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Abstract—Red tides pose a significant environmental and 
economic threat in the Gulf of Mexico. Timely detection of red 
tides is important for understanding this phenomenon. In this 
paper, learning approaches based on k-nearest neighbors, 
random forests and support vector machines have been evaluated 
for red tide detection from MODIS satellite images. Detection 
results from our algorithms were compared with ground truth 
red tide data collected in situ. Our results show that red tide 
identification methods based on machine learning approaches 
outperform baseline algorithms based on bio-optical 
characterization. 

Keywords—remote sensing, Florida’s red tides, k-nearest 
neighbors, random forests, support vector machines

I. INTRODUCTION

Toxic Karenia brevis blooms (commonly known as 
Florida’s red tides) represent a serious problem for local 
fisheries and the tourism economy in Florida. Red tides occur 
frequently along the west Florida shelf, typically in late 
summer and fall. 

With a series of polar orbiting ocean color satellite sensors, 
red tides can be potentially monitored and studied in near real-
time every day over the entire eastern Gulf of Mexico, given 
cloud-free conditions. However, before satellite data can be 
utilized towards an automated system to provide rapid 
detection and early warning to the public, reliable algorithms 
must be developed to differentiate red tides from non-toxic 
blooms and other water disturbances in satellite imagery. 

Pattern recognition has been used in the past to help 
interpret remote sensing imagery. The remotely sensed data 
have been classified using feed-forward neural networks [1], 
decision trees [2], expert systems [3] and rule-based systems [4] 
by a number of researchers. A computer expert system was 
developed to classify multi-spectral remote sensing imagery for 
red tide recognition [6]. Briefly, based on the spectral 
reflectance, an initial segmentation was performed using a 
fuzzy clustering algorithm (FCM) [7]. The algorithm assumes 
that the number of classes c is known, in addition, a partition 
distance metric, a fuzziness measure, and a stopping criterion 
are supplied. The FCM algorithm partitions the data set X into 
c classes including the red-tide class. However, this algorithm 
depends heavily on pre-defined parameters and might suffer 

from the problem of under-clustering (different water types 
classified as the same). 

The Moderate Resolution Imaging Spectroradiometer 
instrument (MODIS) onboard the EOS Aqua satellite provides 
1-km resolution ocean color products (which we refer to as 
bands) including chlorophyll-a (CHL), fluorescence line height 
(FLH), and spectral normalized water-leaving radiance (NLW). 
Recently, two thresholding approaches using these satellite 
bands have been proposed for red tide detection: the CHL 
anomaly threshold [12] and the backscattering threshold [18]. 
However, these methods can be problematic due to 
uncertainties in atmospheric correction, ocean bottom 
reflection, interference with other colored compounds in the 
ocean like colored dissolved organic matter (CDOM) and false 
alarms due to non-toxic phytoplankton blooms [10]. It is 
therefore desirable to combine these bio-optical approaches 
with the previously established pattern recognition frameworks 
for better detection. 

In this paper, we evaluated three approaches based on k-
nearest neighbors [16], random forests [5] and support vector 
machines [10] for automatic red tide identification using 
MODIS data and compared the results with the CHL anomaly 
and backscattering detection methods. In each approach, every 
image pixel covering 1 km2 of seawater is classified as red tide 
or non red tide water using up to seven bands: CHL, FLH, 
particulate backscattering (BBP) at 551 nm and NLW at 412 
nm, 551 nm, 678 nm and 869 nm. 

II. PROPOSED METHODS

Multi-spectral satellite data, namely the spectral NLW data, 
contain information about water constituents such as 
chlorophyll, suspended sediments, and colored dissolved 
organic matter. Using only one band of satellite data is prone to 
problems with artifacts caused by sediment and bottom 
reflection. Considering the heterogeneous nature of our 
problem, machine learning algorithms with good training noise 
tolerance can be used to automatically separate various types of 
environmental conditions and detect red tides. We propose 
machine learning approaches based on k-nearest neighbors 
(KNN), random forests (RF) and support vector machines 
(SVM) for red tide detection. We also propose hybrid 
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approaches combining machine learning models and 
thresholding approaches introduced in [12, 18]. 

A. Machine learning approaches 
1) K-nearest neighbors 

The k-nearest neighbors algorithm assigns an object to the 
class most common among its k nearest neighbors [16]. That is, 
for an input vector v, its distance id  to every item in training 
data set it  is computed as i id v t= − . Let 

1 2
, ,......

ki i id d d be the 
k shortest distances. v will be classified as the majority class 
among  the class labels for 

1 2
, ,......

ki i it t t . We set k=3 in our 
experiments and used the Euclidean distance. 

2) Random forests 
A random forest (RF) [5] is an ensemble of decision trees. 

Each tree is constructed by randomly selecting N  features at 
each internal node from the training set. Each node of the tree 
contains the test that creates the best split based on those N
features. The classification result will be obtained from 
allowing all of the decision trees to vote.  

We built 1000 trees for the random forests and set the split 
criteria to the C4.5 style. Random forests experiments were 
done using the OpenDT [9] system. 

3) Support vector machines 
Support vector machines (SVM) [10] first map the data into 

a higher dimension, then use a hyperplane in that feature space 
to separate the data into two classes. In the feature mapping 
stage, a kernel function is used to avoid explicit inner product 
calculation. We applied SVM as C-SVM [10] through the 
LIBSVM [11] system, using a radial basis function kernel. 

B.  Hybrid approaches 
We were able to tune both unweighted and weighted voting 

to combine classification results produced by individual 
algorithms.  

For unweighed voting with threshold N, a pixel will be 
classified as red tide if not less than N algorithms classify it as 
red tide, otherwise it will be classified as non red tide. We had 
5 algorithms and varied N from 1 to 5 in our experiments. 

For weighted voting, each algorithm produces its weighted 
voting value for each pixel between 0 and 1. For random 
forests, its weighted voting value is the percentage of trees that 
classify a pixel as red tide. For support vector machines, the 
weighted voting is a pixel’s probability of being the red tide 
class. For 3-nearest neighbors, the weighted voting is the 
percentage of a pixel’s red tide neighbors among its 3 nearest 
neighbors. For the CHL anomaly method [12] , it is the linearly 
normalized distance between the pixel’s CHL anomaly and its 
thresholding value. For the backscattering method [18], it is the 
linearly normalized distance between this pixel’s CHL, FLH 
and BBP and their thresholding values. A pixel will be 
classified as red tide if the sum of all 5 weighted voting values 
is 2.5 or more. 

III. EXPERIMENTAL SETUP

A.  Data set and preprocessing 
For each day, if clouds don’t cover the whole area of 

interest, one MODIS image for the West Florida Shelf was 
used. Ground truth red tide data for the West Florida Shelf was 
collected by the Florida Fish and Wildlife Research Institute 
(FWRI). Data points with water depth less than 2 meters were 
discarded, and counts from the different Karenia species were 
combined for the same dates and coordinates. From Jan 1, 2003 
to Apr 20, 2007, 17649 ground truth data points were available. 
K. brevis cell counts higher than 15000 cells/liter were 
regarded as red tide, and non red tide otherwise. Although the 
cell count data were collected from a point source in the ocean, 
each ground truth data point was used to represent the 1 km2

area of water corresponding to the satellite image pixel size.   

Due to frequent cloud cover, only 1969 of 17649 data 
points were associated with valid, concurrent, and co-located 
MODIS data. To have more satellite data available for 
algorithm training, we developed the ground truth 
approximation strategy, shown in Figure 1. 

Let S be the set of MODIS data points that are within the
5X5 spatial neighborhood of P for two days before or
after the occurrence of P 

Label P to be the class that is the majority in S, and assign 
P the same satellite features as the data point with closest
spatial and temporal distance 

Is 
pixel P bad due to  
cloud cover or other  

failure? 

MODIS data at 
P can be used
directly 

S ≠ ∅

False 

True

True 
False 

Abandon 
MODIS data
at P 

Figure 1. Flow chart for ground truth approximation  

After this process, we had 2695 ground truth red tide pixels 
and 8167 non red tide pixels across 832 days from Jan 1, 2003 
to Apr 20, 2007. 

About 75% of in situ cell counts data were labeled as “non 
red tide”. Machine learning methods may easily produce 
models to classify all pixels as “non red tide” to obtain high 
accuracy on such skewed data [19]. To overcome this challenge, 
we randomly chose only B% of the majority class (non red tide) 
for training. Other in situ data labeled as “red tide” was 100% 
chosen. B was selected in the following way: we divided the 
training set into 5 chunks, using 4 chunks for training and 1 
chunk for testing. Different B’s from 10 to 100 were tested on 
each of 5 chunks. We used the B with the highest average F-
measure on those 5 chunks for the whole training set.  
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For support vector machines, after the percentage B was 
selected, we selected the regularization constant C by doing a 5 
fold cross validation on the training set. Different Cs from 0.5 
to 4096 (increased by doubling itself on each new experiment) 
were tested. For each training set, we used the C with the 
highest average F-measure for the whole training set. 

Two thirds of the ground truth data were randomly selected 
for training, and for the remaining one third, only points 
measured in situ without approximation were used for testing. 
3-nearest neighbors, random forests and support vector 
machines used the same testing and training set. This process 
of randomly selecting the training and testing data was repeated 
30 times. We present the averaged results of the 30 testing sets 
from each machine learning method.  

Satellite data of chlorophyll (CHL), fluorescence light 
height (FLH), normalized water leaving radiance (NLW) and 
particulate backscatter (BBP) have been used previously to 
detect red tides [8, 12, 17, 18]. In our experiments with 
machine learning approaches we used CHL, FLH, NLW412, 
NLW551, NLW678, NLW869, and BBP551. 

B. Data normalization 
Each attribute was normalized to a value between 0 and 1 

for each image by (1): 

 
max ( )

max ( ) min ( )
j ij ij

ij
j ij j ij

v v
x

v v
−

=
−

. (1) 

where ijv  is the original value of channel j  for pixel i . ijx
is its value after normalization. max ( )j ijv  and min ( )j ijv  are 
the maximum and minimum values for channel j  in the 
training set. 

Some of the satellite data can be abnormally high due to 
satellite algorithm errors. To filter those extreme cases, we used 
all MODIS images from 2003 to 2007 and sorted the data in 
each channel j from high to low. Then, we set the maximum 
value of this channel ( max ( )j ijv ) as the value ranking at the 
kth position ( ( 0.3%)k round number of all pixels= × ) from 

the highest value. Any ijv  bigger than max ( )j ijv  was 
normalized to 1. 

C. Accuracy assessment 
To understand how the algorithms work for both red tide 

and non red tide waters, we used a confusion matrix as shown 
in Table I, where A is true positive, D is true negative, B is 
false negative, and C is false positive. 

TABLE I. NOTATION FOR ACCURACY ASSESSMENT

To describe an algorithm’s overall performance, 
considering correct recognition on both red tide and non red 
tide cases, we used the F-measure [21] as shown in (2).    

 F-measure (FM) =2*A/(2*A+C+B) (2) 

We also used the receiver operating characteristic (ROC) 
curve [14] to evaluate different methods in our experiments. 
Different true positive rates and false positive rates for each 
algorithm were generated by varying their respective thresholds. 
For random forests, we varied the threshold on the number of 
trees that predict the pixel as red tide. For support vector 
machines, we varied the threshold on the probability of the red 
tide class. For the CHL anomaly method, we varied its 
threshold. For the backscattering method, we varied its CHL, 
FLH and BBP thresholds. 

Area under the ROC curve (AUC) [15] is proposed as a 
single-number measure for algorithm performance. AUC for 
random forests, support vector machines, the CHL anomaly 
method, and the backscattering method were computed for 
comparison in our study. 

IV. RESULTS

A. Machine learning approaches 
The three machine learning approaches had a higher F-

measures than all thresholding methods, as shown in Table II. 
Under a two-sided Wilcoxon significance rank test [13] at a 
confidence interval of 95%, F-measures of all methods are 
significantly different except support vector machines and 
random forests. F-measures are ranked by (from high to low): 
support vector machines, random forests, 3-nearest neighbors, 
backscattering method, and CHL anomaly method.  

TABLE II. F-MEASURES OF 3-NEAREST NEIGHBOR, RANDOM FORESTS,
SUPPORT VECTOR MACHINES, THE CHL ANOMALY METHOD AND 

BACKSCATTERING METHOD.

Methods F-measure 
Support vector machines 0.590 
Random forests 0.581 
3-Nearest neighbor 0.562 
Backscatter method 0.480 
CHL Anomaly method 0.463 

B. Hybrid approaches 
F-measures of weighted voting and unweighted voting 

with N of 2 and 3 outperformed support vector machines 

(0.591), as shown in Table III. Unweighted voting with N=2 

achieved the best F-measure of 0.607 among all voting 

strategies, higher than 0.597 from the weighted voting. The F-

measure of voting method with N=2 was significantly higher 

than support vector machines under a two-sided Wilcoxon 

significance rank test at a confidence interval of 95%. 

Unweighted voting with N=5 (a pixel will be classified as red 
tide as long as it gets not less than N votes as red tide from all 
5 algorithms) has the lowest F-measure of 0.271. 

 Classified as red tide Classified as non red tide

Red tide A B 
Non red tide C D 
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TABLE III. F-MEASURES OF HYBRID APPROACHES BY VOTING

Voting method F-measure 
Weighted voting 0.597 
Unweighted Voting, N=1 0.579 
Unweighted Voting, N=2 0.607 
Unweighted Voting, N=3 0.605 
Unweighted Voting, N=4 0.484 
Unweighted Voting, N=5 0.271 

C.  ROC analysis 
Figure 2 shows the ROC curves of support vector machines, 

random forests, CHL anomaly method, and the backscattering 
method. Different true positive rates and false positive rates 
were generated by varying their thresholds as discussed in 
Section III.C.  

Figure 2. ROC curves for different methods 

The AUC was computed for all 4 algorithms as shown in 
Table IV. The AUC for random forests was higher than other 
methods and had higher true positive than other methods when 
false positives were between 0.08 and 0.28. For an application 
that requires a false positive rate between 0.08 and 0.28, 
random forests can be a good algorithm to use. 

TABLE IV. AUC FOR DIFFERENT METHODS

Method AUC 
Random forests  0.754 
Support vector machines 0.747 
Backscattering method  0.699 
CHL anomaly method 0.629 

D. Confusion matrices 
Tables V, VI and VII show the confusion matrices for the 

support vector machines, backscattering method and weighted 
voting. The backscattering method did not detect as many red 
tide pixels as the machine learning approaches or weighted 
voting. 

TABLE V. CONFUSION MATRIX FOR SUPPORT VECTOR MACHINES

 Classified as red tide Classified as non red tide 
Red tide 419 186 
Non red tide 395 970 

TABLE VI. CONFUSION MATRIX FOR BACKSCATTERING METHOD

 Classified as red tide Classified as non red tide 
Red tide 242 363 
Non red tide 160 1205 

TABLE VII. CONFUSION MATRIX FOR UNWEIGHTED VOTING, N=2

 Classified as red tide Classified as non red tide 
Red tide 472 132 
Non red tide 477 888 

E. An example 
Figure 3 shows an example of the results from these 

detection algorithms. 

(a)                                           (b) 

(c)                                           (d) 

(e)                                           (f)
: water classified as red tide  

: water classified as non red tide
Figure 3. Detection results on Oct 30, 2006. White square ( ): ground truth 

non red tide points. Dark square ( ): ground truth red tide points. (a): 
classification result by the CHL anomaly method; (b): classification result 

from the backscattering method; both CHL anomaly method and 
backscattering method missed some red tides in regions far from the shore; 

(c), (d), (e) and (f): classification result by 3-nearest neighbors, random forests, 
support vector machines and unweighted voting with N=2. 
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V. CONCLUSIONS

We proposed three machine learning approaches based 
respectively on 3-nearest neighbors, random forests, and 
support vector machines for red tide detection using MODIS 
imagery. Random forests and support vector machines 
achieved an F-measure 3% higher than 3-nearest neighbors and 
they outperformed the previous thresholding methods [12, 18] 
by more than 10% in terms of F measure, with statistical 
significance. The hybrid approach combining both machine 
learning and thresholding methods by voting improved the 
accuracy of machine learning approaches by less than 1.5% in 
terms of F-measure. Random forests and a support vector 
machine might be implemented as red tide detection in the 
eastern Gulf of Mexico. Future work includes combining visual 
interpretation from an image analyst to improve its accuracy. 
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