
Levenberg-Marquardt-based OBS Algorithm using
Adaptive Pruning Interval for System Identification

with Dynamic Neural Networks
Christian Endisch, Peter Stolze, Peter Endisch, Christoph Hackl and Ralph Kennel

Institute for Electrical Drive Systems and Power Electronics
Technische Universität München

80333 München, Germany

Abstract—This paper presents a pruning algorithm using
adaptive pruning interval for system identification with general
dynamic neural networks (GDNN). GDNNs are artificial neu-
ral networks with internal dynamics. All layers have feedback
connections with time delays to the same and to all other layers.
The parameters are trained with the Levenberg-Marquardt (LM)
optimization algorithm. Therefore the Jacobian matrix is re-
quired. The Jacobian is calculated by real time recurrent learning
(RTRL). As both LM and OBS need Hessian information, com-
puting time can be saved, if OBS uses the scaled inverse Hessian
already calculated for the LM algorithm. This paper discusses
the effect of using the scaled Hessian instead of the real Hessian
in the OBS pruning approach. In addition to that an adaptive
pruning interval is introduced. Due to pruning the structure of
the identification model is changed drastically. So the parameter
optimization task between the pruning steps becomes more or less
complex. To guarantee that the parameter optimization algorithm
has enough time to cope with the structural changes in the
GDNN-model, it is suggested to adapt the pruning interval during
the identification process. The proposed algorithm is verified
simulatively for two standard identification examples.

Index Terms—System identification, dynamic neural network,
recurrent neural network, GDNN, optimization, Levenberg-
Marquardt, real time recurrent learning, network pruning, OBS.

I. INTRODUCTION

A crucial task in system identification with recurrent neural
networks is the selection of an appropriate network architec-
ture. It is very difficult to decide a priori which architecture
and size are adequate for an identification task. There are no
general rules for choosing the structure before identification.
A common approach is to try different configurations until
one is found that works well. This approach can be very
time consuming if many topologies have to be tested. In
this paper we start with an oversized general dynamic neural
network (GDNN, see Fig. 1) and remove unnecessary parts. In
GDNN all layers have feedback connections with many time
delays. The output depends not only on the current input, but
also on previous inputs and previous states of the network.
During the identification process the network architecture is
reduced to find a model for the plant as simple as possible.
For architecture reduction in static neural networks several
pruning algorithms are known [1],[6],[11],[16]. Two well
known methods in feedforward neural networks are optimal

brain damage (OBD) [11] and optimal brain surgeon (OBS)
[6]. Both methods are based on weight ranking due to the
saliency, which is defined as the change in the output error
using Hessian information. The OBD method calculates the
saliency only with the pivot elements of the Hessian without
retraining after the pruning step. The OBS uses the complete
Hessian information to calculate the saliency, which is regarded
as a continuation of the OBD method. Contrary to OBD the
OBS algorithm includes a retraining part for the remaining
weights. In [3] it is shown that network pruning with OBS can
also be applied to dynamic neural networks. In OBS pruning
the calculation of the inverse Hessian causes a great amount
of computation. To overcome this disadvantage of OBS it is
suggested to use the OBS pruning algorithm in conjunction
with the LM training algorithm [3],[12]. Thus OBS gets
the inverse Hessian for free. The structure of the GDNN
is changed drastically during the pruning and identification
process. Because of this the influence of one pruning step on
the identification system can be quite different. The deletion
of one weight in a very large neural network usually does not
influence the identification system very much and the error
after pruning can be reduced quite fast, whereas the deletion
of one weight in a small neural network can influence the
system extremely leading to huge model errors. In the latter
case the identification system needs more time to cope with the
structural changes in the GDNN. In this paper the time between
two pruning steps, the so-called pruning interval, is adapted
online. The interval adaption makes use of a scaling algorithm
by evaluating the mean error between successive pruning steps.
The next section presents the recurrent neural network used in
this paper. Administration matrices are introduced to manage
the pruning process. Section III deals with the parameter
optimization method used throughout this paper. In section IV
the LM-based OBS algorithm is discussed and the adaptive
pruning interval approach is presented. Identification examples
are shown in section V. Finally, in section VI we summarize
the results.

II. GENERAL DYNAMIC NEURAL NETWORK (GDNN)

De Jesus described in his doctoral thesis [9] a broad class
of dynamic networks, he called the framework layered digital

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3502

dynamic network (LDDN). The sophisticated formulations and
notations of the LDDN allow an efficient computation of the
Jacobian matrix using RTRL [4]. Therefore we follow these
conventions suggested by De Jesus. In [7]-[10] the optimal
network topology is assumed to be known. In this paper the
network topology is unknown and so we choose an oversized
network for identification. In GDNN all feedback connections
exist with a complete tapped delay line (from a first-order
time delay element z−1 up to the maximum order time delay
element z−dmax). The output of a tapped delay line (TDL) is
a vector containing delayed values of the TDL input. Also the
network inputs have a TDL. Fig. 1 shows a three-layer GDNN.
The simulation equation for layer m is

nm(t) =
∑

l∈Lf
m

∑
d∈DLm,l

LW˜
m,l(d) · al(t − d)+

∑
l∈Im

∑
d∈DIm,l

IW˜
m,l(d) · pl(t − d) + bm

(1)

nm(t) is the summation output of layer m, pl(t) is the l-
th input to the network, IW˜m,l is the input weight matrix
between input l and layer m, LW˜ m,l is the layer weight matrix
between layer l and layer m, bm is the bias vector of layer m,
DLm,l is the set of all delays in the tapped delay line between
layer l and layer m, DIm,l is the set of all input delays in the
tapped delay line between input l and layer m, Im is the set
of indices of input vectors that connect to layer m, Lf

m is the
set of indices of layers that directly connect forward to layer
m. The output of layer m is

am(t) = fm(nm(t)) (2)

where fm(·) are nonlinear activation functions. In this paper
we use tanh-functions in the hidden layers and linear activa-
tion functions in the output layer. At each point of time the
equations (1) and (2) are iterated forward through the layers.
Time is incremented from t = 1 to t = Q. (See [9] for a
full description of the notation used here). In Fig. 1 below the
matrix-boxes and below the arrows the dimensions are shown.
Rm and Sm respectively indicate the dimension of the input
and the number of neurons in layer m. ŷ is the output of the
GDNN. During the identification process the optimal network
architecture should be found. Administration matrices show
which weights are valid or not.

A. Administration Matrices

The layer weight administration matrices AL˜m,l(d) have
the same dimensions as the layer weight matrices LW˜ m,l(d) of
the GDNN, the input weight administration matrices AI˜ m,l(d)
have the same dimensions as the input weight matrices
IW˜m,l(d) and the bias weight administration vectors Abm

have the same dimensions as the bias weight vectors bm. The
elements of the administration matrices can have the boolean
values 0 or 1, indicating if a weight is valid or not. If e.g.
the layer weight lwm,l

k,i (d) = [LW˜ m,l(d)]k,i from neuron i of
layer l to neuron k of layer m with a dth-order time-delay
is valid, then

[AL˜m,l(d)
]
k,i

= αlm,l
k,i (d) = 1. If the element

in the administration matrix equals to zero the corresponding
weight has no influence on the GDNN. With these definitions
the kth output of layer m can be computed by

nm
k (t) =

∑
l∈Lf

m

∑
d∈DLm,l

⎛
⎝ Sl∑

i=1

lwm,l
k,i (d) · αlm,l

k,i (d) · al
i(t − d)

⎞
⎠

+
∑
l∈Im

∑
d∈DIm,l

⎛
⎝ Rl∑

i=1

iwm,l
k,i (d) · αim,l

k,i (d) · pl
i(t − d)

⎞
⎠

+ bm
k · αbm

k

am
k (t) =fm

k (nm
k (t))

(3)

where Sl is the number of neurons in layer l and Rl is the
dimension of the lth input. Table I shows an example of
administration matrices for a three-layer GDNN with 3 neurons
in each hidden layer and dmax = 2 at the beginning of a
pruning process. Only the weight l2,2

1,3(1) from neuron 3 of
layer 2 to neuron 1 of the same layer with first-order time-
delay is deleted, because αl2,2

1,3(1) = 0. All other weights are
valid.

TABLE I
EXAMPLE OF ADMINISTRATION MATRICES FOR A THREE-LAYER GDNN, 3

NEURONS IN THE HIDDEN LAYERS AND dmax = 2

Layer Administration Matrices

1

AI
g

1,1(1) AI
g

1,1(2)

1

1

1

1

1

1

AL
˜

1,1(1) AL
˜

1,1(2) AL
˜

1,2(1) AL
˜

1,2(2) AL
˜

1,3(1)AL
˜

1,3(2)Ab1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1

1

1

2

AL
˜

2,1(0) AL
˜

2,2(1) AL
˜

2,2(2) AL
˜

2,3(1)AL
˜

2,3(1)Ab2

1 1 1

1 1 1

1 1 1

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1

1

1

3
AL
˜

3,2(0) AL
˜

3,3(1)AL
˜

3,3(2)Ab3

1 1 1 1 1 1

B. Implementation

For the simulations throughout this paper the graphical
programming language Simulink (Matlab) was used. GDNN,
Jacobian calculation, optimization algorithm and pruning were
implemented as S-function in C.

III. PARAMETER OPTIMIZATION

First of all a quantitative measure of the network perfor-
mance has to be defined. In the following we use the squared
error

E(wk) =
1
2
·

Q∑
q=1

(y
q
− ŷ

q
(wk))T · (y

q
− ŷ

q
(wk))

=
1
2
·

Q∑
q=1

eT
q (wk) · eq(wk)

(4)

3503

111

T
D
L

T
D
L

T
D
L

T
D
L

T
D
L

T
D
L

T
D
LR1 × 1

S1 × 1

S1 × 1
S1 × R1

S1 × S1

S1 × S2

S1 × S3

S2 × 1

S2 × 1
S2 × S1

S2 × S2

S3 × 1

S3 × 1
S3 × S2

S2 × S3 S3 × S3

f1 f2 f3
p1(t) a1(t) a2(t) a3(t) = ŷ(t)

IW˜1,1

LW˜ 1,1

LW˜ 1,2

LW˜ 1,3

LW˜ 2,1

LW˜ 2,2

LW˜ 2,3

LW˜ 3,2

LW˜ 3,3

b1 b2 b3

z−1

z−2

z−dmax

LW˜ 2,2(1)

LW˜ 2,2(2)

LW˜ 2,2(dmax)

Layer 1 Layer 2 Layer 3

Σ

ΣΣΣ

Fig. 1. Three-layer GDNN (two hidden layers)

where q denotes one pattern in the training set, y
q

and ŷ
q
(wk)

are, respectively, the desired target and actual model output of
the q-th pattern. The vector wk is composed of all weights in
the GDNN. The cost function E(wk) is small if the training
(and pruning) process performs well and large if the it performs
poorly. The cost function forms an error surface in a (n + 1)-
dimensional space, where n is equal to the number of weights
in the GDNN. In the next step this space has to be searched
in order to reduce the cost function.

A. Levenberg-Marquardt Algorithm

All Newton methods are based on the second-order Taylor
series expansion about the old weight vector wk:

E(wk+1) = E(wk + Δwk) (5)

= E(wk) + gT
k
· Δwk +

1
2
· ΔwT

k · H˜ k · Δwk

If a minimum on the error surface is found, the gradient of the
expansion (5) with respect to Δwk is zero:

∇E(wk+1) = g
k

+ H˜ k · Δwk = 0 (6)

Solving (6) for Δwk gives the Newton method

Δwk = −H˜ −1
k · gT

k

wk+1 = wk − H˜ −1
k · g

k
(7)

The vector −H˜ −1
k ·gT

k
is known as the Newton direction, which

is a descent direction, if the Hessian matrix H˜ k is positive defi-
nite. There are several difficulties with the direct application of
Newton’s method. One problem is that the optimization step
may move to a maximum or saddle point if the Hessian is
not positive definite and the algorithm could become unstable.
There are two possibilities to solve this problem. Either the
algorithm uses a line search routine (e.g. Quasi-Newton) or the
algorithm uses a scaling factor (e.g. LM). The direct evaluation
of the Hessian matrix is computationally demanding. Hence
the Quasi-Newton approach (e.g. BFGS formula) builds up
an increasingly accurate term for the inverse Hessian matrix
iteratively, using first derivatives of the cost function only.

The Gauss-Newton and LM approach approximate the Hessian
matrix by [5]

H˜ k ≈ J˜T (wk) · J˜(wk) (8)

and it can be shown that

g
k

= J˜T (wk) · e(wk) (9)

where J˜(wk) is the Jacobian matrix

J˜(wk) =

⎡
⎢⎢⎢⎢⎣

∂e1(wk)

∂w1

∂e1(wk)

∂w2
· · · ∂e1(wk)

∂wn
∂e2(wk)

∂w1

∂e2(wk)
∂w2

· · · ∂e2(wk)
∂wn

...
...

. . .
...

∂eQ(wk)
∂w1

∂eQ(wk)
∂w2

· · · ∂eQ(wk)
∂wn

⎤
⎥⎥⎥⎥⎦ (10)

which includes first derivatives only. n is the number of
all weights in the neural network and Q is the number of
time steps evaluated. With (7), (8) and (9) the Gauss-Newton
method can be written as

wk+1 = wk − [
J˜T (wk) · J˜(wk)

]−1 · J˜T (wk) · e(wk) (11)

Now the LM method can be expressed with the scaling factor
μk

wk+1 = wk − [
J˜T (wk) · J˜(wk) + μk · I˜

]−1 · J˜T (wk) · e(wk)
(12)

where I˜ is the identity matrix. As the LM algorithm is the best
optimization method for small and moderate networks (up to a
few hundred weights), this algorithm is used for all simulations
in this paper. LM optimization normally is offline. This means
that all training patterns have to be available before training is
started. In order to get an online training algorithm we use a
sliding time window that includes the information of the last Q
time steps. With the last Q errors the Jacobian matrix J˜(wk)
from equation (10) is calculated quasi-online. In every time
step the oldest training pattern drops out of the time window
and a new one (from the current time step) is added — just like
a first in first out (FIFO) buffer. If the time window is large
enough it can be assumed that the information content of the
training data is constant. With this simple method we are able

3504

to implement the LM algorithm online. As this quasi-online
optimization method works surprisingly well it is not necessary
to use a recurrent approach like [15]. For the simulations in
this paper the window size is set to Q = 500 (using a sampling
time of 0.01 sec.).

B. Jacobian Calculations

To create the Jacobian matrix, the derivatives of the errors
have to be computed, see (10). The GDNN has feedback
elements and internal delays, so that the Jacobian cannot be
calculated by the standard backpropagation algorithm. There
are two general approaches to calculate the Jacobian matrix for
dynamic systems: By backpropagation through time (BPTT)
[18] or by real time recurrent learning (RTRL) [19]. For
Jacobian calculations the RTRL algorithm is more efficient
than the BPTT algorithm [10]. According to this the RTRL
algorithm is used in this paper. Therefore we make use of the
developed formulas of the layered digital dynamic network.
The interested reader is referred to [7]-[10],[3] for further
details.

IV. OBS PRUNING IN GDNNS

The goal of OBS pruning is to set one of the GDNN-weights
to zero while the cost function given in (4) is minimized.
This particular weight is denoted as wk,z . In the original OBS
algorithm proposed by Hassibi [6] all weights in the model are
evaluated by the saliency

Sk,z =
1
2
· w2

k,z[
H˜ −1

k

]
z,z

(13)

The weight with the smallest saliency is deleted. The con-
tributed weight update can be calculated by

Δwk = − wk,z[
H˜ −1

k

]
z,z

· H˜−1
k · iz (14)

where iz is the unit vector with only the z−th element equal
to 1.

A. LM-based OBS

The OBS in (13) and (14) requires the complex calculation
of the inverse Hessian H˜ −1

k . In subsection III-A the LM
optimization method made an approximation of this calculation
extended with the LM-scaling factor μk

∗
H˜ −1

k =
(
J˜(wk)T · J˜(wk) + μk · I˜

)−1
(15)

Using this scaled and approximated inverse Hessian matrix
∗
H˜ −1

k the OBS algorithm according to (13) and (14) can be
rewritten as

∗
Sk,z =

1
2
· w2

k,z

[(J˜T (wk) · J˜(wk) + μk · I˜)−1]z,z

(16)

with the optimum change of the weights

∗
Δwk = −wk,z · (J˜T (wk) · J˜(wk) + μk · I˜)−1 · iz

[(J˜T (wk) · J˜(wk) + μk · I˜)−1]z,z

(17)

Thus the OBS approach is obtained with low computational
cost.

B. Effect of the scaled Hessian in OBS

Now the question is: How does the LM-scaling factor μk

in (16) and (17) influence the OBS algorithm? First of all,
let us have a look at the trusted region method governed by
the LM-scaling factor μk. For small values of μk the LM
optimization (12) works as Newton method (7). In this case
the second order Taylor series expansion (5) (with g

k
and

∗
H˜ k)

gives a good approximation for the real cost function (4). By
contrast, large values of μk lead to simple Gradient Descent
(GD) optimization with step length μ−1

k , see (12). If so, the
second order series expansion (with g

k
and

∗
H˜ k) is not suitable

to approximate the real cost function. In LM the Taylor series
expansion provides a model for the real cost function, but the
model is only trusted within some region around the current
search point wk governed by the LM-scaling factor μk.

Next we consider the LM-based pruning approach defined
by (16) and (17). For small values of μk the expression
J˜(wk)T ·J˜(wk)+μk ·I˜ gives a good approximation for the real
Hessian matrix and we recover the original OBS-formulas:

μk � 1 :
∗
Sk,z ≈ Sk,z
∗
Δwk ≈ Δwk (18)

More interesting is the case for large values of μk. Then the
second order series expansion (5) (with g

k
and

∗
H˜ k) is not

suitable to approximate the real cost function (4). Thus the
expression J˜(wk)T · J˜(wk) + μk · I˜ does not represent the
real Hessian and is not suitable for OBS-calculation. For large
values of μk the LM-based OBS given by (16) and (17) can
be reduced to the form:

μk � 1 :
∗
Sk,z ≈ μk

2
· w2

k,z (19)
∗
Δwk ≈ −wk,z · iz (20)

(19) and (20) comply with a very simple pruning concept
(in the following referred to as Magnitude Pruning) [2]: It
is supposed that small weights in the neural network are
less important than large weights. The squared magnitude of
the weight value is used as saliency, see (19). This pruning
approach is not the best (even small weights can play an
important role in a neural network). However, it is a good
alternative pruning method, because for large values of μk we
do not have Hessian information in order to apply the much
more efficient OBS pruning. With (20) only the particular
weight with the smallest magnitude is set to zero, no additional
weight update is done, the remaining weights are kept constant.
This feature is also desirable, since we do not have Hessian
information for adequate weight adaption.

The effect of using the scaled Hessian in OBS can be
summarized as follows: For small values of μk the Hessian
information is accurate and the standard OBS is applied. For
large LM-scaling factors no suitable Hessian information is
available and Magnitude Pruning is obtained as an alternative
to OBS. The LM-based OBS switches smoothly between the
two pruning methods OBS and Magnitude Pruning.

3505

C. Control on Pruning Success

Every ΔTp time steps one pruning step is executed. The
time constant ΔTp is called pruning interval. Every pruning
step starts with the evaluation of the last pruning step. There-
fore the cost function value E0p before pruning is stored in
order to judge the success of the pruning operation. The pa-
rameter ΔEmax defines the maximum relative error increase.
This user defined parameter limits the error increase during
the pruning process. The last pruning step is canceled if the
current cost function value E(wk) is too high compared to the
value before pruning (see Fig. 2):

if E(wk) > ΔEmax · E0p = ΔEmax · E(wk−ΔTp
)

undo last pruning step (21)

Therefore also the GDNN weights have to be stored before
pruning.

D. Adaptive Pruning Interval

Usually the cost function increases after a pruning step.The
parameter optimization procedure between the pruning steps
tries to reduce the error. It can be observed that the deletion
of one weight in an oversized GDNN does not have too much
influence on the identification process. There are many redun-
dant weights available. By contrast, the smaller the network,
the more complex the retraining process after a pruning step.
For this reason the pruning operation can be improved, if the
pruning interval ΔTp is adapted online. It must be assured that
the optimization algorithm is able to cope with the structural
changes in the GDNN-model within the pruning interval ΔTp.
First of all we have to find a measure if the pruning interval
ΔTp is accurately chosen. Therefore we recommend to average
over the last ΔTp cost function values between the pruning
steps (see Fig. 2 and 3):

Emean =
1

ΔTp
· (E(wk) + E(wk−1) + . . . + E(wk−ΔTp+1)

)
(22)

Iteration

C
os

t
Fu

nc
tio

n
E

PruningPruningPruning

E0p

E(wk)

Emean

k − ΔTp

ΔTp

k

ΔEmax · E0p

Emean < ΔEmax · E0p

Fig. 2. Example of an adequate pruning interval with ΔTp = 10.

This mean cost function indicates if the current pruning
interval ΔTp is suitable. If the mean error Emean is high,
i. e. the optimization algorithm cannot cope with the new
optimization task within the time ΔTp, the pruning interval
should be increased, see Fig. 3. If the mean error Emean is
small, the pruning process could be sped up by decreasing the
pruning interval. Fig. 2 depicts an example for an adequately

chosen pruning interval. The pruning interval ΔTp is adapted
by the following scaling algorithm:

if Emean > ΔEmax · E0p

ΔTp = ϑ · ΔTp

else

ΔTp =
1
ϑ
· ΔTp

(23)

with the user defined scaling factor ϑ > 1. The following
identification examples in section V show the adaption of
the pruning interval ΔTp during the pruning and parameter
optimization process.

Iteration
C

os
t

Fu
nc

tio
n

E
PruningPruningPruning

E0p

E(wk)

Emean

k − ΔTp

ΔTp

k

ΔEmax · E0p

Emean > ΔEmax · E0p

Fig. 3. Pruning interval is too short

V. IDENTIFICATION

In this section two identification examples are presented
using the LM-based pruning algorithm suggested in (16) and
(17) with adaptive pruning interval proposed in (22) and
(23), Jacobian calculation with RTRL and the LM algorithm
(12). The first example to be identified is a simple linear
PT2 system. This example is chosen to test the architecture
selection ability of the suggested pruning approach. This test
is possible for linear systems because we know the required
difference equation. If the pruning algorithm with adaptive
pruning interval succeeds in deleting the right weights, the
final GDNN-model has to consist of the parameters of the
difference equation. The second example is a more complex
one. A nonlinear dynamic system has to be identified.

A. Excitation Signal

In system identification it is a very important task to use
an appropriate excitation signal. A nonlinear dynamic system
requires that all combinations of frequencies and amplitudes
(in the system’s operating range) are represented in the signal.
In this paper an APRBS-signal (Amplitude Modulated Pseudo
Random Binary Sequence) is applied, uniformly distributed
from -1 to +1 in amplitudes and from 10ms to 250ms in hold
time. For more information the reader is referred to [14].

B. Identification of PT2 plant

The simple PT2-plant 10
0.1·s2+s+100 is identified by a three-

layer GDNN (with three neurons in the hidden layers and
dmax = 2 ⇒ n = 93). This network architecture is obviously
larger than necessary. If the continuous-time PT2-plant is

3506

discretized using zero-order hold [17] with a sample time of
10ms the discrete model can be expressed as

y(k) = 0.0048 · u(k − 1) + 0.0046 · u(k − 2)
+1.8100 · y(k − 1) − 0.9048 · y(k − 2) (24)

The initial pruning interval is set to ΔTp = 5, the maximum
error increase is ΔEmax = 10 and the scaling factor ϑ
is defined to 1.1. The pruning process starts after iteration
Q = 500, when the sliding time window is filled up. Fig.

Sq
ua

re
d

E
rr

or
E

(w
k
)

Identification Time [sec]

N
um

be
r

of
W

ei
gh

ts
n

100

10−4

10−8

10−12

0 10 20 30 40
0

20

40

60

80

100
n = 93

n = 7

Fig. 4. Squared Error E(wk) and number of weights n for PT2-identification
example (at the beginning: n = 93, at the end: n = 7)

4 shows the weight reduction from n = 93 to n = 7 and
the identification error, which is also reduced although the
model is becoming smaller. After about 20 seconds a lot of
pruning steps are canceled due to (21). Table II summarizes

TABLE II
EXAMPLE OF ADMINISTRATION MATRICES FOR A THREE-LAYER GDNN, 3

NEURONS IN THE HIDDEN LAYERS AND dmax = 2

Layer Administration Matrices

1

AI
g

1,1(1) AI
g

1,1(2)

1

0

0

0

0

0

AL
˜

1,1(1) AL
˜

1,1(2) AL
˜

1,2(1) AL
˜

1,2(2) AL
˜

1,3(1)AL
˜

1,3(2)Ab1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0

0

0

0

0

2

AL
˜

2,1(0) AL
˜

2,2(1) AL
˜

2,2(2) AL
˜

2,3(1)AL
˜

2,3(1)Ab2

1 0 0

1 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0

0

0

0

0

3
AL
˜

3,2(0) AL
˜

3,3(1)AL
˜

3,3(2)Ab3

0 1 0 1 1 0

the administration matrices after the identification and pruning
process. Most of the weights are deleted. Along with the
weight vector

wk=4600 = [-0.0027 -2.6959 -0.6168 0.2213
2.8668 1.8105 -0.9048]T , (25)

we are able to draw the final GDNN-model, see Fig. 5. Each
circle in the signal flow graph includes a summing junction and
an activation function. The input and the output of the model
have two time delays. Due to the very small input weight
−0.0027 all the tanh-activation functions can be neglected
(only the linear region near the origin with slope 1 is used) and

-0.0027 -2.6959

-0.6168

-0.9048

1.8105

0.2213
2.8668

p1 ŷ

z−1

z−1

z−1

z−2

Fig. 5. Identification result: GDNN-model of PT2 the example

we get the following difference equation for the final GDNN-
model:

ŷ(k) = 0.0048 · u(k − 1) + 0.0046 · u(k − 2)
+1.8105 · y(k − 1) − 0.9048 · y(k − 2) (26)

This equation looks similar to the real difference equation of
the system (24). Fig. 6 depicts another PT2-identification using
the same initial pruning interval ΔTp = 5 but no adaption is
conducted. The optimization algorithm cannot cope with the
structural changes and the identification error increases. Fig. 7

Sq
ua

re
d

E
rr

or
E

(w
k
)

Identification Time [sec]

N
um

be
r

of
W

ei
gh

ts
n

100

10−5

10−10

0 2 4 6 8 10 12
0

20

40

60

80

100

Fig. 6. Constant pruning interval is too small: The Squared Error E(wk)
increases.

shows the output of the PT2-plant y (solid gray line) and the
output of the GDNN-model ŷ (thick dashed black line) for the
first 3 seconds (sample time: 10ms).

Identification Time [sec]

y
an

d
ŷ

0.2

0.1

0

−0.2

−0.1

0 0.5 1 1.5 2 2.5 3

Fig. 7. Outputs of the PT2-plant y (solid gray line) and of the GDNN-model
ŷ (thick dashed black line) for the first 3 seconds.

C. Identification of a nonlinear plant

The first example is chosen to underpin the weight reduction
ability of the proposed pruning algorithm. In this subsection

3507

a complex nonlinear dynamic system presented by Narendra
[13] is considered:

y(k) =
y(k − 1) · y(k − 2) · y(k − 3) · u(k − 2) · [y(k − 3) − 1] + u(k − 1)

1 + y2(k − 2) + y2(k − 3)

For this identification example a three-layer GDNN (with four
neurons in the hidden layers and dmax = 3 ⇒ n = 212) is
used. The initial pruning interval is ΔTp = 100, the maximum
error increase is set to ΔEmax = 20 and the scaling factor ϑ
is defined to 1.1. Fig. 8 depicts the weight reduction from n =

Sq
ua

re
d

E
rr

or
E

(w
k
)

Identification Time [sec]

N
um

be
r

of
W

ei
gh

ts
n

100

10−5

105

10−10

0 50 100 150 200
50

100

150

200

Fig. 8. Squared Error E(wk) and number of weights n for nonlinear
identification example (at the beginning: n = 212, at the end: n = 57)

212 to n = 57 and the identification error for 200 seconds. The
pruning process is stopped after 182 seconds due to the abrupt
rise of the cost function. The last pruning step is undone. Fig.

Identification Time [sec]

y
,
ŷ

an
d

p
1 0.5

1

0

−0.5

−1
0 0.5 1 1.5 2 2.5 3

Fig. 9. Output of the nonlinear plant y (solid gray line), output of GDNN-
model ŷ (thick dashed black line) and APRBS excitation signal p1 (thin dashed
black line) for the first 3 seconds.

9 shows the output of the nonlinear plant y (solid gray line),
the output of GDNN-model ŷ (thick dashed black line) and
the APRBS excitation signal (thin dashed black line) during
the first 3 seconds (sample time: 10ms).

VI. CONCLUSION

This paper uses the LM-based OBS approach for system
identification with GDNNs. The advantage of this pruning
method is that the OBS-method exploits Hessian information
already calculated for LM parameter optimization. The LM-
based OBS switches smoothly between the two pruning meth-
ods OBS and Magnitude Pruning governed by the LM-scaling
factor. To manage the pruning process in GDNN administration
matrices are introduced. These matrices indicate which weights
still exist and which are already deleted. In every pruning step
the success of the last pruning step is checked. If the increase

in the error is too high, the last pruning step is canceled.
For this revision the weights have to be stored. The structure
of the GDNN is changed drastically during the pruning and
identification process. So the influence of one pruning step to
the identification system can be quite different. To guarantee
that the parameter optimization algorithm has enough time to
cope with the structural changes in the GDNN-model, this
paper suggests an adaptive pruning interval. We defined the
mean cost function value to measure the success of the current
pruning interval. Depending on this value the pruning interval
is adapted by a scaling algorithm. The proposed pruning
algorithm is verified by one simple linear and one complex
nonlinear dynamic system identification example. Network
pruning does not only work for static neural networks. These
structure finding algorithms offer a very interesting application
in system identification with dynamic neural networks.

REFERENCES

[1] M. Attik, L. Bougrain, F. Alexandre, ”Optimal Brain Surgeon Variants
For Feature Selection,” in IEEE Proc. of the Intern. Joint Conf. on Neural
Networks, pp. 1371–1374, 2004.

[2] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, 1995.

[3] C. Endisch, C. Hackl and D. Schröder, ”Optimal Brain Surgeon For
General Dynamic Neural Networks,” in Lecture Notes in Artificial
Intelligence (LNAI) 4874, Springer-Verlag Berlin, pp. 15-28, 2007.

[4] C. Endisch, P. Stolze, C. Hackl and D. Schröder, ”Comments on
Backpropagation Algorithms for a Broad Class of Dynamic Networks,”
IEEE Trans. on Neural Networks, vol. 20, no. 3, pp. 540–541, 2009.

[5] M. Hagan, B. M. Mohammed, ”Training Feedforward Networks with
the Marquardt Algorithm,” IEEE Trans. on Neural Networks, vol. 5, no.
6, pp. 989–993, 1994.

[6] B. Hassibi, D. G. Stork, G. J. Wolff, ”Optimal Brain Surgeon and General
Network Pruning,” IEEE Intern. Conf. on Neural Networks, vol. 1, pp.
293–299, 1993.

[7] O. De Jesús, M. Hagan, ”Backpropagation Algorithms Through Time
for a General Class of Recurrent Network,” IEEE Int. Joint Conf. Neural
Network, Washington, pp. 2638–2643, 2001.

[8] O. De Jesús, M. Hagan, ”Forward Perturbation Algorithm For a General
Class of Recurrent Network,” IEEE Int. Joint Conf. Neural Network,
Washington, pp. 2626–2631, 2001.

[9] O. De Jesús, ”Training General Dynamic Neural Networks,” Ph.D.
dissertation, Oklahoma State University, Stillwater, OK, 2002.

[10] O. De Jesús, M. Hagan, ”Backpropagation Algorithms for a Broad Class
of Dynamic Networks,” IEEE Trans. on Neural Networks, vol. 18, no.
1, pp. 14–27, 2007.

[11] Y. Le Cun, J. S. Denker, S. A. Solla, ”Optimal Brain Damage,” in
D. S. Touretzky, ”Advances in Neural Information Processing Systems,”
Morgan Kaufmann, pp. 598–605, 1990.

[12] J. Meng, ”Penalty OBS Scheme for Feedforward Neural Network,”
Proceedings of the 17th IEEE Intern. Conf. on Tools with Artificial
Intelligence (ICTAI’05), pp. 479–483, 2005.

[13] K. S. Narendra, K. Parthasarathy, ”Identification and Control of Dynam-
ical Systems Using Neural Networks,” IEEE Trans. on Neural Networks,
vol. 1, no. 1, pp. 4–27, 1990.

[14] O. Nelles, Nonlinear System Identification. Berlin Heidelberg New York:
Springer-Verlag, 2001.

[15] L.S.H. Ngia, J. Sjöberg, ”Efficient Training of Neural Nets for Nonlinear
Adaptive Filtering Using a Recursive Levenberg-Marquardt Algorithm,”
IEEE Trans. on Signal Processing, vol. 48, no. 7, pp. 1915–1927, 2000.

[16] R. Reed, ”Pruning Algorithms – A Survey,” IEEE Trans. on Neural
Networks, vol. 4, no. 5, pp. 740–747, 1993.

[17] D. Schröder, Elektrische Antriebe - Regelung von Antriebssystemen. 2nd
edn., Berlin Heidelberg New York: Springer-Verlag, 2001.

[18] P.J. Werbos, ”Backpropagation Through Time: What it is and how to do
it,” Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

[19] R.J. Williams, D. Zipser, ”A Learning Algorithm for Continually Run-
ning Fully Recurrent Neural Networks,” Neural Computing, vol. 1, pp.
270–280, 1989.

3508

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

