatfishPSO compared to PSO 

TABLE II indicate that CatfishPSO outperformed PSO on 
the Ellipsoid, Rosenbrock, Rastrigrin, Griewark, and Ackley
benchmark functions, a fact that is supported by the z-test at 
= 0.05. In PSO, each particle only relies on its individual pbest
value and the global best position gbest to update its position at 
each generation. If gbest is trapped in a local optimum, the 
particles cluster together and lose their ability to explore the 
search space in later generations. In order to avoid such a 
scenario, the worst 10% of the swarm are replaced by catfish 
particles when gbest has not changed for a certain number of 
generations. 

After the catfish particles are introduced, they initialize a 
renewed search from extreme points of the search space, and 
thus find better solutions by guiding the entire swarm to 
promising new regions. They also improve the search 
efficiency of the swarm [19]. The catfish particles not only 
allow the swarm to discover better solutions within the area of 
the swarm itself, but also to obtain better solutions located 
outside the swarm area. 

C-CatfishPSO compared to both C-PSO and CatfishPSO 

TABLE II further shows that C-CatfishPSO outperformed 
CatfishPSO and C-PSO on the Ellipsoid, Rosenbrock,
Rastrigrin, Griewark, Ackley and Schwefel benchmark 
functions. For the majority of these six benchmark functions, 
CatfishPSO proved to be superior to C-PSO. However, the 
quality of solutions achieved by CatfishPSO can further be 
improved when chaotic maps are embedded (C-CatfishPSO), 
since the rank of C-CatfishPSO in the all benchmark functions 
is higher than the rank of CatfishPSO. The rank indicates the 
numbers of significance at =0.05 determined with a z-test 
between the tested method and another method. The 
experimental results and statistical analyses clearly demonstrate 
that the performance of C-CatfishPSO is superior to PSO, C-
PSO and CatfishPSO. 

Fig. 2 plots the mean best fitness in the form of logarithm 
values over the number of generations for PSO, C-PSO, 
CatfishPSO and C-CatfishPSO with 20 particles on six 30-
dimensional functions. These figures clearly show that the 
search efficiency of C-CatfishPSO is superior to that of PSO, 
C-PSO, and CatfishPSO on all six benchmark functions. At the 
same time, the best solution obtained by C-CatfishPSO is also 
superior to the best solution obtained by PSO, C-PSO and 
CatfishPSO. TABLE II indicates that CatfishPSO and C-
CatfishPSO are capable of finding optimal solutions in 
Ellipsoid, Rastrigrin and Griewark benchmark functions, 
where the fitness value was < 10-300. For the sake of 
convenience, we show the graphs in Figs. 2-a, 2-c and 2-d only 
up to the bottom of the chart, and demonstrate that CatfishPSO 
and C-CatfishPSO are capable of finding optimal solutions 
within 1500 generations, a fact supported by TABLE II, in 
which no standard deviation can be given for either CatfishPSO 
or C-CatfishPSO for the Ellipsoid, Rastrigrin and Griewark
benchmark functions.  

In Figs. 2-a to 2-f, we can observe a peculiar feature of 
CatfishPSO. The curve of CatfishPSO is displayed as step 
shape, and this phenomenon is indicative of the CatfishPSO’s 
capability to breakthrough and leave in local optimal solution. 
The curve of C-PSO always obtained the best solution early on. 
Moreover, it does not have the same to breakthrough the local 
optimal solution as CatfishPSO. In summary, it can be 
concluded that using a chaotic map to substitute the random 
parameters r1 and r2 is a significant approach to improve the 
performance of CatfishPSO in unimodal and multimodal 
different trait benchmark functions. 

IV. CONCLUSION

In this paper, Chaotic CatfishPSO (C-CatfishPSO) has been 
introduced, which adopts a chaotic map to improve the 
performance over the CatfishPSO algorithm. In CatfishPSO, 
catfish particles initialize a new search from extremes of the 
search space when the gbest value has not progressed for a 
certain number of iterations. Better solutions can be found by 
guiding the entire swarm to more promising regions in the 
search space. C-CatfishPSO achieved far better performance 
than PSO, C-PSO and CatfishPSO. This performance was 
validated by statistical analysis with a z-test at  = 0.05 on 
representative benchmark functions, under equal conditions. It 
can be concluded that the introduction of new individuals 
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(catfish particles) into a group has a significantly positive effect 
on the entire swarm. Chaotic maps were used to effectively 
improve the solution quality of CatfishPSO since they avoid 
entrapment in local optima by virtue of their characteristics of 
ergodic orbits and aperiodicity. Our experimental results 
indicate that C-CatfishPSO integrates the advantages of C-PSO 
and CatfishPSO, i.e., the capability to breakthrough local 
optimal solutions in unimodal and multimodal global 
optimization problem. 
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TABLE II. MEAN FITNESS VALUES FOR SIX BENCHMARK FUNCTIONS

Benchmark functions Pop. Dim. Gen. PSO C-PSO CatfishPSO C-CatfishPSO
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 Significant (P-Value < =0.05) No No Yes Yes
 Rank 0 0 2 3
 20 10 1000 95.893±230.136 28.178±426.317 5.855±0.413 3.597±3.708
  20 1500 167.604±318.927 27.770±248.084 16.257±0.385 4.527±6.290
  30 2000 268.148±421.517 27.707±043.068 26.555±0.456 4.359±7.528

F2   Rosenbrock Average 177.215±323.527 27.885±239.157 16.228±0.418 4.115±5.842
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 20 10 1000 5.128±02.627 4.399±02.753 0.000±0.000 0.000±0.000
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F3   Rastrigrin Average 24.967±07.280 13.256±06.890 0.000±0.000 0.000±0.000
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 Significant (P-Value < =0.05) No No Yes Yes
 Rank 0 0 2 2
 20 10 1000 19.791±2.351 8.92E-07±2.82E-05 8.88E-16±9.96E-32 8.88E-16±9.87E-32
  20 1500 19.999±1.66E-05 2.91E-14±5.79E-13 8.88E-16±9.96E-32 8.88E-16±9.87E-32
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F5   Ackley Average 19.924±0.950 2.97E-07±9.40E-06 2.85E-02±5.46E-01 8.88E-16±9.87E-32
 P-Value 1.0 0.0 0.0 0.0
 Significant (P-Value < =0.05) No Yes Yes Yes
 Rank 0 1 1 3
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 P-Value 0.960 0.280 0.784 0.027
 Significant (P-Value < =0.05) No No No Yes
 Rank 0 0 0 3
Legend: Rank indicates the numbers of significance at =0.05 between tested method and another method as indicated by a Z-test 
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Figure 2. Six benchmark functions for PSO, C-PSO, CatfishPSO and C-CatfishPSO 
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