
978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

Improved Catfish Particle Swarm Optimization with
Embedded Chaotic Map

Li-Yeh Chuang Sheng-Wei Tsai, and Cheng-Hong Yang
Dep. of Chemical Engineering Dep. of Electronic Engineering

I-Shou University National Kaohsiung University of Applied Sciences
Kaohisung, Taiwan Kaohisung, Taiwan
chuang@isu.edu.tw 1096305108@cc.kuas.edu.tw, and chyang@cc.kuas.edu.tw

Abstract—Chaotic catfish particle swarm optimization (C-
CatfishPSO) is a novel optimization algorithm proposed in this
paper. C-CatfishPSO introduces chaotic maps into catfish
particle swarm optimization (CatfishPSO), which increase the
search capability of CatfishPSO via the chaos approach. Simple
CatfishPSO relies on the incorporation of catfish particles into
particle swarm optimization (PSO). The introduced catfish
particles improve the performance of PSO considerably. Unlike
other ordinary particles, catfish particles initialize a new search
from extreme points of the search space when the gbest fitness
value (the best previously encountered value) has not changed for
a certain number of consecutive iterations. This results in further
opportunities of finding better solutions for the swarm by guiding
the entire swarm to promising new regions of the search space,
and by accelerating search efficiency. In this study, we adopted
chaotic maps to strengthen the solution quality of PSO and
CatfishPSO. After the introduction of chaotic maps into the
process, the improved PSO and CatfishPSO are called chaotic
PSO (C-PSO) and chaotic CatfishPSO (C-CatfishPSO),
respectively. PSO, C-PSO, CatfishPSO and C-CatfishPSO were
extensively compared on six benchmark functions. Statistical
analysis of the experimental results indicates that the
performance of C-CatfishPSO is better than the performance of
PSO, C-PSO, and CatfishPSO.

Keywords—Chaos, Chaotic map, Swarm Intelligence, Catfish
Particle Swarm Optimization

I. INTRODUCTION

Generating an ideal random sequence is of great importance
in the fields of numerical analysis, sampling and heuristic
optimization. Recently, a technique which employs chaotic
sequences via the chaos approach (chaotic maps) has gained a
lot of attention and been widely applied in different areas, such
as the chaotic neural network (CNN) [1], chaotic optimization
algorithms (COA) [2, 3], nonlinear circuits [4], DNA
computing [5], and image processing [6]. All of the above-
mentioned methods rely on the same pivotal operation, namely
the adoption of a chaotic sequence instead of a random
sequence, and thereby improve the results due to the
unpredictability of the chaotic sequence [7].

Chaos can be described as a bounded nonlinear system with
deterministic dynamic behavior that has ergodic and stochastic
properties [8]. It is very sensitive to the initial conditions and
the parameters used. In other word, cause and effect of chaos
are not proportional to the small differences in the initial values.
In what is called the “butterfly effect”, small variations of an

initial variable will result in huge differences in the solutions
after some iteration. Mathematically, chaos is random and
unpredictable, yet it also possesses an element of regularity [7].

Particle swarm optimization (PSO) is a stochastic,
population-based evolutionary computer algorithm developed
by Kennedy and Eberhart in 1995 [9]. PSO simulates the social
behavior of organisms to describe an automatically evolving
system. PSO has been successfully employed in many areas,
and generally obtains better results in a faster, cheaper way
compared to other methods (http://www.particleswarm.info/).
PSO shows a promising performance on nonlinear function
optimization and has thus received much attention [10].
However, the local search capability of PSO is poor [11] since
premature convergence occurs often, especially in the case
complex multi-peak search problems [12]. Recently, numerous
improvements, which rely on the chaos approach, have been
proposed for PSO in order to overcome this disadvantage.
Chaotic maps can easily be implemented and avoid entrapment
in local optima [13-17]. The inherent characteristics of chaos
can improve PSO by enabling it to escape from local solutions,
and thus boost the global search capability of PSO [15]. Most
PSO methods use the same chaotic map, namely a logistic map
[16]. Logistic maps were introduced in nonlinear dynamics of
biological populations evidencing chaotic behavior [18] and are
often cited as an archetypal example.

In this paper, we propose chaotic CatfishPSO (C-
CatfishPSO), in which chaotic maps are applied to improve the
performance of the CatfishPSO algorithm. In CatfishPSO, the
catfish effect is applied to improve the performance of PSO.
This effect is the result of the introduction of new particles into
the search space (“catfish particles”), which replace particles
with the worst fitness; these catfish particles are initialized at
extreme points of the search space when the fitness of the
global best particle has not improved for a certain number of
consecutive iterations. This results in further opportunities of
finding better solutions for the swarm by guiding the whole
swarm to promising new regions of the search space [19]. The
logistic map was introduced in our study to improve the search
behavior and to prevent entrapment of the particles in a locally
optimal solution. The proposed method was applied to six
benchmark functions from the literature. Statistical analysis of
the experimental results shows that the performance of C-
CatfishPSO is superior to PSO, C-PSO, and CatfishPSO.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3995

 SMC 2009

II. METHOD

A. Particle Swarm Optimization (PSO)
In original PSO [9], each particle is analogous to an

individual “fish” in a school of fish. It is a population-based
optimization technique, where a population is called a swarm.
A swarm consists of N particles moving around in a D-
dimensional search space. The position of the ith particle can be
represented by xi = (xi1, xi2, …, xiD). The velocity for the ith
particle can be written as vi = (vi1, vi2, …, viD). The positions
and velocities of the particles are confined within [Xmin, Xmax]D

and [Vmin, Vmax]D, respectively. Each particle coexists and
evolves simultaneously based on knowledge shared with
neighboring particles; it makes use of its own memory and
knowledge gained by the swarm as a whole to find the best
solution. The best previously encountered position of the ith
particle is denoted its individual best position pi = (pi1, pi2, …,
piD), a value called pbesti. The best value of all individual pbesti
values is denoted the global best position g = (g1, g2, …, gD)
and called gbest. The PSO process is initialized with a
population of random particles, and the algorithm then executes
a search for optimal solutions by continuously updating
generations. At each generation, the position and velocity of the
ith particle are updated by pbesti and gbest in the swarm. The
update equations can be formulated as:

old
idd

old
idid

old
id

new
id

xgbestrc
xpbestrcvwv

22

11 (1)

new
id

old
id

new
id vxx (2)

In Eqs. (1) and (2), r1 and r2 are random numbers between
(0, 1), and c1 and c2 are acceleration constants which control
how far a particle will move in a single generation. Velocities

new
idv and old

idv denote the velocities of the new and old particle,
respectively. old

idx is the current particle position, and new
idx is the

new, updated particle position. The inertia weight w controls
the impact of the previous velocity of a particle on its current
one [20]. In general, the inertia weight is linearly decreased
from 0.9 to 0.4 throughout the search process in order to
effectively balance the global and local search abilities of the
swarm [21]. The corresponding equation can be written as:

min
max

max
minmax w

Iteration
IterationIterationwww i

LDW (3)

In Eq. (3), wmax is 0.9, wmin is 0.4 and Iterationmax is the
maximum number of allowed iterations. The pseudo-code of
the PSO process is shown below.
PSO pseudo-code
01: begin
02: Randomly initialize particles swarm
03: while (number of iterations, or the stopping criterion is not met)
04: Evaluate fitness of particle swarm
05: for n = 1 to number of particles
06: Find pbest
07: Find gbest
08: for d = 1 to number of dimension of particle
09: Update the position of particles by Eq. 1 and Eq. 2
10: next d
11: next n
12: Update the inertia weight value by Eq. 3
13: next generation until stopping criterion
14: end

B. Chaotic Particle Swarm Optimization (C-PSO)
In C-PSO, sequences generated by the logistic map

substitute the random parameters r1 and r2 in PSO. The
parameters r1 and r2 are modified by the logistic map based on
the following equation.

Cr(t+1) = k × Cr(t) × (1-Cr(t)) (4)

In Eq. (4), Cr(0) is generated randomly for each independent
run, with Cr(0) not being equal to {0, 0.25, 0.5, 0.75, 1} and k
equal to 4. The driving parameter k of the logistic map controls
the behavior of Cr(t) (as t goes to infinity). The behavior of the
logistic map for various values of the parameter k is shown in
Fig. 1-a. For low values of k (k < 3), Cr eventually converges
to a single number. When k = 3, Cr oscillates between two
values. This characteristic change in behavior is called a
bifurcation. For k > 3, Cr goes through further bifurcations,
eventually resulting in chaotic behavior. In fact, the bifurcation
diagram is itself a fractal [22]. As Fig. 1-a shows, when k
equals 4, the chaotic sequence value Cr is bounded within [0,
1]. Fig. 1-b also shows the chaotic Cr value using a logistic
map for 100 iterations where Cr(0) = 0.001.

Bifurcation Diagram of Logistic Map

0

0.2

0.4

0.6

0.8

1

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Parameter k

(a)

C
r

Dynamics of Logistic map

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Number of Generations

(b)

C
ha

ot
ic

 C
r

va
lu

e

Figure 1. Bifurcation Diagram and Dymamics of Logistic Map

The velocity update equation for C-PSO can be formulated as:

old
idd

old
idid

old
id

new
id

xgbestCrc
xpbestCrcvwv

12

1 (5)

In Eq. (5), Cr is a function based on the results of the logistic
map with values between 0.0 and 1.0. The pseudo-code of C-
PSO is shown below.
C-PSO pseudo-code
01: begin
02: Randomly initialize particles swarm
03: Randomly generate Cr(0)
04: while (number of iterations, or the stopping criterion is not met)
05: Evaluate fitness of particle swarm
06: for n = 1 to number of particles
07: Find pbest
08: Find gbest
09: for d = 1 to number of dimension of particle
10: Update the Chaotic Cr value by Eq. 4
11: Update the position of particles by Eq. 5 and Eq. 2
12: next d
13: next n
14: Update the inertia weight value by Eq. 3
15: next generation until stopping criterion
16: end

C. Catfish Particle Swarm Optimization (CatfishPSO)
The underlying idea for the development of CatfishPSO

was derived from the observation of the catfish effect when
catfish were introduced into large holding tanks of sardines

3996

 SMC 2009

[19]. The catfish—in competition with the sardines—stimulate
renewed movement amongst the sardines. Similarly, the
introduced catfish particles stimulate a renewed search by the
other “sardine” particles in CatfishPSO. In other words, the
“catfish” particles lead the “sardine” particles, which are
trapped in a local optimum, on to a new region of the search
space, and thus to potentially better particle solutions. These
catfish particles are essential for the success of a given
optimization task. The pseudo-code of the CatfishPSO is
shown below. Further details on CatfishPSO mechanisms can
be found in Chuang et al. [19].
CatfishPSO Pseudo-code
01: Begin
02: Randomly initialize particles swarm
03: while (number of iterations, or the stopping criterion is not met)
04: Evaluate fitness of particle swarm
05: for n = 1 to number of particles
06: Find pbest
07: Find gbest
08: for d = 1 to number of dimension of particle
09: Update the position of particles by Eq. 1 and Eq. 2
10: next d
11: next n
12: if fitness of gbest is the same Seven times then
13: Sort the particle swarm via fitness from best to worst
14: for n = number of Nine-tenths of particles to number of particles
15: for d = 1 to number of dimension of particle
16: Randomly select extreme points at Max or Min of the search space
17: Reset the velocity to 0
18: next d
19: next n
20: end if
21: Update the inertia weight value by Eq. 3
22: next generation until stopping criterion
23: end

D. Chaotic Catfish Particle Swarm Optimization (C-
CatfishPSO)
In C-CatfishPSO, a logistic map is embedded into

CatfishPSO, which updates the parameters r1 and r2 based on
Eq. (4) with k equal to 4. The chaotic sequence value Cr is
bounded within [0, 1] if k equals 4. The logistic map improves
the search capability of CatfishPSO significantly by ergodic
and stochastic properties. The particle velocities are updated
according to Eq. (5). The pseudo-code for C-CatfishPSO is
shown below.
C-CatfishPSO Pseudo-code
01: Begin
02: Randomly initialize particles swarm
03: Randomly generate Cr(0)
04: while (number of iterations, or the stopping criterion is not met)
05: Evaluate fitness of particle swarm
06: for n = 1 to number of particles
07: Find pbest
08: Find gbest
09: for d = 1 to number of dimension of particle
10: Update the Chaotic Cr value by Eq. 4
11: Update the position of particles by Eq. 5 and Eq. 2
12: next d
13: next n
14: if fitness of gbest is the same Seven times then
15: Sort the particle swarm via fitness from best to worst
16: for n = number of Nine-tenths of particles to number of particles
17: for d = 1 to number of dimension of particle
18: Randomly select extreme points at Max or Min of the search space
19: Reset the velocity to 0
20: next d
21: next n
22: end if
23: Update the inertia weight value by Eq. 3
24: next generation until stopping criterion
25: end

III. NUMERICAL SIMULATION

A. Benchmark functions
In order to illustrate, compare and analyze the effectiveness

and performance of the PSO, C-PSO, CatfishPSO and C-
CatfishPSO algorithms for optimization problems, six
representative benchmark functions were used to test the
algorithms. These six benchmark functions are shown below.

Ellipsoid
D

i
iixxf

1

2
1 (6)

Rosenbrock
1

1

222
12 1100

D

i
iii xxxxf (7)

Rastrigrin
D

i
ii xxxf

1

2
3 102cos10 (8)

Griewark
D

i

D

i

i
i i

xxxf
1 1

2
4 1cos

4000
1

(9)

Ackley

exf

D

i
i

D

i
i x

D
x

D
20expexp20 11

2 2cos112.0

5
(10)

Schwefel
D

i
ii xxDxf

1
6 sin9809.418 (11)

These six benchmark functions can be grouped into
unimodal functions (Ellipsoid and Rosenbrock) and multimodal
functions (Rastrigrin, Griewark, Ackley and Schwefel); in
multimodal functions the number of local minima increases
exponentially with the problem dimension.

B. Parameter settings
In our experiments, three different dimension (Dim.) sizes

were tested for each function, namely 10, 20 and 30 dimensions,
and the corresponding maximum number of generations (Gen.)
was set to 1000, 1500 and 2000, respectively. In addition, a
population (Pop.) size of 20 was used for each function. The
same sets of parameters were assigned for PSO, C-PSO,
CatfishPSO and C-CatfishPSO, i.e. c1=c2=2 [9]. For each
experimental setting, we executed 1000 independent runs for
PSO, C-PSO, CatfishPSO and C-CatfishPSO with different
random seeds. The parameter settings of the six benchmark
functions are summarized in TABLE I.

TABLE I. PARAMETER SETTINGS OF THE SIX BENCHMARK FUNCTIONS

Name Search Space Asymmetric
Initialization Range Optimal

F1 Ellipsoid -100 xi 100 50 xi 100 0
F2 Rosenbrock -100 xi 100 15 xi 30 0
F3 Rastrigrin -10 xi 10 2.56 xi 5.12 0
F4 Griewark -600 xi 600 300 xi 600 0
F5 Ackley -100 xi 100 50 xi 100 0
F6 Schwefel -500 xi 500 -500 xi -250 0

3997

 SMC 2009

C. Experimental Results and Discussion
In this section, the performances of PSO, C-PSO,

CatfishPSO and C-CatfishPSO are compared by means of the
best fitness and the standard deviation among six benchmark
functions under equal conditions. In order to authenticate
whether the proposed method is significantly different from
other methods or not, we adopted a z-test on pairs of groups of
results. The z-test gives a p-value which is compared to a
constant called to determine whether a difference between
alternative method is significant or not. In our case, we adopted
a 95% confidence interval in the z-test for all benchmark
functions. In other words, if p-value < = 0.05 then a test is
reported as significant. The mean fitness values and standard
deviations of PSO, C-PSO, CatfishPSO and C-CatfishPSO for
these six benchmark functions are listed in TABLE II. If any
mean fitness values and standard deviations are < 10-300,
TABLE II will display 0.000±0.000 instead. The experimental
results in TABLE II are divided into three areas for analysis:

C-PSO compared to PSO

In C-PSO, a chaotic map was embedded to determine the
PSO parameters r1 and r2. The PSO parameters r1 and r2 cannot
ensure optimal ergodicity in the search space because they are
absolutely random [14] i.e. the r1 and r2 are generated by a
linear congruential generator (LCG) with a random seed. The
generated sequence of LCG consists of pseudo-random
numbers that have periodic characteristics [23]. Furthermore,
the generated sequence of a logistic map also consists of
pseudo-random numbers, but there are no fixed points, periodic
orbits, or quasi-periodic orbits in the behavior of the chaos
system [22]. As a result, the system can avoid entrapment in
local optima [15]. In terms of mean fitness values, TABLE II
indicate that C-PSO outperformed PSO on the Ellipsoid,
Rosenbrock, Rastrigrin, Griewark, Ackley and Schwefel
benchmark functions. Amongst these six benchmark functions,
C-PSO seems superior to PSO. However, this result is
misleading since the performance of C-PSO is as the z-test at
= 0.05 proved, only statistically superior in the Ackley function.

CatfishPSO compared to PSO

TABLE II indicate that CatfishPSO outperformed PSO on
the Ellipsoid, Rosenbrock, Rastrigrin, Griewark, and Ackley
benchmark functions, a fact that is supported by the z-test at
= 0.05. In PSO, each particle only relies on its individual pbest
value and the global best position gbest to update its position at
each generation. If gbest is trapped in a local optimum, the
particles cluster together and lose their ability to explore the
search space in later generations. In order to avoid such a
scenario, the worst 10% of the swarm are replaced by catfish
particles when gbest has not changed for a certain number of
generations.

After the catfish particles are introduced, they initialize a
renewed search from extreme points of the search space, and
thus find better solutions by guiding the entire swarm to
promising new regions. They also improve the search
efficiency of the swarm [19]. The catfish particles not only
allow the swarm to discover better solutions within the area of
the swarm itself, but also to obtain better solutions located
outside the swarm area.

C-CatfishPSO compared to both C-PSO and CatfishPSO

TABLE II further shows that C-CatfishPSO outperformed
CatfishPSO and C-PSO on the Ellipsoid, Rosenbrock,
Rastrigrin, Griewark, Ackley and Schwefel benchmark
functions. For the majority of these six benchmark functions,
CatfishPSO proved to be superior to C-PSO. However, the
quality of solutions achieved by CatfishPSO can further be
improved when chaotic maps are embedded (C-CatfishPSO),
since the rank of C-CatfishPSO in the all benchmark functions
is higher than the rank of CatfishPSO. The rank indicates the
numbers of significance at =0.05 determined with a z-test
between the tested method and another method. The
experimental results and statistical analyses clearly demonstrate
that the performance of C-CatfishPSO is superior to PSO, C-
PSO and CatfishPSO.

Fig. 2 plots the mean best fitness in the form of logarithm
values over the number of generations for PSO, C-PSO,
CatfishPSO and C-CatfishPSO with 20 particles on six 30-
dimensional functions. These figures clearly show that the
search efficiency of C-CatfishPSO is superior to that of PSO,
C-PSO, and CatfishPSO on all six benchmark functions. At the
same time, the best solution obtained by C-CatfishPSO is also
superior to the best solution obtained by PSO, C-PSO and
CatfishPSO. TABLE II indicates that CatfishPSO and C-
CatfishPSO are capable of finding optimal solutions in
Ellipsoid, Rastrigrin and Griewark benchmark functions,
where the fitness value was < 10-300. For the sake of
convenience, we show the graphs in Figs. 2-a, 2-c and 2-d only
up to the bottom of the chart, and demonstrate that CatfishPSO
and C-CatfishPSO are capable of finding optimal solutions
within 1500 generations, a fact supported by TABLE II, in
which no standard deviation can be given for either CatfishPSO
or C-CatfishPSO for the Ellipsoid, Rastrigrin and Griewark
benchmark functions.

In Figs. 2-a to 2-f, we can observe a peculiar feature of
CatfishPSO. The curve of CatfishPSO is displayed as step
shape, and this phenomenon is indicative of the CatfishPSO’s
capability to breakthrough and leave in local optimal solution.
The curve of C-PSO always obtained the best solution early on.
Moreover, it does not have the same to breakthrough the local
optimal solution as CatfishPSO. In summary, it can be
concluded that using a chaotic map to substitute the random
parameters r1 and r2 is a significant approach to improve the
performance of CatfishPSO in unimodal and multimodal
different trait benchmark functions.

IV. CONCLUSION

In this paper, Chaotic CatfishPSO (C-CatfishPSO) has been
introduced, which adopts a chaotic map to improve the
performance over the CatfishPSO algorithm. In CatfishPSO,
catfish particles initialize a new search from extremes of the
search space when the gbest value has not progressed for a
certain number of iterations. Better solutions can be found by
guiding the entire swarm to more promising regions in the
search space. C-CatfishPSO achieved far better performance
than PSO, C-PSO and CatfishPSO. This performance was
validated by statistical analysis with a z-test at = 0.05 on
representative benchmark functions, under equal conditions. It
can be concluded that the introduction of new individuals

3998

 SMC 2009

(catfish particles) into a group has a significantly positive effect
on the entire swarm. Chaotic maps were used to effectively
improve the solution quality of CatfishPSO since they avoid
entrapment in local optima by virtue of their characteristics of
ergodic orbits and aperiodicity. Our experimental results
indicate that C-CatfishPSO integrates the advantages of C-PSO
and CatfishPSO, i.e., the capability to breakthrough local
optimal solutions in unimodal and multimodal global
optimization problem.

ACKNOWLEDGMENT

This work is partly supported by the National Science
Council in Taiwan under grant NSC97-2622-E-151-008-CC2,
NSC96-2221-E-214-050-MY3, NSC96-2622-E-151-019-CC3,
NSC96-2622-E-214-004-CC3, NSC95-2221-E-151-004-MY3,
NSC95-2221-E-214-087 and NSC95-2622-E-214-004-CC3.

REFERENCES

[1] K. Aihara, T. Takabe and M. Toyoda, “Chaotic neural networks,”
Physics Letters A, Vol. 144, pp. 333-340, 1990.

[2] B. Li and W.S. Jiang, “Optimizing complex functions by chaos search,”
Cybernetics and Systems, Vol. 29, No. 4, pp. 409-419, 1998.

[3] Z. Lu, L. S. Shieh and G. R. Chen, “On robust control of uncertain
chaotic systems: a sliding-mode synthesis via chaotic optimization,”
Chaos, Solitons & Fractals, Vol. 18, No. 4, pp.819-827, 2003.

[4] P. Arena, R. Caponetto, L. Fortuna, A. Rizzo and M. L. Rosa, “Self
organization in non recurrent complex system,” International Journal of
Bifurcation and Chaos, Vol. 10, No. 5, pp. 1115-1125, 2000.

[5] G. Manganaro and J. Pineda de Gyvez, “DNA computing based on
chaos,” in Proceedings of the 1997 IEEE international conference on
evolutionary computation, Piscataway, 1997, pp. 255-260.

[6] H. Gao, Y. Zhang, S. Liang and D. Li, “A new chaotic algorithm for
image encryption,” Chaos, Solitons & Fractals, Vol. 29, Issue 2, pp.
393-399, July 2006.

[7] B. Alatas, E. Akin and A. Bedri Ozer, “Chaos embedded particle swarm
optimization algorithms,” Chaos, Solitons & Fractals, In Press,
Corrected Proof, Available online 30 October 2007.

[8] H. G. Schuster, “Deterministic chaos: an introduction,” 2nd revised ed.
Weinheim, Federal Republic of Germany: Physick-Verlag GmnH; 1988.

TABLE II. MEAN FITNESS VALUES FOR SIX BENCHMARK FUNCTIONS

Benchmark functions Pop. Dim. Gen. PSO C-PSO CatfishPSO C-CatfishPSO
 20 10 1000 8.94E-22±6.01E-21 600.00±2398.979 8.09E-26±5.72E-25 0.000±0.000
 20 1500 2200.00±4184.520 400.00±1979.487 8.64E-09±6.09E-08 0.000±0.000
 30 2000 2200.00±4184.520 2.47E-23±1.74E-22 2.46E-05±8.94E-05 0.000±0.000

F1 Ellipsoid Average 1466.667±2789.680 333.333±1459.489 8.20E-06±5.46E-01 0.000±0.000
 P-Value 0.767 0.436 0.0 0.0
 Significant (P-Value < =0.05) No No Yes Yes
 Rank 0 0 2 3
 20 10 1000 95.893±230.136 28.178±426.317 5.855±0.413 3.597±3.708
 20 1500 167.604±318.927 27.770±248.084 16.257±0.385 4.527±6.290
 30 2000 268.148±421.517 27.707±043.068 26.555±0.456 4.359±7.528

F2 Rosenbrock Average 177.215±323.527 27.885±239.157 16.228±0.418 4.115±5.842
 P-Value 0.772 0.406 0.0 0.0
 Significant (P-Value < =0.05) No No Yes Yes
 Rank 0 0 2 3
 20 10 1000 5.128±02.627 4.399±02.753 0.000±0.000 0.000±0.000
 20 1500 22.021±07.176 12.675±07.048 0.000±0.000 0.000±0.000
 30 2000 47.735±12.037 22.693±10.869 0.000±0.000 0.000±0.000

F3 Rastrigrin Average 24.967±07.280 13.256±06.890 0.000±0.000 0.000±0.000
 P-Value 1.0 0.859 0.0 0.0
 Significant (P-Value < =0.05) No No Yes Yes
 Rank 0 0 2 2
 20 10 1000 0.102±00.056 0.061±0.050 0.000±0.000 0.000±0.000
 20 1500 0.480±06.361 0.002±0.009 0.000±0.000 0.000±0.000
 30 2000 2.455±14.650 0.361±5.692 0.000±0.000 0.000±0.000

F4 Griewark Average 1.012±07.022 0.141±1.917 0.000±0.000 0.000±0.000
 P-Value 0.582 0.439 0.0 0.0
 Significant (P-Value < =0.05) No No Yes Yes
 Rank 0 0 2 2
 20 10 1000 19.791±2.351 8.92E-07±2.82E-05 8.88E-16±9.96E-32 8.88E-16±9.87E-32
 20 1500 19.999±1.66E-05 2.91E-14±5.79E-13 8.88E-16±9.96E-32 8.88E-16±9.87E-32
 30 2000 19.983±0.498 1.74E-14±4.58E-15 8.54E-02±5.46E-01 8.88E-16±9.87E-32

F5 Ackley Average 19.924±0.950 2.97E-07±9.40E-06 2.85E-02±5.46E-01 8.88E-16±9.87E-32
 P-Value 1.0 0.0 0.0 0.0
 Significant (P-Value < =0.05) No Yes Yes Yes
 Rank 0 1 1 3
 20 10 1000 2037.388±163.855 1894.348±163.581 2022.755±147.039 1825.659±162.621
 20 1500 4501.628±153.607 4307.703±182.864 4410.713±142.607 4221.962±134.176
 30 2000 6922.967±147.999 6694.397±193.135 6784.719±129.244 6591.520±134.252

F6 Schwefel Average 4487.328±155.154 4298.816±179.860 4406.062±139.630 4213.047±143.683
 P-Value 0.960 0.280 0.784 0.027
 Significant (P-Value < =0.05) No No No Yes
 Rank 0 0 0 3
Legend: Rank indicates the numbers of significance at =0.05 between tested method and another method as indicated by a Z-test

3999

 SMC 2009

[9] J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” IEEE
International Conference on Neural Networks, Vol. 4, pp. 1942-1948,
Perth, Australia. 1995.

[10] Y. Liu, Z. Qin, Z. Shi and J. Lu, “Center particle swarm optimization,”
Neurocomputing, Vol. 70, Issue 4-6, pp. 672-679, January 2007.

[11] P. J. Angeline, “Evolutionary optimization versus particle swarm
optimization: philosophy and performance differences,” Lecture Notes in
Computer Science, Springer, Berlin, Vol. 1447, pp. 601-610, 1998.

[12] Y. Jiang, T. Hu, C. C. Huang and X. Wu, “An improved particle swarm
optimization algorithm,” Applied Mathematics and Computation, Vol.
193, Issue 1, pp. 231-239, 1 October 2007.

[13] L. Wang, D. Z. Zheng and Q. S. Lin, “Survey on chaotic optimization
methods,” Comput Technol Automat, Vol. 20, pp. 1-5, 2001.

[14] J. Chuanwen and E. Bompard, “A self-adaptive chaotic particle swarm
algorithm for short term hydroelectric system scheduling in deregulated
environment,” Energy Conversion and Management, Vol. 46, Issue 17,
pp. 2689-2696, October 2005.

[15] B. Liu, L. Wang, Y. H. Jin, F. Tang and D. X. Huang, “Improved
particle swarm optimization combined with chaos,” Chaos, Solitons &
Fractals, Vol. 25, Issue 5, pp. 1261-1271, September 2005.

[16] T. Xiang, X. Liao, K.W. Wong, “An improved particle swarm
optimization algorithm combined with piecewise linear chaotic map,”

Applied Mathematics and Computation, Vol. 190, Issue 2, pp. 1637-
1645, 15 July 2007.

[17] L. dos Santos Coelho and V. C. Mariani, “A novel chaotic particle
swarm optimization approach using Hénon map and implicit filtering
local search for economic load dispatch,” Chaos, Solitons & Fractals, In
Press, Corrected Proof, Available online 11 May 2007.

[18] R. M. May, “Simple mathematical models with very complicated
dynamics,” Nature, Vol. 1976, pp. 261-459.

[19] L.Y. Chuang, S. W. Tsai and C. H. Yang, “Catfish Particle Swarm
Optimization,” IEEE Swarm Intelligence Symposium 2008 (SIS 2008), St.
Louis, Missouri, 21-23 Sep 2008, pp. 1-5.

[20] Y. Shi and R.C. Eberhart, “A modified particle swarm optimizer,” in
Proceedings of IEEE International Conference on Evolutionary
Computation, Anchorage, AK, May 1998, pp. 69-73.

[21] Y. Shi and R.C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of Congress on Evolutionary Computation,
Washington, DC, 1999, pp. 1945-1949.

[22] D. Kuo, “Chaos and its computing paradigm,” IEEE Potentials
Magazine, Vol. 24, Issue 2, pp. 13-15, April-May 2005.

[23] D. E. Knuth. “The Art of Computer Programming,” Vol. 2:
Seminumerical Algorithms, Third Edition. Addison-Wesley, 1997.
Section 3.2.1: The Linear Congruential Method, pp.10-26.

Ellipsoid

-24

-16

-8

0

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Generations

Fi
tn

es
s V

al
ue

 (l
og

)

PSO C-PSO CatfishPSO C-CatfishPSO

Rosenbrock

0

1.5

3

4.5

6

7.5

9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Generations

Fi
tn

es
s V

al
ue

 (l
og

)

PSO C-PSO CatfishPSO C-CatfishPSO

(a) Ellipsoid function (b) Rosenbrock function

Rastrigrin

-6

-4

-2

0

2

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Generations

Fi
tn

es
s V

al
ue

 (l
og

)

PSO C-PSO CatfishPSO C-CatfishPSO

Griewark

-6

-4

-2

0

2

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Generations

Fi
tn

es
s V

al
ue

 (l
og

)

PSO C-PSO CatfishPSO C-CatfishPSO

(c) Rastrigrin function (d) Griewark function

Ackley

-16

-13

-10

-7

-4

-1

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Generations

Fi
tn

es
s V

al
ue

 (l
og

)

PSO C-PSO CatfishPSO C-CatfishPSO

Schwefel

3.81

3.82

3.83

3.84

3.85

3.86

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Generations

Fi
tn

es
s V

al
ue

 (l
og

)

PSO C-PSO CatfishPSO C-CatfishPSO

(e) Ackley function (f) Schwefel function

Figure 2. Six benchmark functions for PSO, C-PSO, CatfishPSO and C-CatfishPSO

4000

