
A Deterministic Model for History Sensitive Cascade
in Diffusion Networks

Yu Zhang
Department of Computer Science

Trinity University
San Antonio, Texas, 78212

yzhang@cs.trinity.edu

Abstract— This paper studies information diffusion in
networks. Traditional models are all history insensitive,
i.e. only giving activated nodes a one-time chance to
activate each of its neighboring nodes with some
probability. But history dependent interactions between
people are often observed in real world. This paper propose
a new model called the History Sensitive Cascade Model
(HSCM) that allows activated nodes to receive more
than a one-time chance to activate their neighbors.
HSCM is a deterministic model to decide the
probability of activity for any arbitrary node at any
arbitrary time step. In particular, we provide 1) a
polynomial algorithm for calculating this probability in
tree structure graphs, and 2) a Markov model for
calculating the probability in general graphs. This
paper makes a theoretical contribution on studying the
information diffusion problem.

Keywords—diffusion netowork, information cascade

I. INTRODUCTION

Diffusion is a process by which information, viruses, ideas
and new behavior spread over social networks [15]. The current
work in this is an outgrowth of Granovetter's initial treatment
of the phenomenon of collective behavior in 1978 [12]. He
introduces a threshold model and uses it to examine the
occurrence of riots and their perceived domino-effect growth
pattern. The result was an early threshold model for collective
behavior. In present day, diffusion models of social networks
have been studied in a variety of fields ranging from
epidemiology [16], to marketing [17], to technology transfers
[4, 5], to computer virus transmission [2], and to power
systems [22].

As described by Kempe et. al. [14], there are two basic
diffusion models: 1) the linear threshold model [12], in which a
node becomes active if a predetermined fraction, called a
threshold, of the node's neighbors are active, and 2) the
independent cascade model [8], whenever a node becomes
active, it gets a one-time chance to activate each of its
neighboring nodes with some probability. There is a rich
literature in both models; especially the independent cascade
model has gained much attention in present day. Goldenberg et
al. [11] simulate Word-of-Mouth information diffusion through
strong ties among members of the same network and weak ties

among individuals belonging to different network. They found
the influence of weak ties on the information diffusion is
almost as strong as the influence of strong ties. Cowan and
Jonard [7] study diffusion of knowledge in different network
structures. They find that the performance of the system
exhibits clear “small world” properties, in that the steady-state
level of average knowledge is maximal when the structure is a
small world (that is, when most connections are local, but
roughly 10 percent of them are long distance). In viral
marketing, Leskovec et. al [15] simulate information cascade in
a real person-to-person recommendation network. They
discover that the distribution of cascade sizes is approximately
heavy-tailed; cascades tend to be shallow, but occasional large
bursts of propagation can occur.

The model that we propose is called the History Sensitive
Cascade Model (HSCM). It can be understood as a modified
Independent Cascade Model, but is different from the
generalized framework (proposed by Kempe) designed to unify
the Independent Cascade Model and the Linear Threshold
Model underneath a single mathematical threshold. For one
major difference, our model allows that activated nodes receive
more than a one-time chance to activate their neighbors. A
node can switch from being uninformed to being informed, but
not the reverse. The rationale of this model is the classical
threshold mechanism of collective action: a consumer does not
feel social pressure if just a few people around her behave in a
particular way but once these people reach a certain number
then she suddenly decide to change her mind and she behaves
differently [12]. The history dependent interactions between
people are often observed in real world. For example, in viral
marketing and advertising, a customer may not decide to buy a
product at their first time receiving the recommendation or
watching the advertisement, but they may gradually accept the
product and decide to buy it after several rounds of such
interactions. We provide an in depth comparison between
HSCM and several of the common diffusion models in Section
2.

This paper formally defines HSCM and provides two
algorithms for calculating the probability of activity for any
arbitrary node at any arbitrary time. The first is a polynomial
algorithm for calculating the probability in tree structure graphs
(Section 3). The polynomial feature of this algorithm is nice,
comparing to the NP-Complete general complexity for this
problem. There are real-world cases where tree structures
would be useful tools: for example, the network of a

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2046

corporation could be modeled with a tree. Corporations have
top-level CEOs, high-level managers, middle-managers, low-
level office-managers, office workers, and so on. In cases like
these, there is a lot of information traveling downward, but not
much information traveling upward. The second algorithm is a
Markov model for calculating the probability in general graphs
(Section 4). In Section 5, we perform an empirical study on
HSCM under different network settings. These simulations
have showed its power to observe and explain the emergent
phenomena in the macro level when changing parameters in the
micro level.

II. BACKGROUND AND MOTIVATION

We will use an example to introduce the related work on
diffusion models as well as to show the difference between
HSCM and these existing models. Fig. 1 is our graph.

Fig. 1 An example Diffusion Network

Suppose Alice, in high school, is dating Bob. Also, Alice
is best friends with Cathy who is barely acquainted with a
college boy named Donald. Suppose Donald has two college
friends named Ethan and Francine and that these two friends
are also dating. The connecting lines represent avenues of
contact: Alice routinely communicates with Cathy (her best
friend) and Bobby (her boyfriend); but she doesn't know
Donald, Francine, or Ethan. Now suppose that Cathy recently
bought an iPod and likes it very much. The question we are
interested in is what is the probability that other people in the
network will be influenced by Cathy and buy an iPod at any
given time in the future.

In literature, there are two common diffusion models that
have been used to solve the above question that we are
interested in. The first is the Linear Threshold Model, which
says that a node becomes active if a predetermined faction of
the node’s neighbors is active. Fig.2 illustrates this rule. Here
the predefined threshold is 60%; red nodes mean the nodes
that have already being activated via the link pointing to them,
and we are determined if the centre bold node will be activated
in the given situation. Since the centre node has five neighbors
and three of them (i.e. 60%) have been active, so the centre
node will be active too.

Fig. 2 An Example of the Linear Threshold Model

The second model is the Independent Cascade Model.
Under this model, an active node gets a one-time chance to
activate each of its neighboring nodes with some probability.
Fig. 3 illustrates this rule. Here the probability is 50%, as a
consequence, the already active central bold node makes two
of its neighbors active too.

Fig. 3 An Example of the Independent Cascade Model

There are two common features of both the Linear
Threshold Model and the Independent Cascade Model: 1)
progressiveness: once a node becomes active, it will never
deactivate, and 2) historical insensitivity: each non-active node
is only triggered once, leaving the node either active or not
depending on the predefined threshold. Then the node is
passed and will never be influenced again.

The HSCM model that we propose shares the
progressiveness feature of the existing models but it is history
sensitive. We can find many examples in really world that
people influence each other by more than one time and the
previous influence enhances the current influence. Let’s refer
to Fig.1 again for an example scenario. The probability
attached to each link is called the “spreading probability”,
representing the chance that the influence of the iPod ideology
will spread across that line during a fixed length of time. In
this example, let's suppose this length of time equals one week.
It is reasonable to think that Alice has a higher chance of being
influenced by Cathy not only because the spreading
probability between them is higher but also this probability
will be increased if they spend more time together, under the
assumption that Alice’s has no bias to iPod as others, i.e.
nobody in this system has a strong attitude in favoring or
disfavoring iPod originally.

It should be noted that we are not suggesting real world
situations are always like this. Certainly one could argue that
Alice after many weeks of being pestered by Cathy would
decide out of annoyance never to buy an iPod. Or she may
simply become “immune” to Cathy’s suggestions, becoming
less and less likely to buy an iPod with each passing exposure
to Cathy’s iPod ideology. These concerns are valid. But that
doesn’t mean historical data should be entirely disregarded as
is the case in all diffusion models we have encountered.

III. THE HSCM MODEL – AN OVERVIEW

Let G = (V,E) where V is a set of vertices and E is a set of
edges. Each vertex v in V corresponds to a Boolean value A(v),
denoting whether the vertex is “active” or not. Each edge ev,u
(leaving v and entering u) is weighted with a value

2047

0<W(ev,u) 1, representing the probability that if v is active in
time step t=k, then u will be active in time step t=k+1. W(ev,u)
is called the spreading probability. Let targets(v) represent all
u such that ev,u is in E. The activity value of vertices is updated
as the HSCM Algorithm in Fig. 4.

Function HSCM[G=(V, E), W(ev,u)]
Inputs: G=(V, E) where V is a set of vertices and E is a

set of edges, with some initially active
vertices.

W(ev,u), the spreading probability, that if v is
active in time step t, then u will be active in
time step t+1.

For time step = 1 to k
 For each vertex v in V

 If A(v) = true
 For each vertex u in targets(v)
 random = a random number between 0 and 1;
 If random < W(ev,u)

Set A(u) = true;

Fig. 4 The HSCM Algorithm

The question we wish to answer is called the Activation
Probability Problem, which is defined below.

Definition 1 (Activation Probability Problem). Given some
time step k and some vertex v, what is the probability that v
will be active at t=k?

We assume (for the sake of eschewing trivialities) that at
time step t=0, there exists at least one node a such that
A(a)=true. Or, as we may alternatively posit, P(a0)=1,
meaning simply that the probability of a being active on the 0th

time step is 1. If this were not the case, then there would be no
activity for any nodes on any time step. The proof for this can
easily be extrapolated from the above algorithm, whose only
alterations to the state of the system occur within an If-
statement, the condition of which is that A(v) be true. Thus, a
system starting out with A(v) being false for all v will never
change states.

It can be easily proved that the Activation Probability
Problem is NP-Complete, by deducing it to the Set Covering
problem. Therefore, in this paper, we provide two solutions to
it: 1) a polynomial solution for tree structure graphs in Section
IV, and 2) a Markov Model solution for general graphs in
Section V.

IV. A POLYNOMIAL SOLUTION FOR TREE GRAPHS

We now go about examining properties of the HSCM
model in order to derive a method for calculating the
probability of activity for any arbitrary node at any arbitrary
time in tree structure graphs. Throughout the discussion,
suppose for simplicity’s sake that we have only one active
vertex a at time t=0. Ultimately, we will drop this assumption.

Theorem 1 (Definition of Inactivity): If P(xk) = 0, then P(xk-i)
= 0, for all 0 <= i <= k.

Proof: That is equivalent to asserting that, if a vertex is not
active during t = k, it was never active at a previous time step.
The proof follows from the fact that our previous description
of the model does not provide for any conditions in which an
active vertex might deactivate. So an inactive vertex was never
active previously.

Calculating the probability the neighbor of an active
vertex will be active in the next time step is a simple matter.

Lemma 1: Assuming that 1) x only has one edge coming to it
from an active vertex (which we call a), 2) P(x0) = 0, 3) P(a0)
= 1, and 4) t = 1,

P(x1) = W(ea,x). (3)

Proof: The proof follows from the definition of the model. In
time step t = 0, vertex a is active and, thus, will activate any
inactive neighbor n with a probability equal to the weight of
the edge from a to n. Since this lemma assumes that t = 1 and
that x was not active at t = 0, we know that x has had no
chance to become active before t = 1. Thus, P(x0) = 0 and
P(x1) = W(ea,x), as can be seen from the statement of the
Simulation Algorithm. Matters, however, will not be so simple
in the following case.

Lemma 2: Dropping the forth assumption above, assume that
1) x has only one edge coming to it from an active vertex
(which we call a), 2) P(x0) = 0, 3) P(a0) = 1.

P(xk+1) = [1 – P(xk)]W(ea,x) + P(xk). (4)

Proof: It helps to note that, because of the first assumption
above (combined with the Definitions of Activity and
Inactivity), x has been the neighbor of one and only one active
vertex ever since t = 0, i.e. P(ak) = 1 for all k. This is useful
because it means that we need only pay attention to the
following two ways that x might become active in time step t
= k + 1.

1) x had been activated by a already during some time
step t <= k, or

2) x is activated by a during the step t = k + 1.

We can represent the first of these cases like so,

alreadyk+1 = P(xk). (5)

And the second like so,

duringk+1 = [1 – P(xk)]W(ea,x). (6)

This equation makes use of the fact that P(xk) is the probability
that x was active before t =k+1, and thus, 1 – P(xk) is the
probability that x was not active before t = k + 1. Since the
probability of A(x) being true already at t = k+2 and of
becoming true during t = k + 2 are disjoint, the probability of
x being active at t = k + 2 is given by a simple sum:

P(xk+1) = duringk+1 + alreadyk+1 (7)

which is the same as

P(xk+1) = [1 – P(xk)]W(ea,x) + P(xk)

2048

Lemma 3: Dropping, now, the third assumption above, we
need not assume that P(ak) = 1 for all k. Instead, we assume
that 1) x has only one edge coming to it from any potentially
active vertex a, and 2) P(x0) = 0. In this case, the activity
probability is:

P(xk+1) = [P(ak) – P(xk)]W(ea,x) + P(xk) (8)
Proof: This is almost identical to the one above except that the
probability of x being activated during t=k+1 is this:

duringk+1 = [P(ak) – P(xk)]W(ea,x). (9)
The justification for the term P(ak) – P(xk) is again similar to
the previous proof. It makes use of the fact that if x has ever
had an active influencer, the probability of x being active is
completely dependent on the probability of a being active,
because a is and always has been x's only means of becoming
active. Finally,

P(xk+1) =[P(ak) – P(xk)]W(ea,x) + P(xk)
Using the above lemmas, we can calculate the activity

probability of any arbitrary vertex on any arbitrary time step,
provided that the graph is a tree and that no vertex has more
than one incoming edge.

Theorem 3: Let G = (V,E) be a graph without cycles, and let
there be no two edges in E, ew,x and ey,z, such that x=z. We will
use the function influencer(u) to denote the vertex v such that
targets(v) includes u.

otherwisevPeWvPvluencerP
vPif

vP
kvvluencerkk

k),()()]())((inf[
1)(,1

)(
),(inf

0
1

 (10)

Proof: The first part of the formula follows from the definition
of activity. The second part follows from observing that the
vertices will always satisfy the assumptions of either Lemma 2
or 3:

1) Vertex v will always have only one potentially active
influencer.

2) P(v0) will, in all cases be 0, or else the first part of the
formula would have been applicable.

Example 1. Consider this initial network in left-top of Fig. 5.
Also suppose that threshold=0.65 and that initially only node 1
is active. After 4 time steps, the network achieves activation.
The probabilities are iteratively updated along with time steps
by Equation (10).

0.50.5
0.5

0.5

0.5

0.5

t=0

0.5
0.50.5

0.5

1

2

3 4 5

t=1

0.5

2

3 4 5

0.5

t=2 and t=3

0.5
2

3 4 5

0.5

t=4

0.50.5

2

3 4 5

1

t=1

1 1

V P(vt=0) P(vt=1) P(vt=2) P(vt=3) P(vt=4)
1 1.0 1.0 1.0 1.0 1.0
2 0.0 0.5 0.75 0.875 0.9375
3 0.0 0.0 0.25 0.5 0.6875
4 0.0 0.0 0.25 0.5 0.6875
5 0.0 0.0 0.25 0.5 0.6875

Fig. 5 An Example of HSCM for a Tree Graph

Two features can be directly observed from Fig. 5 regards
the HSCM model for a tree graph. First, at any given time step
k, the activation probability of an influencer node is always
higher than that of its targeting nodes. Second, for any given
node v, its activation probability at time step k+1 is always
higher than that at time step k. Next we prove these two
features.

Theorem 4: t=k, P(influence(v)k) > P(vk), if P(v0) 1 and
0<W(einfluence(v),v) 1.

Proof by Induction: Fig. 6 illustrates a general status of a tree
graph.

targets(v)influencer(v)

……1 v

Fig. 6 A General Status of a Tree Graph

Basis Step: At time step t=0, there are only two types of nodes
in G: the initially active root node or nodes in top levels whose
probability is 1, and the non-active low level nodes whose
probability is 0. So the basis step is proved.

Inductive Step. Assume that at time step t=k, we have

 … > P(influencer(v)k) > P(vk) > P(targets(v)k) > … (11)

We want to prove that at time step t=k, we have

 … > P(influencer(v)k+1) > P(vk+1) > P(targets(v)k+1) > (12)

Proof. From Equitation (10):
P(vk+1)=[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+P(vk) (13)
P(targets(v)k+1)=[P(vk) P(targets(v)k)]×W(ev,targets(v))

+P(targets(v)k) (14)
Therefore, P(vk+1) P(targets(v)k+1)

=[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+P(vk)
 [P(vk) P(targets(v)k)]×W(ev,targets(v))+P(targets(v)k)

=[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+ (15.a)
[P(vk) P(targets(v)k)]×(1 W(ev,targets(v))) (15.b)

>0, because both (15.a)>0 and (15.b) >0.
So P(vk+1)>P(targets(v)k+1). By similar method, we can prove
P(influencer(v)k+1) > P(vk+1).

Theorem 5: v V, P(vk+1)>P(vk).

Proof: From Theorem 4:
[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)>0 (16)
[P(influencer(v)k) P(vk)]×W(einfluencer(v),v)+P(vk)>P(vk)
 P(vk+1)>P(vk)

V. A MARKOV SOLUTION FOR GENERAL GRAPHS

Expanding our ability to perform this calculation on graphs
with cycles presents several problems. The tip of the iceberg
with regard to cycles can be illustrated by the situation in Fig.
7.

2049

Fig. 7 A Simple Graph with a Loop

In Fig. 7, we assume that P(vk) > 0 and v has an edge to u,
which is inactive on time step t = k. On next two steps,
according to Equation (10), we have:

t=k+1, P(uk+1)=P(vk)×W(ev,u)<P(vk), and (17)
t=k+2, P(vk+2)=[P(uk+1) P(vk)]×W(eu,v)+P(vk)<P(vk). (18)

But (17) is against Theorem 4 and (18) is against Theorem 5.
Therefore Equation (10) can’t be applied to general graphs.
This example is just a cycle of length one. Much more
complicated cases arise when cycles are longer.

First, we consider the graph to be a finite state system,
where “state” is understood as some combination of activated
vertices in V. The state of the graph can be represented as a
Boolean-valued “activity” vector a of length n, where n is the
size of V. Let each vertex be arbitrarily labeled with a unique
value between 0 and n-1, and let this label value be denoted
L(v). A value of 1 in the index i (from the right) of the vector a
indicates that the vertex v, such that L(v) = i, is active. More
compactly, a[L(v)] = A(v). Thus, the vector

a=[1 0 1 0 0 1]

indicates that for all v such that L(v) = 0, 3, or 5, A(v) = true.
Now, let us use another binary-valued vector called s to denote
every possible binary number that the vector a can represent.
We call s the “state” vector and it will be of length 2n. s will
have only a single 1-value; the rest will be 0s. The index of s'
1-value, when converted to base two will be the binary number
represented by a corresponding activity vector a. Thus, the
state space vectors

s=[1 0 0 0] s=[0 1 0 0] s=[0 0 1 0] s=[0 0 0 1]

would map to the following activity vectors respectively:

a=[0 0] a=[1 0] a=[0 1] a=[1 1]

We are introducing the s vector in order to serve as the
initial state vector for a Markov chain that we will build from
G, allowing us to calculate the exact probability of some
vertex being active at some time step. Furthermore, each
binary value represented by the list a can be considered an
index into the matrix we will construct. We give the algorithm
in Fig. 8 for constructing the state transition matrix for a
general graph G = (V,E).

Upon obtaining the stochastic state transition matrix A,
the calculation of each possible state reachable from an initial
binary state vector s – containing only a single 1-value, can be
obtained as follows:

p = s Ak (19)

where k is the time step for which you want a value. The
resulting vector p has the property that p[i] equals the
probability that s[i] = 1 at time step t = k.

To find P(vk) for an arbitrary vertex v, we simply need to
sum the elements of p whose state involves v being active:

P(vk) = s Ak AllRelevantStates(L(v)) (20)

where AllRelevantStates(L(v)) merely returns a vector x such
that x[j] is 1 if the binary representation of j contains a 1 in the
L(v)'s location. Otherwise x[j] is a 0. So in the end, P(vk) can
be written:

P(vk) = p AllRelevantStates(L(v)). (21)

This sums up the values of p that refer to the probability of G
being in a state where v is active. The reason we can sum these
probabilities is that each state whose transition probability we
calculate during the construction of a is disjoint, as can be
seen from the portion of the algorithm labeled Make
Probabilities Disjoint, which calculates, for every initial state
S, the probability of activating any subset of all vertices a that
could be activated by vertices in S, and (most importantly) the
probability of not activating any other vertices in a. Thus, state
transition probabilities do not “overlap,” so to speak. Fig. 8 is
the integrated algorithm for updating the state transaction
matrix.

Function stochasticMatrix()
For Each (S in Powerset(V))

 Let A = All vertices activatible by set S;
 Let E = edges from S to A;
 Let P be an empty hash structure from vertex keys to

probability values;
For Each (target in E)

 W = [weights of edges going to target];
 P += {target => combinedProbability(W)};

//Make Probabilities Disjoint:
For Each (S2 in Powerset(A))

 P2 = P;
For Each (p in P2)

 If (Key(p) is in A && Key(p) is not in S2)
 Let Value(p) = 1–p;
 Matrix[indexOf(S)][indexOf(S union S2)] = Product p

Function combinedProbability(W)
Let answer = 1
For Each w in W

 answer = answer (1–W);
Return 1–answer;

Function indexOf(S)
Let answer = a list of zeros of length max(S);
For Each v in S

 answer[L(v)] = 1;
Return decimal value of the binary number in answer;

Fig. 8 Stochastic Matrix Construction Algorithm

Example 2. We consider a simple graph like this. Initially
both nodes 1 and 2 are active. We show how to calculate the
activate probability of node 3 at any given time step t.

0.2 0.5

1 2

3

2050

Our transition matrix A would look like this in Fig. 9.
A[i,j] is defined as the probability that the network will move
from state i to state j. When i=j, A[i,i] is the probability that
the network will remain in its current state – meaning that no
new nodes become active.

[] 1 2 1,2 3 3,1 3,2 3,1,2
[] 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.8 0.0 0.0 0.0 0.2 0.0 0.0
2 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0
1,2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.6
3 0.0 0.0 0.0 0.0 0.4 0.1 0.4 0.1
3,1 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
3,2 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.2
3,1,2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Fig. 9 The Transition Matrix

As an example, we show how A[i,j]=0.6 when i=(1,2) and
j=(3,1,2). Now we are assuming that only nodes 1 and 2 are
active. We want to know the probability that 3 becomes active.
There are two edges to 3. Either edge can activate 3, but not
both. So we use the principle of inclusion/exclusion:

0.5 + 0.2 (0.5×0.2) = 0.6.
Upon obtaining the stochastic state transition matrix A,

next we calculate P(3t), the probability that node 3 is activated
at any time step t. We need an Initial State Vector. Let
I=[0,0,0,1,0,0,0,0]. Assume threshold=0.65. We need to
multiply I×(Ak) and add up all the values in the result that
correspond to a column pertaining to the vertex 3. We add up
the last three columns because (if we look at the column
headers of the transition matrix above) we can see that these
three values correspond to states in which the vertex 3 is
active. Next two timesteps:

P(3t=1): I×(A1) = [0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.6]; Sum of
last three columns = 0.6.

P(3t=2): I×(A2) = [0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.84]; Sum
of last three rows = 0.84 (now it is active).

VI. CONCLUSION

We have formalized the HSCM model. One limitation of our
model (in the case of general graphs) is its highly intractability
for most graphs. In the future, we will simplify the model by
further analyzing its features. For example, the computation
can be decreased by utilizing the fact that the low triangle of
the transition matrix in Fig 9 is 0.

Also in the future, we will study the influence
maximization problems under different time constraints for
our model. The influence maximization problems are typically
phrased in the following terms [9]: given some value k and
some diffusion network with a set of nodes N, the goal is to
select an initially active k-node subset from N, such that the
number of nodes in N that eventually becomes active is
maximized. The maximization problem is NP-Hard [14] but
the answer can be approximated by heuristics like greedy [19],
hill climbing [14], and simulated annealing [13], and can be

bounded on the quality of the cost-effective outbreak detected
in the network [15].

ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation under Grants IIS 0755405 and CNS
0821585.

REFERENCES

[1] Ahn Y, Han S, Kwak H, Analysis of Topological Characteristics of
Huge Online Social Networking Services, International World Wide
Web Conference, 2007.

[2] Albert R, Jeong H and Barabasi A, Error and Attack Tolerance of
Complex Networks, Nature, 406: 378-382, 2000.

[3] Albert R, Barabási AL, Statistical Mechanics of Complex Networks,
Reviews of Modern Physics, 74(1): 47-97, 2002.

[4] Bass F, A New Product Growth Model for Consumer Durables,
Management Science, 15: 215-227, 1969.

[5] Brown J and Reinegen P, Social Ties and Word-of-Mouth Referral
Behavior, Journal of Consumer Research, 14(3): 350-362, 1987.

[6] Carley KM, Diesner J, Reminga J, Tsvetovat M, Toward an
Interoperable Dynamic Network Analysis Toolkit, Decision Support
Systems, Special Issue on Cyberinfrastructure for Homeland Security:
Advances in Information Sharing, Data Mining, and Collaboration
Systems, 43(4): 1324-1347, 2007.

[7] Cowan R and Jonard N, Network Structure and the Diffusion of
Knowledge, Journal of Economic Dynamics and Control, 28(8): 1557-
1575, 2004.

[8] Culotta A, Maximizing Cascades in Social Networks, University of
Massachusetts, Amherst, MA, Technical Report, 2003.

[9] Domingos P and Richardson M, Mining the Network Value of
Customers, KDD, pp, 57-66, 2001.

[10] Gladwell M, The Tipping Point: How Little Things Can Make a Big
Difference, Little Brown, LONDON, UK, 2000.

[11] Goldenberg J, Libai B, Muller E, Talk of the Network: A Complex
Systems Look at the Underlying Process of Word-of-Mouth, Marketing
Letters, 3(12): 211-223, 2001.

[12] Granovetter M, Threshold Models of Collective Behavior, American
Journal of Sociology 83(6):1420-1443, 1978.

[13] Jackson MO and Yariv L, Diffusion on Social Networks, Public
Economics, 16(1): 3-16, 2005.

[14] Kempe D, Kleinberg J, and Tardos E, Maximizing the Spread of
Influence through a Social Network, The 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
137-146, 2003.

[15] Leskovec J, Krause A and Guestrin C, Cost-effective Outbreak Detection
in Networks, KDD, 2007.

[16] Morris S, Contagion, The Review of Economic Studies, 67(1): 57-78,
2000.

[17] Richardson M and Domingos P, Mining Knowledge-Sharing Sites for
Viral Marketing, in Proceedings of KDD’08, pp, 61-70, 2002.

[18] Rogers EM, Diffusion of Innovations, Free Press of Glencoe, Macmillan
Company, 1962.

[19] Rolfe M, Social Networks and Threshold Models of Collective Behavior,
Preprint, University of Chicago, 2004.

[20] Wasserman S, Faust K, Social Network Analysis: Methods and
Applications, Cambridge University Press, Cambridge, 1994.

[21] Watts DJ, Small Worlds: The Dynamics of Networks Between Order and
Randomness, Princeton Press, 1999.

[22] Watts DJ, A Simple Model of Global Cascades in Random Networks, in
Proceedings of the National Academy of Sciences, 99(9): 5766-5771,
2002.

[23] Watts, DJ and Peretti J, Viral Marketing for the Real World, Harvard
Business Review. May 1, 2007.

2051

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

