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Abstract— This paper studies information diffusion in 
networks. Traditional models are all history insensitive, 
i.e. only giving activated nodes a one-time chance to 
activate each of its neighboring nodes with some 
probability. But history dependent interactions between 
people are often observed in real world. This paper propose 
a new model called the History Sensitive Cascade Model 
(HSCM) that allows activated nodes to receive more 
than a one-time chance to activate their neighbors. 
HSCM is a deterministic model to decide the 
probability of activity for any arbitrary node at any 
arbitrary time step. In particular, we provide 1) a 
polynomial algorithm for calculating this probability in 
tree structure graphs, and 2) a Markov model for 
calculating the probability in general graphs. This 
paper makes a theoretical contribution on studying the 
information diffusion problem.  

Keywords—diffusion netowork, information cascade 

I. INTRODUCTION

Diffusion is a process by which information, viruses, ideas 
and new behavior spread over social networks [15]. The current 
work in this is an outgrowth of Granovetter's initial treatment 
of the phenomenon of collective behavior in 1978 [12]. He 
introduces a threshold model and uses it to examine the 
occurrence of riots and their perceived domino-effect growth 
pattern. The result was an early threshold model for collective 
behavior. In present day, diffusion models of social networks 
have been studied in a variety of fields ranging from 
epidemiology [16], to marketing [17], to technology transfers 
[4, 5], to computer virus transmission [2], and to power 
systems [22]. 

As described by Kempe et. al. [14], there are two basic 
diffusion models: 1) the linear threshold model [12], in which a 
node becomes active if a predetermined fraction, called a 
threshold, of the node's neighbors are active, and 2) the 
independent cascade model [8], whenever a node becomes 
active, it gets a one-time chance to activate each of its 
neighboring nodes with some probability. There is a rich 
literature in both models; especially the independent cascade 
model has gained much attention in present day. Goldenberg et 
al. [11] simulate Word-of-Mouth information diffusion through 
strong ties among members of the same network and weak ties 

among individuals belonging to different network. They found 
the influence of weak ties on the information diffusion is 
almost as strong as the influence of strong ties. Cowan and 
Jonard [7] study diffusion of knowledge in different network 
structures. They find that the performance of the system 
exhibits clear “small world” properties, in that the steady-state 
level of average knowledge is maximal when the structure is a 
small world (that is, when most connections are local, but 
roughly 10 percent of them are long distance). In viral 
marketing, Leskovec et. al [15] simulate information cascade in 
a real person-to-person recommendation network. They
discover that the distribution of cascade sizes is approximately 
heavy-tailed; cascades tend to be shallow, but occasional large 
bursts of propagation can occur. 

The model that we propose is called the History Sensitive 
Cascade Model (HSCM). It can be understood as a modified 
Independent Cascade Model, but is different from the 
generalized framework (proposed by Kempe) designed to unify 
the Independent Cascade Model and the Linear Threshold 
Model underneath a single mathematical threshold. For one 
major difference, our model allows that activated nodes receive 
more than a one-time chance to activate their neighbors. A 
node can switch from being uninformed to being informed, but 
not the reverse. The rationale of this model is the classical 
threshold mechanism of collective action: a consumer does not 
feel social pressure if just a few people around her behave in a 
particular way but once these people reach a certain number 
then she suddenly decide to change her mind and she behaves 
differently [12]. The history dependent interactions between 
people are often observed in real world. For example, in viral 
marketing and advertising, a customer may not decide to buy a 
product at their first time receiving the recommendation or 
watching the advertisement, but they may gradually accept the 
product and decide to buy it after several rounds of such 
interactions. We provide an in depth comparison between 
HSCM and several of the common diffusion models in Section 
2. 

This paper formally defines HSCM and provides two 
algorithms for calculating the probability of activity for any 
arbitrary node at any arbitrary time. The first is a polynomial 
algorithm for calculating the probability in tree structure graphs 
(Section 3). The polynomial feature of this algorithm is nice, 
comparing to the NP-Complete general complexity for this 
problem. There are real-world cases where tree structures 
would be useful tools: for example, the network of a 
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corporation could be modeled with a tree. Corporations have 
top-level CEOs, high-level managers, middle-managers, low-
level office-managers, office workers, and so on. In cases like 
these, there is a lot of information traveling downward, but not 
much information traveling upward. The second algorithm is a 
Markov model for calculating the probability in general graphs 
(Section 4). In Section 5, we perform an empirical study on 
HSCM under different network settings. These simulations 
have showed its power to observe and explain the emergent 
phenomena in the macro level when changing parameters in the 
micro level. 

II. BACKGROUND AND MOTIVATION

We will use an example to introduce the related work on 
diffusion models as well as to show the difference between 
HSCM and these existing models. Fig. 1 is our graph. 

Fig. 1 An example Diffusion Network 

Suppose Alice, in high school, is dating Bob. Also, Alice 
is best friends with Cathy who is barely acquainted with a 
college boy named Donald. Suppose Donald has two college 
friends named Ethan and Francine and that these two friends 
are also dating. The connecting lines represent avenues of 
contact: Alice routinely communicates with Cathy (her best 
friend) and Bobby (her boyfriend); but she doesn't know 
Donald, Francine, or Ethan. Now suppose that Cathy recently 
bought an iPod and likes it very much. The question we are 
interested in is what is the probability that other people in the 
network will be influenced by Cathy and buy an iPod at any 
given time in the future. 

In literature, there are two common diffusion models that 
have been used to solve the above question that we are 
interested in. The first is the Linear Threshold Model, which 
says that a node becomes active if a predetermined faction of 
the node’s neighbors is active. Fig.2 illustrates this rule. Here 
the predefined threshold is 60%; red nodes mean the nodes 
that have already being activated via the link pointing to them, 
and we are determined if the centre bold node will be activated 
in the given situation. Since the centre node has five neighbors 
and three of them (i.e. 60%) have been active, so the centre 
node will be active too.  

Fig. 2 An Example of the Linear Threshold Model 

The second model is the Independent Cascade Model.
Under this model, an active node gets a one-time chance to 
activate each of its neighboring nodes with some probability. 
Fig. 3 illustrates this rule. Here the probability is 50%, as a 
consequence, the already active central bold node makes two 
of its neighbors active too. 

Fig. 3 An Example of the Independent Cascade Model 

There are two common features of both the Linear 
Threshold Model and the Independent Cascade Model: 1) 
progressiveness: once a node becomes active, it will never 
deactivate, and 2) historical insensitivity: each non-active node 
is only triggered once, leaving the node either active or not 
depending on the predefined threshold. Then the node is 
passed and will never be influenced again. 

The HSCM model that we propose shares the 
progressiveness feature of the existing models but it is history 
sensitive. We can find many examples in really world that 
people influence each other by more than one time and the 
previous influence enhances the current influence. Let’s refer 
to Fig.1 again for an example scenario. The probability 
attached to each link is called the “spreading probability”, 
representing the chance that the influence of the iPod ideology 
will spread across that line during a fixed length of time. In 
this example, let's suppose this length of time equals one week. 
It is reasonable to think that Alice has a higher chance of being 
influenced by Cathy not only because the spreading 
probability between them is higher but also this probability 
will be increased if they spend more time together, under the 
assumption that Alice’s has no bias to iPod as others, i.e. 
nobody in this system has a strong attitude in favoring or 
disfavoring iPod originally. 

It should be noted that we are not suggesting real world 
situations are always like this. Certainly one could argue that 
Alice after many weeks of being pestered by Cathy would 
decide out of annoyance never to buy an iPod. Or she may 
simply become “immune” to Cathy’s suggestions, becoming 
less and less likely to buy an iPod with each passing exposure 
to Cathy’s iPod ideology. These concerns are valid. But that 
doesn’t mean historical data should be entirely disregarded as 
is the case in all diffusion models we have encountered. 

III. THE HSCM MODEL – AN OVERVIEW

Let G = (V,E) where V is a set of vertices and E is a set of 
edges. Each vertex v in V corresponds to a Boolean value A(v), 
denoting whether the vertex is “active” or not. Each edge ev,u
(leaving v and entering u) is weighted with a value 
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0<W(ev,u) 1, representing the probability that if v is active in 
time step t=k, then u will be active in time step t=k+1. W(ev,u)
is called the spreading probability. Let targets(v) represent all 
u such that ev,u is in E. The activity value of vertices is updated 
as the HSCM Algorithm in Fig. 4. 

Function HSCM[G=(V, E), W(ev,u)]
Inputs: G=(V, E) where V is a set of vertices and E is a 

set of edges, with some initially active 
vertices.

W(ev,u), the spreading probability, that if v is 
active in time step t, then u will be active in 
time step t+1.

For time step = 1 to k
   For each vertex v in V

    If A(v) = true 
         For each vertex u in targets(v) 
             random = a random number between 0 and 1; 
             If random < W(ev,u)

Set A(u) = true; 

Fig. 4 The HSCM Algorithm 

The question we wish to answer is called the Activation 
Probability Problem, which is defined below. 

Definition 1 (Activation Probability Problem). Given some 
time step k and some vertex v, what is the probability that v 
will be active at t=k? 

We assume (for the sake of eschewing trivialities) that at 
time step t=0, there exists at least one node a such that 
A(a)=true. Or, as we may alternatively posit, P(a0)=1,
meaning simply that the probability of a being active on the 0th

time step is 1. If this were not the case, then there would be no 
activity for any nodes on any time step. The proof for this can 
easily be extrapolated from the above algorithm, whose only 
alterations to the state of the system occur within an If-
statement, the condition of which is that A(v) be true. Thus, a 
system starting out with A(v) being false for all v will never 
change states. 

It can be easily proved that the Activation Probability 
Problem is NP-Complete, by deducing it to the Set Covering 
problem. Therefore, in this paper, we provide two solutions to 
it: 1) a polynomial solution for tree structure graphs in Section 
IV, and 2) a Markov Model solution for general graphs in 
Section V. 

IV. A POLYNOMIAL SOLUTION FOR TREE GRAPHS

We now go about examining properties of the HSCM 
model in order to derive a method for calculating the 
probability of activity for any arbitrary node at any arbitrary 
time in tree structure graphs. Throughout the discussion, 
suppose for simplicity’s sake that we have only one active 
vertex a at time t=0. Ultimately, we will drop this assumption. 

Theorem 1 (Definition of Inactivity): If P(xk) = 0, then  P(xk-i)
= 0, for all 0 <= i <= k. 

Proof: That is equivalent to asserting that, if a vertex is not 
active during t = k, it was never active at a previous time step. 
The proof follows from the fact that our previous description 
of the model does not provide for any conditions in which an 
active vertex might deactivate. So an inactive vertex was never 
active previously.                                                                      

Calculating the probability the neighbor of an active 
vertex will be active in the next time step is a simple matter. 

Lemma 1: Assuming that 1) x only has one edge coming to it 
from an active vertex (which we call a), 2) P(x0) = 0, 3) P(a0)
= 1, and 4) t = 1,  

P(x1) = W(ea,x).                                            (3)

Proof: The proof follows from the definition of the model. In 
time step t = 0, vertex a is active and, thus, will activate any 
inactive neighbor n with a probability equal to the weight of 
the edge from a to n. Since this lemma assumes that t = 1 and
that x was not active at t = 0, we know that x has had no 
chance to become active before t = 1. Thus, P(x0) = 0 and 
P(x1) = W(ea,x), as can be seen from the statement of the 
Simulation Algorithm. Matters, however, will not be so simple 
in the following case.                                                                

Lemma 2: Dropping the forth assumption above, assume that 
1) x has only one edge coming to it from an active vertex 
(which we call a), 2) P(x0) = 0, 3) P(a0) = 1. 

P(xk+1) = [1 – P(xk)]W(ea,x) + P(xk).            (4)

Proof: It helps to note that, because of the first assumption 
above (combined with the Definitions of Activity and 
Inactivity), x has been the neighbor of one and only one active 
vertex ever since t = 0, i.e. P(ak) = 1 for all k. This is useful 
because it means that we need only pay attention to the 
following two ways that x might become active in time step t
= k + 1.

1) x had been activated by a already during some time 
step t <= k, or 

2) x is activated by a during the step t = k + 1.

We can represent the first of these cases like so, 

alreadyk+1 = P(xk).                                       (5) 

And the second like so, 

duringk+1 = [1 – P(xk)]W(ea,x).                    (6) 

This equation makes use of the fact that P(xk) is the probability 
that x was active before t =k+1, and thus, 1 – P(xk) is the 
probability that x was not active before t = k + 1. Since the 
probability of A(x) being true already at t = k+2 and of 
becoming true during t = k + 2 are disjoint, the probability of 
x being active at t = k + 2 is given by a simple sum: 

P(xk+1) = duringk+1 + alreadyk+1                  (7) 

which is the same as 

P(xk+1) = [1 – P(xk)]W(ea,x) + P(xk)               
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Lemma 3: Dropping, now, the third assumption above, we 
need not assume that P(ak) = 1 for all k. Instead, we assume 
that 1) x has only one edge coming to it from any potentially 
active vertex a, and 2) P(x0) = 0. In this case, the activity 
probability is: 

P(xk+1) = [P(ak) – P(xk)]W(ea,x) + P(xk)       (8)
Proof: This is almost identical to the one above except that the 
probability of x being activated during t=k+1 is this: 

duringk+1 = [P(ak) – P(xk)]W(ea,x).              (9) 
The justification for the term P(ak) – P(xk) is again similar to 
the previous proof. It makes use of the fact that if x has ever 
had an active influencer, the probability of x being active is 
completely dependent on the probability of a being active, 
because a is and always has been x's only means of becoming 
active. Finally, 

P(xk+1) =[P(ak) – P(xk)]W(ea,x) + P(xk)              
Using the above lemmas, we can calculate the activity 

probability of any arbitrary vertex on any arbitrary time step, 
provided that the graph is a tree and that no vertex has more 
than one incoming edge. 

Theorem 3: Let G = (V,E) be a graph without cycles, and let 
there be no two edges in E, ew,x and ey,z, such that x=z. We will 
use the function influencer(u) to denote the vertex v such that 
targets(v) includes u. 

otherwisevPeWvPvluencerP
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      (10)

Proof: The first part of the formula follows from the definition 
of activity. The second part follows from observing that the 
vertices will always satisfy the assumptions of either Lemma 2 
or 3:

1) Vertex v will always have only one potentially active 
influencer. 

2) P(v0) will, in all cases be 0, or else the first part of the 
formula would have been applicable.                        

Example 1. Consider this initial network in left-top of Fig. 5. 
Also suppose that threshold=0.65 and that initially only node 1 
is active. After 4 time steps, the network achieves activation. 
The probabilities are iteratively updated along with time steps 
by Equation (10). 
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V P(vt=0) P(vt=1) P(vt=2) P(vt=3) P(vt=4)
1 1.0 1.0 1.0 1.0 1.0 
2 0.0 0.5 0.75 0.875 0.9375 
3 0.0 0.0 0.25 0.5 0.6875 
4 0.0 0.0 0.25 0.5 0.6875 
5 0.0 0.0 0.25 0.5 0.6875 

Fig. 5 An Example of HSCM for a Tree Graph 

Two features can be directly observed from Fig. 5 regards 
the HSCM model for a tree graph. First, at any given time step 
k, the activation probability of an influencer node is always 
higher than that of its targeting nodes. Second, for any given 
node v, its activation probability at time step k+1 is always 
higher than that at time step k. Next we prove these two 
features. 

Theorem 4: t=k, P(influence(v)k) > P(vk), if P(v0) 1 and 
0<W(einfluence(v),v) 1. 

Proof by Induction: Fig. 6 illustrates a general status of a tree 
graph. 

targets(v)influencer(v)

……1 v

Fig. 6 A General Status of a Tree Graph 

Basis Step: At time step t=0, there are only two types of nodes 
in G: the initially active root node or nodes in top levels whose 
probability is 1, and the non-active low level nodes whose 
probability is 0. So the basis step is proved. 

Inductive Step. Assume that at time step t=k, we have 

   … > P(influencer(v)k) > P(vk) > P(targets(v)k) > …         (11) 

We want to prove that at time step t=k, we have 

   … > P(influencer(v)k+1) > P(vk+1) > P(targets(v)k+1) >     (12) 

Proof.  From Equitation (10): 
P(vk+1)=[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+P(vk)     (13) 
P(targets(v)k+1)=[P(vk) P(targets(v)k)]×W(ev,targets(v))

+P(targets(v)k)                                           (14) 
Therefore, P(vk+1) P(targets(v)k+1)

=[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+P(vk)
 [P(vk) P(targets(v)k)]×W(ev,targets(v))+P(targets(v)k)

=[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+      (15.a) 
[P(vk) P(targets(v)k)]×(1 W(ev,targets(v)))           (15.b) 

>0, because both (15.a)>0 and (15.b) >0. 
So P(vk+1)>P(targets(v)k+1). By similar method, we can prove 
P(influencer(v)k+1) > P(vk+1).                                                    

Theorem 5: v V, P(vk+1)>P(vk).

Proof: From Theorem 4: 
[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)>0             (16) 
[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+P(vk)>P(vk)
 P(vk+1)>P(vk)                                                                

V. A MARKOV SOLUTION FOR GENERAL GRAPHS 

Expanding our ability to perform this calculation on graphs 
with cycles presents several problems. The tip of the iceberg 
with regard to cycles can be illustrated by the situation in Fig. 
7.  

2049



Fig. 7 A Simple Graph with a Loop 

In Fig. 7, we assume that P(vk) > 0 and v has an edge to u,
which is inactive on time step t = k. On next two steps, 
according to Equation (10), we have: 

t=k+1, P(uk+1)=P(vk)×W(ev,u)<P(vk), and                        (17) 
t=k+2, P(vk+2)=[P(uk+1) P(vk)]×W(eu,v)+P(vk)<P(vk).     (18) 

But (17) is against Theorem 4 and (18) is against Theorem 5.
Therefore Equation (10) can’t be applied to general graphs. 
This example is just a cycle of length one. Much more 
complicated cases arise when cycles are longer. 

First, we consider the graph to be a finite state system, 
where “state” is understood as some combination of activated 
vertices in V. The state of the graph can be represented as a 
Boolean-valued “activity” vector a of length n, where n is the 
size of V. Let each vertex be arbitrarily labeled with a unique 
value between 0 and n-1, and let this label value be denoted 
L(v). A value of 1 in the index i (from the right) of the vector a
indicates that the vertex v, such that L(v) = i, is active. More 
compactly, a[L(v)] = A(v). Thus, the vector  

a=[1 0 1 0 0 1] 

indicates that for all v such that L(v) = 0, 3, or 5, A(v) = true. 
Now, let us use another binary-valued vector called s to denote 
every possible binary number that the vector a can represent. 
We call s the “state” vector and it will be of length 2n. s will 
have only a single 1-value; the rest will be 0s. The index of s'
1-value, when converted to base two will be the binary number 
represented by a corresponding activity vector a. Thus, the 
state space vectors 

s=[1 0 0 0]  s=[0 1 0 0]   s=[0 0 1 0]   s=[0 0 0 1] 

would map to the following activity vectors respectively: 

a=[0 0]       a=[1 0]         a=[0 1]          a=[1 1] 

We are introducing the s vector in order to serve as the 
initial state vector for a Markov chain that we will build from 
G, allowing us to calculate the exact probability of some 
vertex being active at some time step. Furthermore, each 
binary value represented by the list a can be considered an 
index into the matrix we will construct. We give the algorithm 
in Fig. 8 for constructing the state transition matrix for a 
general graph G = (V,E).

Upon obtaining the stochastic state transition matrix A,
the calculation of each possible state reachable from an initial 
binary state vector s – containing only a single 1-value, can be 
obtained as follows: 

p = s Ak                                                                                                     (19) 

where k is the time step for which you want a value. The 
resulting vector p has the property that p[i] equals the 
probability that s[i] = 1 at time step t = k.

To find P(vk) for an arbitrary vertex v, we simply need to 
sum the elements of p whose state involves v being active: 

P(vk) = s Ak AllRelevantStates(L(v))                    (20) 

where AllRelevantStates(L(v)) merely returns a vector x such 
that x[j] is 1 if the binary representation of j contains a 1 in the 
L(v)'s location. Otherwise x[j] is a 0. So in the end, P(vk) can 
be written: 

P(vk) = p AllRelevantStates(L(v)).                        (21) 

This sums up the values of p that refer to the probability of G
being in a state where v is active. The reason we can sum these 
probabilities is that each state whose transition probability we 
calculate during the construction of a is disjoint, as can be 
seen from the portion of the algorithm labeled Make 
Probabilities Disjoint, which calculates, for every initial state 
S, the probability of activating any subset of all vertices a that 
could be activated by vertices in S, and (most importantly) the 
probability of not activating any other vertices in a. Thus, state 
transition probabilities do not “overlap,” so to speak. Fig. 8 is 
the integrated algorithm for updating the state transaction 
matrix. 

Function stochasticMatrix() 
For Each (S in Powerset(V)) 

     Let A = All vertices activatible by set S; 
     Let E = edges from S to A; 
     Let P be an empty hash structure from vertex keys to 

probability values; 
For Each (target in E) 

 W = [weights of edges going to target]; 
 P += {target => combinedProbability(W)}; 

//Make Probabilities Disjoint: 
For Each (S2 in Powerset(A)) 

 P2 = P; 
For Each (p in P2) 

       If (Key(p) is in A && Key(p) is not in S2) 
            Let Value(p) = 1–p; 
 Matrix[indexOf(S)][indexOf(S union S2)] = Product p  

Function combinedProbability(W)  
Let answer = 1 
For Each w in W 

  answer = answer (1–W); 
Return 1–answer; 

Function indexOf(S) 
Let answer = a list of zeros of length max(S); 
For Each v in S 

 answer[L(v)] = 1; 
Return decimal value of the binary number in answer; 

Fig. 8 Stochastic Matrix Construction Algorithm 

Example 2. We consider a simple graph like this. Initially 
both nodes 1 and 2 are active. We show how to calculate the 
activate probability of node 3 at any given time step t. 

0.2 0.5

1 2

3
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Our transition matrix A would look like this in Fig. 9. 
A[i,j] is defined as the probability that the network will move 
from state i to state j. When i=j, A[i,i] is the probability that 
the network will remain in its current state – meaning that no 
new nodes become active. 

[]        1        2        1,2       3        3,1      3,2      3,1,2 
[]        1.0     0.0     0.0      0.0       0.0      0.0     0.0       0.0 
1         0.0    0.8      0.0      0.0       0.0      0.2     0.0       0.0 
2         0.0    0.0      0.5      0.0       0.0      0.0     0.5       0.0 
1,2      0.0    0.0      0.0      0.4       0.0      0.0     0.0       0.6 
3         0.0    0.0      0.0      0.0       0.4      0.1     0.4       0.1 
3,1      0.0    0.0      0.0      0.0       0.0      0.5     0.0       0.5 
3,2      0.0    0.0      0.0      0.0       0.0      0.0     0.8       0.2 
3,1,2   0.0    0.0      0.0      0.0       0.0      0.0     0.0       1.0 

Fig. 9 The Transition Matrix 

As an example, we show how A[i,j]=0.6 when i=(1,2) and 
j=(3,1,2). Now we are assuming that only nodes 1 and 2 are 
active. We want to know the probability that 3 becomes active. 
There are two edges to 3. Either edge can activate 3, but not 
both. So we use the principle of inclusion/exclusion: 

0.5 + 0.2  (0.5×0.2) = 0.6. 
Upon obtaining the stochastic state transition matrix A,

next we calculate P(3t), the probability that node 3 is activated 
at any time step t. We need an Initial State Vector. Let 
I=[0,0,0,1,0,0,0,0]. Assume threshold=0.65. We need to 
multiply I×(Ak) and add up all the values in the result that 
correspond to a column pertaining to the vertex 3. We add up 
the last three columns because (if we look at the column 
headers of the transition matrix above) we can see that these 
three values correspond to states in which the vertex 3 is 
active. Next two timesteps: 

P(3t=1): I×(A1) = [0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.6]; Sum of 
last three columns = 0.6. 

P(3t=2): I×(A2) = [0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.84]; Sum 
of last three rows = 0.84 (now it is active). 

VI. CONCLUSION

We have formalized the HSCM model. One limitation of our 
model (in the case of general graphs) is its highly intractability 
for most graphs. In the future, we will simplify the model by 
further analyzing its features. For example, the computation 
can be decreased by utilizing the fact that the low triangle of 
the transition matrix in Fig 9 is 0. 

Also in the future, we will study the influence 
maximization problems under different time constraints for 
our model. The influence maximization problems are typically 
phrased in the following terms [9]: given some value k and
some diffusion network with a set of nodes N, the goal is to 
select an initially active k-node subset from N, such that the 
number of nodes in N that eventually becomes active is 
maximized. The maximization problem is NP-Hard [14] but 
the answer can be approximated by heuristics like greedy [19], 
hill climbing [14], and simulated annealing [13], and can be 

bounded on the quality of the cost-effective outbreak detected 
in the network [15 ]. 
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