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Abstract—In the following paper we present techniques for
data-parallel execution of the Cellular Potts Model (CPM) on
Graphics Processing Units (GPUs). We have developed data-
structures and algorithms that are optimized to use available
hardware resources on the GPU. To the best of our knowledge,
this is the first attempt at using data-parallel techniques for
simulating the CPM. We benchmarked this implementation
against other parallel CPM implementations using traditional
CPU clusters. Experimental results demonstrate that this im-
plementation solves many of the drawbacks of traditional CPU
clusters, and results in a performance gain of up to 30x, without
sacrificing the integrity of the original model.

Index Terms—Cellular Potts Model, GPGPU, Cellular Arrays
and Automata, Biophysics

I. INTRODUCTION

Computational Biology has emerged as an area that serves
as an investigatory compass for biologists [1]. Although it
will not replace in-vivo and in-vitro experimentation, it enables
reduction of the search space through virtual experimentation
using in-silico models [2]. Typical techniques for simulating
biological models include analytical techniques (systems of
differential equations) [3] and Monte-Carlo style techniques
such as the Gillespie algorithm [4], agent-based modeling
[5], and Cellular Potts Models [6]. The Monte-Carlo style
techniques are inherently capable of capturing the heterogene-
ity and stochasticity exhibited in many biological systems.
However, they rely on multiple simulation runs to generate
dense data-sets for statistical analysis. Moreover, simulating
high-fidelity models using these techniques is often beyond
the processing capabilities of a single Central Processing Unit
(CPU).

The obvious solution to scale beyond the capabilities of a
single CPU is to divide computation among many CPUs using
parallel computing techniques. However, this solution brings
its own set of problems into the mix. Due to the difference in
memory bandwiths between Random Access Memory (RAM)
and inter-CPU communications, it is often the case that for
problems that are not embarrassingly parallel, scaling is more-
often than not below par. In fact, in certain situations, adding
additional CPUs actually reduces performance due to com-
munication overheads. The second is the cost associated with

acquiring and maintaining a cluster. These include costs associ-
ated with assembly, installation, and powering of the indiviudal
processing nodes as well as the communication infrastructure
consisting of high-speed communication networks and routers.

In addition, CPUs are optimized for von-Neuman style
computation and have much real-estate on the integrated chip
devoted to control. On the other hand, data-parallel architec-
tures such as Graphics Processing Units (GPUs) are optimized
for high through-put with a simplified memory architecture and
most resources devoted to computing. They are increasingly
becoming a powerful and economic alternative to multi-CPU
parallel computing systems, particularly for scientific com-
puting. GPUs initially had fixed functionality. However, the
demand for customizable computer graphics routines led GPU
vendors to introduce programmability. Computational scien-
tists have used this programmability to develop fast algorithms
for scientific computations. This technique is generally known
as General Purpose Graphics Processing Unit (GPGPU) [7].

While GPUs have much higher through-put, this perfor-
mance advantage is gained through some restrictions on the
types of computations that can be performed on individual
computing cores of a GPU. While the cost of launching a
single execution thread is fairly small, the amount of memory
resources associated with each thread are limited. Therefore
GPU threads work most efficiently if the code executed is non-
blocking with minimum branching. Consequently, algorithms
and code developed for CPU execution cannot be directly
ported to a GPU. GPU execution requires entirely new sets
of algorithms that are optimized for the architecture.

In this paper we describe algorithms for executing the
Cellular Potts Model on data-parallel architectures such as
the GPU. Data structures have been developed to efficiently
handle computation of the local and non-local effective energy
terms. We have optimized memory bandwith with proper uses
of different memory types such as texture, global, and shared
memory. Benchmarks show a substantial performance gain
when compared against results obtained from parallelization
of the CPM on traditional CPU clusters. This implementation
uses Compute Unified Device Architecture (CUDA), an API
developed by NVIDIA specifically for non-graphics applica-
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tions.
In the following sections, we briefly describe the Cellular

Potts Model. Next, we review prior work related to paral-
lelization of the CPM. We then briefly review the CUDA
programming API. In the next section we describe various
data structures, algorithms, and specific optimizations that have
been developed to enable CPM simulations on the GPU. In
the results section, we benchmark our implementation and
compare it to other parallel implementations. The discussion
section summarizes the advantages and limitations of this
method. In the future work section we briefly describe ex-
tensions to be published in subsequent papers.

II. CELLULAR POTTS MODEL

The Cellular Potts Model (CPM) introduced by Glazier
and Glaner [6], is an extension of the large-q Potts model.
This lattice based model has traditionally been used for the
simulation of models as diverse as those of metallic grains
[8], soap, and foam; however in recent years there has been
a lot of interest into its application in the simulation of the
collective behavior of cellular structures.

In its most general form, the CPM is composed of the
following basic elements:

1) A pixel or lattice site which is the basic element of a
Cellular Potts Model. Each pixel has a variable which
stores a value known as spin.

2) A lattice, or an environment made up of the totality of
pixels in the simulation. The pixels may be modeled in
2D or 3D, in a square or hexagonal configuration.

3) Cells (or clusters, depending on what we are simulating)
that are groups of pixels that share the same spin. As
such, cells become spatially extended, yet internally
structureless objects (since they are just made of pixels).

4) Cell membrane: The outermost part of a cell; or in terms
of the CPM representation, a pixel which is neighboring
a pixel with a different spin.

5) A set of rules that determine the energy of a particular
lattice site at a particular moment in time. There are two
kind of rules, local rules which are only dependant on
the immediate neighborhood and non-local rules whose
analysis can potentially span a large region of the lattice,
and as such its parallelization is not as direct. In general,
any process that can be described in terms of a potential
energy can be added to the set of rules of the model.

The algorithm starts by initializing the lattice with cells
distributed in space, assigning each cell a random spin value.
Next, two neighboring pixels are randomly selected. An ex-
change of spin between the pixels is then accepted based on
on a Monte Carlo probability, such that T > 0, P (ΔE) =
{e−ΔE/T : ΔE > 0; 1 : ΔE ≤ 0} and for T = 0, P (ΔE) =
{0 : ΔE > 0; 0.5 : ΔE = 0; 1 : ΔE < 0}, where T represents
the effective cytoskeletal fluctuation amplitude of cells in the
simulation in units of energy [9]. ΔE refers to the difference
in effective energy resulting from the potential change in the
spin [6].

A. Calculating the effective energy

For a more detailed explanation of the different types of
energies a CPM can include, we refer the readers to Chen et.
al. [9] In this section we will only describe the energies we
included in our implementation although the framework allows
for the easy and inexpensive (in terms of added computational
cost) inclusion of different types of energy.

B. Cell-cell adhesion energy

Adhesion energy refers to the net adhesion or repulsion
between different cell membranes. It refers to the energy
produced by the interaction of pixels with different spins (or
boundary pixels). Adhesion is typically calculated using the
formula described in Eq. 1, where J is the neighboring energy
between lattice sites marked by σ and σ′, and δ(τ(σ)τ ′(σ′)
will be 0 if σ = σ′, and 1 otherwise. This is to ensure that only
border lattice sites, or the cell membranes, contribute towards
the overall adhesion energy.

∑

σ,σ′
Jτ(σ)τ ′(σ′)1 − (δ(τ(σ)τ ′(σ′)) (1)

C. Cell volume constraint

A second element that can be introduced into the CPM
is a constraint on the intended volume of cells [10]. The
cell volume constraint energy is normally calculated using the
formula shown in Eq. 2.

∑

σ

λσ(v(S) − vtarget(S)) (2)

D. Restrictions not directly related to the effective energy
equation

The most important of these type of ’restrictions’ is the
specialization that different cells in a body perform. Even in
the simplest biological processes a number of different cells
participate, and those different cells have different structures,
behaviors, tasks, and of course physical properties (or con-
straints parameters)

III. STATE OF THE ART

Despite the apparent simplicity of the CPM, it is a powerful
tool for simulating phenomena as diverse as tumor growth, cell
separation, and organ development. The CPM’s predecessor,
the Large-Q Potts Model has also been used in simulations of
soap froths and similar phenomenon [8]. Due to the emergent
nature of CPMs, useful simulations typically have very large
sizes. In biological simulations, each lattice site must represent
2-5 μm with lattice sizes reaching 107−109 lattice points. This
makes these simulations expensive both in memory require-
ments and computation time. Typically, the resources required
are much beyond what is available on a computer containing
a single CPU. Consequently, researchers have used parallel
computing using a cluster of CPUs to scale CPM simulations.
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One of the first attempts at parallelizing the CPM was
that of Wright et al. [8]. They built models for (among other
things) grain growth applied to microstructural morphology
simulations. They only considered local rules, in particular,
cell-cell adhesion energy. Their implementations reached the
biggest lattice sizes to date when the article was published.
They were also one of the first to demonstrate with results
that parallelization does not effect model integrity. However,
because of the locality of the rules, their model imposes
limitations on the scalability of more complex simulations
involving global rules.

Chen et al. [9] solved many of the limitations of Wright et
al.’s work. The lattice space was divided into blocks to be pro-
cessed on different nodes in a CPU cluster. In addition phantom
regions were included in every block for synchronization. The
phantom blocks allowed exchange of boundary information
between adjacent regions. A checkerboard algorithm was used
to limit interference between neighboring blocks and thus
minimize inter-node communication. Even then, the cost of
synchronization to prevent loss of accuracy at the boundaries
causes performance loss. Chen et al. also showed that due to
the stochastic nature of the CPM simulation, the accuracy of
the model is not compromised greatly even if synchronization
is not performed at every time step. This analysis is based on
the assumption that lattice site updates are rare occurrences,
more so at the boundaries between regions. However, for large-
scale simulations, this assumption may not hold true.

The Radom Walker algorithm by Gussatto et. al. [11] is
an efficient scheme for selection of update sites. In their
paper, Gusatto et al. postulate that the Monte Carlo selection
algorithm is highly inefficient because of its random selection
nature. This type of selection means that most of the time
updates will be attempted at lattice sites that are internal
to cells. These sites have no chance of spin flipping. They
postulate an algorithm which ensures that most of time only
boundary sites are selected by only ’walking’ through a cell
boundary once a boundary site has been selected. However,
their implementation contains several downfalls, one of the
biggest ones being that they require a complete lattice copy to
be in each of their computing cluster nodes, which obviously
limitates scalability.

IV. SCIENTIFIC COMPUTING ON GPUS

GPUs were primarily developed as co-processors to handle
manipulation of graphics data in computer graphics. Initially,
vendors only supported fixed functionality. However, the de-
mand for customizable shading routines led to the develop-
ment of APIs that allowed computer game programmers to
include specialized routines. Computational scientists used the
same techniques to use GPUs for scientific computing. The
extreme computing power and memory bandwidth of GPUs
allowed substantial performance gains over traditional CPU-
based implementations of scientific algorithms. Initially, all
scientific computations had to be formulated in terms of image
rendering. However, since 2007, vendors such as NVIDIA
have developed direct APIs to access the computing power of

GPUs for non-graphic applications. Our implementation uses
NVIDIA’s Computer Unified Device Architecture (CUDA)
API.

V. CUDA PROGRAMMING MODEL

For a throughout explanation of how the CUDA model
works, we refer readers to the official guide [12]. In this section
we will limit ourselves to explaining the most basic aspects we
need for this article.

CUDA’s basic unit of execution is called a kernel,which is
the same as a single program that is executed on all processors
in the GPU at a given time. Within the GPU, thousands of
threads are launched, each one of which handles the execution
of one instance of the kernel. Threads are grouped into exe-
cution units called blocks, which among other characteristics
share a common memory space called shared memory that
will be explained later. Threads within blocks are organized
into warps. The processors in the GPU operate on warps and
execute all threads in the warp in parallel. Finally, groups of
blocks are organized into a grid which is the totality of the
execution unit.

A. The CUDA memory model

The CUDA device memory is organized in a three level
hierarchy model. A per thread local memory, a per block
(a group of threads) shared memory, and a global memory
available to all threads in the context. Shared memory is
the fastest, although it has a much more restricted space
(approximately 16K per block) and therefore has to be used
wisely.

On another hand, local and global memory, while much
larger, require their reading accesses to be coalesced in order
to optimize reading speed. For instance, if all threads in a
warp access a contiguous set of memory blocks, the CUDA
architecture will transform it into a single read. Otherwise
it will result in one memory read per thread in the block.
Unfortunately because of the stochastic nature of the CPM
simulation, we cannot ensure that reads will be coalesced. That
is why we use a secondary way of accessing global memory,
which is texture memory. Textures is an optimized way for
either accessing non-coalesced data which has a 2D or 3D
like dimensionality in its distribution, or for random access to
1D data.

VI. DATA-PARALLEL SIMULATION OF THE CPM

In this section, we detail the data-parallel implementation
of the CPM model. We describe data structures and algorithms
that we have developed to enable efficient simulation of large-
scale CPM simulation on GPUs. While our implementation is
focused on GPU execution, the same ideas can be carried over
to other data-parallel architectures.

In general terms, the algorithm can be understood as the
pseudocode shown in 1.

1458



Algorithm 1 General Algorithm
1: Initialize variables in the host (CPU RAM)
2: Allocate memory on the device (GPU)
3: Copy initialized variables from the host memory to the

device memory space
4: Run a precalculation kernel to identify the initial values

of the non-local lattice constraints.
5: loop
6: Run Update Kernel
7: Synchronize buffers
8: end loop

A. Data structures

In its most general form, the CPM model is built upon three
main parts:

• A 3D lattice where the model develops. Each pixel in the
lattice contains a attribute that records spin

• Information about the cells (spin, location, size) in the
lattice

• The constants and parameters for calculation of the
Hamiltonian energy terms (elasticity, adhesion, etc.)

We store data in a manner that maximizes the usable
memory space, memory bandwidth and computational speed
of the GPU. The main bottleneck in data-parallel execution is
the manner in which data is accessed and the resulting latency.
Careful planning of data structures and memory access patterns
is of utmost importance for achieving the best performance.

The 3-D lattice data is stored in both a so called
cudaArray for reading purposes, and in a standard array
located in global memory for writing.The cudaArray is
an structure accessed through a texture specially designed
for storing data that has 2D or 3D dimensionality. Memory
access to the lattice is extremely random (in terms of the
sites that we will access with each iteration) because of the
stochastic nature of the algorithm. Standard linear memory is
made such that when it is accessed by a group of threads in
a warp, it must be done in such a manner that all the threads
within a block access a single continuous memory segment.
In other words, reads must be coalesced. Otherwise reading
time will be highly inefficient. If we were to directly store the
reading array in global memory space, we would incur a lot
of overhead because of these conditions. There is no way to
make our reads to be coalesced without taking out much of
the stochastic nature of the CPM. This coupled with the fact
that we are storing a structure that is naturally displayed in 3D
into a 1D memory space, further adds to our lack of capability
to guarantee coalesced access to memory space.

In contrast, storage with texture access is better suited
for non-coalesced, random access like the one we will be
using. This is specially true for data structures which are
logically displayed in two or three dimensions. Moreover,
the CUDA engine ensures that when a memory location is
accessed through a texture, the engine will store its neighboring
sites on a special texture cache, so that memory bandwidth is
optimized. That is, even if access to the lattice sites are random,

if we ensure that our reads will be approximately close to each
other, our access bottleneck will be greatly reduced.

The NVIDIA CUDA texture implementation doesn’t sup-
port direct texture writing to CUDA arrays as of version 2.1.
Therefore, we are using a second array directly located in
global memory for writing purposes, in contrast to the texture
which will only be used for reading. This double storage of
the data could be avoided in future versions of CUDA when
texture writing is implemented. Storing data in texture memory
also facilitates visualization of results since it can be bound to
a glBuffer object to obtain real time display using the OpenGL
API. Although this approach seems redundant since we have to
update two separate data structures with the same information,
doing the data update from the write buffer in global memory
to the read buffer in texture memory after every Monte Carlo
step is almost negligible in terms of computational cost. After
running our program through CUDA’s profiling tool, the data
update section of the program takes less than 5% of our
computation time. This small penalty is eliminated by the huge
performance gains achieved through avoiding non-coalesced
memory reads from global memory.

The data that we store in each pixel of the lattice in these
two structures is the code corresponding to the cell whose
volume includes the pixel in question. The code is calculated
through the formula

code = ID ∗ t + type, ID = {1..k}, type = {0..t − 1} (3)

where, ID is a unique identifier assigned by the program, k
is the total number of cells in the simulation, type represents
some kind of cell type (as described in section II-D) and t is
the total of the different types of cells.

For storing the cell array we make use of two linear arrays,
stored in global memory whose sizes is equal to that of the
maximum number of cells in the environment. Both these
arrays contain a copy of the properties every cell in the array
has at a given time step (volume, surface area, etc.). It is
double buffered, such that one array is used for reading, one
for writing and they are synchronized at the end of each
Monte Carlo step. However, in terms of access to the reading
array, once again we fall into a non-coalesced memory access,
because we have no way to ensure coalesced memory access
pattern, which CUDA requires for optimal reading time to
global memory. To solve this we will wrap our linear array
with a texture, which as we mentioned is the best way to
access memory when access is non-coalesced. Moreover, in
this case there is no sense in storing the cell array as a
cudaArray since there is no spacial dimensionality to the
data. In summary, we map this texture to the read only array,
and write directly to the secondary array. We used a double
buffer scheme to avoid the race condition where multiple
threads could simultaneously update pixels belonging to a
single cell and corrupt input data in the process.

We make use of CUDA’s constant memory for all of our
constant values. Specifically, we used it for storing the lattice
dimensions, the adhesion and volume restriction constants and
some data inherent to our implementation.
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In summary, our memory distribution is as the one shown
in Fig 1 in terms of how it is internally stored, and equivalent
to the one shown in Fig. 2 in terms of what each structure
represents. In this example we have a 4x4 lattice with 2 types
of cells, and 4 cells total. Cell 0 represents the Extra Cellular
Matrix (ECM), or the medium, and as such its volume is not
counted in our model. Cells 1 and 2 are of type 0, while cells
3 and 4 are of type 1. When we apply the equation 3 for the
code, we obtain the ID from the type, and we can do the same
in reverse through a simple division and modulo operator.

Fig. 1. Internal memory distribution of the data structures. The variables
with an orange frame means that they are wrapped in a texture for reading
purposes

Fig. 2. Memory representation of the data structures

B. Properties initialization

The first step in the simulation is the process of creating
the initial state. In this particular case, it consists of computing
the volume (counting the number of pixels belonging to each
cell). Initilialization is accomplished using a separate kernel
that is launched before the main loop. Each thread in the
initialization pass concurrently visits every pixel. If here is
a cell whose volume includes that particular pixel, the volume
of that particular cell is incremented by one. To avoid a race
condition where several threads increment the volume of a
single cell, we use an atomic add operation which serializes
concurrent access to the same variable to avoid data corruption.

C. Potential problems due to spatial sub-divison and concur-
rent updates of lattice sites

Given the strict hierarchy of the computing resources on
the GPU (threads organized in thread blocks with threads
in a block able to access common shared memory), it is
imperative to assign the processing of the lattice in a way that

maximizes memory bandwidth by enabling coalesced memory
read, taking advantage of automatic caching in texture memory,
and preventing simulation artifacts due to corruption of data.

Ideally for maximum parallelization, we would assign one
thread per pixel. However, it is almost always the case that
the cells will encompass multiple lattice sites. Consequently,
all threads operating on pixels belonging to a single cell
will attempt to write to the same memory location. This will
effectively cause serialization and degrade performance. Con-
sequently, we have to carefully divide the lattice among thread
blocks and threads to maximize computational efficiency.

In addition, it is a requirement for the CPM that within a
Monte-Carlo step (MCS), only one lattice site belonging to
a cell can change its spin based on the computation of the
potential energy. Since multiple threads can potentially process
lattice sites belonging to a single cell in parallel, it is quite
possible that different threads could potentially change the spin
of multiple lattice sites belonging to a single cell using energy
calculations based on invalid data.

Because of the above mentioned scenarios we have to be
careful with how we distribute the space of the lattice among
the threads, and on how we update our values at the end of the
each MCS. Another factor we have to take into consideration
is the grid-block CUDA distribution. We have to distribute the
lattice such that threads in the same block are close together
so that we take advantage of the texture cache, and we have to
maximize the number of threads per block, and the processor
usage such that we don’t waste computing power because of
bad subdivisions.

D. Handling lattice updates correctly

We handle the concurrent update of the lattice sites using
atomic operations. At the begining of the MCS, the input and
output cell data buffers are synchronized. Subsequently, when
a thread attempts to modify a lattice site, it will first request
unique access (using an atomic operation) to the volume values
of the cells that are involved in the change. If the values in
the two buffers for each cell are different, then it is evident
that some other thread has already committed a change to at
least one of the cells at some other lattice site. Consequently,
the current thread exits without making any changes. If not,
it will change the lattice site based on the calculation of the
volume and update the volume of the cell and the spin of the
lattice site. This update will block other threads from updating
any other lattice sites belonging to the two cells.

In Figures 3 and 4 we illustrate with an example how this
method works. In Fig. 3 we see that thread (t1) is trying to
update a lattice site shared between cells 1 and 2, thread t2
between cell 2 and the ECM, thread t3 between cells 2 and 3,
and thread t4 between cells 3 and 4. Suppose the lattice update
changes that these threads proposed are all accepted, they all
try to simultaneously change the values of the output arrays.
Furthermore, they will request unique access to the memory
location in the Cell array of the cells they are trying to change.
So that t1, t2 and t3 have conflicting access. Let us suppose
that t1 was given access first. It would confirm that no other
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thread has updated this cell before, and then proceed to update
the cell values in the write buffers and update the lattice spin.
When t2 is given access, it would confirm that the volume
of cell 1 has already changed and drop its update. The same
will be the case with t3, since the value of cell 2 would have
already changed it would drop its change as well. When it is
t4’s turn (since it was separately contending access with t3
for cell 3) it would confirm that no other thread has changed
the values of cells 3 and 4, and subsequently proceed to apply
its updates.

Fig. 3. Update example with more than one update per cell. Lattice change
candidates are represented by a divided pixel, where the upper half represents
the current state, and the lower half represents the proposed change. tk, k =
{1..4} represents different threads.

Fig. 4. Resulting lattice after the update cycle. Only the changes from threads
t1 and t4 were accepted. The changes are reflected both in the lattice and in
the Write Only (WO) cell array.

E. Optimal spatial sub-division of the lattice

The motivation for spatial sub-division of the lattice is two
fold. The first is to take full advantage of texture caching
by dividing up the lattice into sections assigned to different
blocks. This ensures that threads within a thread block are
reading memory that is within the vicinity of each other thus
maximizing texture cache. The second is to minimize the use of
atomic operations which are used to correctly handle lattice site
updates. Atomic operations are expensive since they effectively
serialize access to the variables involved.

The lattice is divided into subgrids each of which is assigned
to a thread block. Within a thread block, the subdgrids are
further divided with each division assigned to a separate
thread. The region assigned to a thread is further subdivided

to enable the use of a checkerboard updating scheme [9].
The checkerboard scheme avoids the scenario where multiple
threads are trying to update neighboring lattice sites thus
causing extensive serialization due to the atomic operations and
consequently degrading performance. In our final optimized
configuration, each thread is responsible for the update of a
2x2x2 subgrid of lattice sites. Each of the sites in the subgrid
is numbered with a 3 tuple from (0,0,0) to (1,1,1). At the start
of every MCS step we will select a 3 tuple at random and pass
it to the parallel machine, so that every kernel calculates the
exact same lattice for its respective subgrid.

To address the size of the lattice size handled by a thread
block, we experimented with the CUDA profiler tool and
the CUDA occupancy calculator in order to find out the
combination that maximized resource usage while avoiding
the spatial issues described before as much as possible. In
general, the CUDA guidelines recommend using between 64
and 512 threads depending on the problem, but taking care
that the number of threads is a multiple of 64. Experimental
results conclude that keeping the block size between 27 and
28 threads for our lattices maximizes resource usage.

Based on the profiling study, the scheme that gave the
best results divided the space such that one thread is respon-
sible of a 2x2x2 subgrid, with each thread block covering
a 8x8x16 space (each thread block contains 128 threads).
This maximizes resource usage by optimal access to texture
memory, maximizing processor usage and having concurrent
calculation of as many pixels as possible, and at the same
time avoids loops where one single thread has to calculate
more than one lattice site per MCS, thus making the whole
algorithm effectively parallel, while avoiding the simulation
artifacts described earlier.

We illustrate with an example of how the lattice is divided
within a 64x64x64 lattice in Fig. 5. The left side of the figure
represents how the lattice is divided among all the different
thread blocks. Considering that each block covers 8x8x16
pixels, we have to do a point by point division of the two
vectors to obtain the total number of blocks (8x8x4 in this
example). The right side figure represents a 2D projection
of the 8x8x16 subgrid that each block is assigned (with the
16 pixel 3rd dimension hidden). Each color represents the
2x2x2 division (2x2 in the projection) that each thread within
the block will be in charge of modifying. As shown, each
color is further subdivided in 8 parts (4 in the projection)
corresponding to the checkerboard division. In the example,
the upper left pixel of each color is highlighted, indicating that
the checkerboard algorithm decided that every thread would be
dedicated to the processing of the upper left pixel. This entire
scheme would be repeated for every thread block.

F. The main algorithm

Each thread starts by selecting a lattice site corresponding
to the subgrid it was assigned to. It is worth noting that
converting from the threadID number that is assigned by the
system to every thread (in short, a 5 tuple ID vector) to
the 3 coordinate system that corresponds to the lattice was
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Fig. 5. Example of how the spatial subdivision works. Each color represents
a section processed by a different thread.

done using bitwise operators such as shift and logical AND
instead of multiplications, divisions and modulo operators in
order to minimize computing time. The possible flip that each
thread will select is randomly chosen among the immediate
neighbors of the lattice site that the thread is analyzing. Once
the thread has decided on a possible spin flip, it calculates the
resulting differential in effective energy. Both the local and
global energies are calculated. For the local energies it is a
straightforward neighborhood evaluation (in our implementa-
tion we searched for neighbors up to a 2 pixel range, for a total
of 125 neighbors), and for the global energy we will build upon
the cell property array that we initialized previously.

Once the ΔE is obtained, the spin flip is accepted based on
the direct application of the Monte Carlo probability equations
described earlier. After this we do a thread synchronization
step, in order for all threads to reach this point and do the next
operation concurrently. Those threads that rejected a change
will return execution control here. The rest that accepted the
spin change will request unique access to the cell properties
variable in cellArray corresponding to the cells which will be
affected by its lattice change. In case the change is acceptable
(no other thread has modified the volume of this cell) they
will proceed with the rest of the update, and return control.
Otherwise they just return control.

Algorithm 2 CUDA kernel
Select a lattice site, and a random neighbor spin site

2: if the two selected sites have the same spin then
Kernel return // the lattice sites is not a cell boundary

4: end if
Calculate the ΔE

6: Accept spin flip based on Monte Carlo probability
Synchronize threads

8: if update accepted then
Atomic access volume

10: if volume not modified then
Update values

12: end if
end if

14: Kernel return

(a) Cell 1: purple, cell 2:
green

(b) Cell 1: orange, cell 2:
blue

Fig. 6. Cell sorting algorithm. Addhession constants, in the first example:
J(1−1)= 15, J(1−2)= 7, J(2−2)=9, J({1,2}−ECM) = 1 , in the second one
J(1−1)= 10, J(1−2)= 1, J(2−2)=5, J({1,2}−ECM) = 3

VII. RESULTS

Our experiments were run on a NVIDIA GTX 280. The
CPU part of the code ran on an Ubuntu 8.04 system, with an
Intel Q6600 processor and 2GB RAM.

For display purposes we enabled a real time OpenGL
display of the data. The results of some of the simulations are
shown in Figure 6. In general, the results show that the algo-
rithm scales linearly, as illustrated in Figure VII, which shows
that there is no significant overhead in terms of managing
larger quantities of data. Our algorithm computation time on a
GTX 280 can be calculated as time = (5.976 ∗ 10−6) ∗ size,
where size is the lattice size in pixels, and time is the number
of seconds required to compute 2000 MCS.

Fig. 7. Performance scaling with different matrix sizes. Steps vs time

A. Benchmarking

We compared our algorithm against two different imple-
mentations of the parallel Cellular Potts model. These imple-
mentations are characterized, one for being run on a remark-
ably powerful computer cluster, and the other for introducing
a noticeable algorithmic improvement over the classical Monte
Carlo random algorithm. The implementation by Chen et.
al. was run on the Biocomplexity Cluster at the University
of Notre Dame. The cluster consists of 64 dual nodes with
two AMD 64 bit Opteron, with 4 GB RAM on each node.
The Random Walker algorithm ran on a 4 CPU cluster. The
results are shown in Table I, between parenthesis we indicate
the number of reported CPU’s actually used for a particular
simulation (with RW meaning Random Walker and MC Monte
Carlo). For our report, we ran each configuration a total 40
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TABLE I
COMPARISON BENCHMARK

Model Grid Size Cells(106) Iterations Time(secs)

RW Cluster(4) 1E6 10000 2145±6
MC Cluster(25) 2.25E6 0.09 2000 370

MC GPGPU 2.097E6 0.1 2000 12.08±0.21
MC GPGPU 4.19E6 0.2 2000 25.47±0.61

MC Cluster(9) 9E6 0.36 200 254
MC GPGPU 8.38E6 0.4 200 4.73±0.35
MC GPGPU 8.38E6 0.4 2000 49.63±1.11

MC Cluster(16) 1.6E7 0.64 200 274.5
MC GPGPU 1.677E7 0.8 200 10.02±0.28
MC GPGPU 1.677E7 0.8 2000 98.03±2.06

times with random simulation parameters (e.g. cell adhesion
constants, target volume) within a [1,31] range. The reported
value is the mean, and the tolerance is the standard error of
the mean.

VIII. DISCUSSION

The results show that our methods for data-parallel simu-
lation of the Cellular Potts Model on GPUs outperform CPU
cluster based implementations by nearly 30x. There are two
main reasons for this. The first is that GPUs are built primarily
for high through-put computation with most resources on the
chip devoted to computation rather than control. The GPU
computing power has shown an exponential growth in recent
years because it is achieved by simply adding additional
computing cores to the chip. Consequently, they are ideal for
a situation where fine-grained parallelization is possible.

The second one has to do with the very nature of CPU
clusters, and how they are interconnected. It is very often the
case that the main bottleneck in these clusters is the com-
munication bus between each node. Most often they will be
connected by a network type bus, and in the best case scenario
where they are all located in the same rack, they still have
separate memory spaces, so that every bit of communication
between the CPU nodes requires a memory synchronization
step. The processors on the GPU while not as powerful as
the CPU are well suited for CPM type problems because they
all share a common memory space that allows for almost free
synchronization. Furthermore, proper design of the algorithm
regarding the disrtibuting lattice subdivisions among threads
will mean that information sharing will be at cache level with
all of the memory speed and bandwidth advantages that that
it implies.

The combination of the two makes for parallel computing
power that is greater than what one would expect when directly
comparing the floating operations that a cluster and a GPU
can achieve. An AMD Opteron 248 like the one used by Chan
et al. in their implementation is approximately 4.4GFlops per
CPU, giving a 25 CPU cluster a peak theoretical performance
of 110 GFlops. Comparing this to the NVIDIA 280GTX’s
reported 933 Gflops, simple extrapolation would tell us that
the our algorithm should at most perform 9 times faster than
the CPU cluster implementation. However our algorithm was
shown to run up to 30x faster when compared to the 25 CPU
implementation.

Furthermore, the GPU is a far more economical platform
compared to CPU clusters. For example, a PC equipped with
an Opteron 248 of the type used in one of our reference
benchmarks costs around $1000. An array of 25 nodes will
approximately cost $25,000 without factoring in maintenance
cost, electricity bills, etc. In comparison, a single PC equipped
with a cutting edge NVIDIA 280GTX GPU will cost under
$1500. Moreover, real-time display is impossible with clusters
while it is virtually free on the GPU.

It is our belief that the numbers we have presented in this
article will not be limited solely to the Cellular Potts Model,
but to many biophysics simulation models that allow for certain
level of parallelization.

IX. FUTURE WORK

The framework we have built can be further extended both
in terms of the complexity of the simulation, and increasing the
number of GPUs in order to demonstrate the direct scalability
of these type of algorithms. We would also like to introduce
some of the principles of the Random Walker algorithm into
our algorithm. Our idea would be to run a preliminary border
detection filter through the lattice which would return a lattice
containing only boundary pixels. With this information, it
would be trivial for a kernel to identify whether a lattice update
should be evaluated.
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