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Abstract—Supervised learning is well-known and widely 
applied in many domains including bioinformatics, 
cheminformatics and financial forecasting. However, the 
interference from irrelevant features may lead to the poor 
accuracy of classifiers. As a popular feature selection model, GA-
SVM is desirable in many of those cases to filter out irrelevant 
features and improve the learning performance subsequently. 
However, the high computational cost strongly discourages the 
application of GA-SVM in large-scale datasets. In this paper, an 
HPC-enabled GA-SVM (HGA-SVM) is proposed by integrating 
data parallelization, multithreading and heuristic techniques with 
the ultimate goal of robustness and low computational cost. Our 
proposed model is comprised of four improvement strategies: 1) 
GA Parallelization, 2) SVM Parallelization, 3) Neighbor Search 
and 4) Evaluation Caching. All the four strategies improve 
various aspects of the feature selection model and contribute 
collectively towards higher computational throughput. 
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I. INTRODUCTION

Selecting important features out of the original feature set is 
a challenging task. Given data samples with class labels, 
supervised classification models are usually used together with 
optimization algorithms for feature selection in which 
classification accuracies are used as fitness evaluation of the 
selected feature subsets. In this work, we develop a feature 
selection model which combines the merits of support vector 
machine (SVM), genetic algorithm (GA) and high performance 
computing techniques. 

Support vector machine [1] is one of the most popular 
classifiers used in supervised learning. The principle of SVM is 
constructing an optimal separating hyperplane to maximize the 
margin between two classes of data. The performance of SVM 
classifier is often sensitive to the choice of margin cost C and 
kernel parameters [2]. The optimal parameters that lead to the 
minimal generalization error are data-dependent. Presently no 
rules or formula can be used to compute such values 
analytically, so parameter tuning is often required. An intuitive 
realization of parameter tuning is grid search [3]. That is, the 
parameters are varied by step-size within the preset range of 
values (in a structure of “grid”); the optimal values can be 
found by measuring every combination (every node in the 
grid). Due to its complexity, usually two-dimensional grid is 
used to tune a pair of parameters such as C and  (Gaussian 
function width in RBF kernel). 

Even after parameter tuning, SVM classifier might deliver 
poor accuracy in classifying some particular datasets. One 

possible reason is noise interference in which an overwhelming 
number of irrelevant features are included inside the inputs so 
that a truly representative classifier cannot be learnt. If prior 
knowledge is insufficient to differentiate which features are 
truly relevant to the output, such that all the possible features 
are included in the training data, the accuracy of learning would 
be deteriorated. In those cases, the key of improving learning 
performance is feature selection, which is the technique of 
selecting only the relevant features to build a robust learning 
function. 

There are many optimization techniques that have been 
used with supervised learning in feature selection. One of the 
favored choices is Genetic Algorithm (GA) [4]. GA is a search 
technique that is inspired by the natural evolution. In the 
evolution, the individuals with better genetic merits 
(chromosome) are more likely to survive under natural 
selection and reproduce the offspring; the unfit ones are filtered 
out. By constant filtering, generation after generation, the 
population tends to carry the fitter and fitter chromosomes. To 
mimic this process, all candidate solutions to a feature-selection 
problem can be encoded as “chromosome” (feature subset 
representation), which takes the form of bit array (e.g. 
1001…0101) — 1s and 0s denote the presence or absence of 
each feature. A group of those candidate solutions is sampled 
randomly and form the initial population of chromosomes. The 
chromosomes are then evaluated by objective function to 
compute the fitness scores. Multiple chromosomes are 
stochastically selected based on their fitness, recombined 
(crossover) and mutated, and finally form the next generation. 
By means of random mutation and crossover, the variety of 
chromosomes is introduced and evaluated in every generation 
and gradually evolve the solutions towards the optimal. The 
process will be iterated until convergence, i.e. there is no more 
improvement to the best fitness score in the population. At the 
end, the chromosome with the best-ever fitness will be the final 
solution and all the features denoted by 0s will then be filtered 
out. 

GA-SVM had been widely used to filter out the irrelevant 
features and improve the learning accuracy in the noisy 
settings. However, one practical problem of GA-SVM is its 
extremely high computational cost. Assuming m population 
and g generations in GA, w x w grid in parameter tuning and t
seconds for SVM plus 10-fold cross validation, then the overall 
runtime will cost mgw2t seconds. It is a time-consuming 
process that even a small-scale problem may need nearly a day 
to complete (demonstrated in the Result section). That strongly 
discourages the application of GA-SVM to larger and more 
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complex data. In this paper, we introduce high performance 
computing (HPC) techniques and heuristic methods to speed up 
the traditional GA-SVM feature selection model. In our HPC-
enabled GA-SVM (HGA-SVM), we employ data 
parallelization, multithreading, repeated evaluation reduction 
and heuristic optimization, with the ultimate goal of trimming 
down computational cost and making large-scale feature 
selection more feasible. The HGA-SVM is comprised of four 
improvement strategies: 1) GA Parallelization, 2) SVM 
Parallelization, 3) Neighbor Search, and 4) Evaluation Caching. 
All the four strategies work collectively towards higher 
computational efficiency. 

II. METHODOLOGY

A standard GA-SVM feature selection model is comprised 
of three operators: crossover, mutation, and SVM evaluation. 
With respect to population size, the first two are of linear 
complexity; and the last one is of quadratic complexity. It is 
clear that reducing population size could lower computational 
cost effectively. Moreover, when input data grows larger and 
more complex, most of time lag would rise in SVM evaluation 
since all other operators only work in chromosome layer. 
Imagine if a single SVM training is slowed down by t seconds 
in a larger dataset, by the effect of 10-fold cross validation and 
10x10 grid search, the time lag of each chromosome in every 
generation would be amplified to 1000t seconds. Apparently 
SVM evaluation is the biggest factor in GA-SVM that 
discourages the application in large-scale dataset and so 
speedup specific to SVM would be desirable. 

Identical chromosomes may re-emerge in the different GA 
generations due to random mutation and crossover. Since a 
standard GA does not keep any historical records on the past-
evaluated chromosomes, it has to evaluate every appearance of 
those identical chromosomes. That will waste the computation 
power for the unnecessary evaluations and increase the 
runtime. 

Exhaustive grid search for parameter tuning is slow despite 
the grid dimension is small. In a simple 10x10 grid search, it 
requires 100 times of SVM learning (with 10-fold cross 
validation) for each chromosome in every generation. This 
exhaustive search will incur a huge computational cost. 
However, parameter tuning cannot be omitted even though the 
cost is high. Otherwise SVM learning would be biased and the 
purpose of improving learning performance is undermined. 

Four improvement strategies were designed to alleviate 
computational cost. Parallel GA and parallel SVM speed up the 
GA and SVM respectively; neighbor search replaces grid 
search to reduce the number of combinations to be measured; 
and lastly evaluation caching avoids the repeated unnecessary 
evaluations. Figure.1 shows the workflow of all four 
improvement strategies in HGA-SVM. 

A. Parallel/Distributed GA 
The design of GA parallelization follows parallel island 

model [5] in a coarse grained architecture. The entire 
population of chromosomes is divided into n subpopulation and 
each subpopulation is assigned to a different parallel node. 
Every parallel node evolves their local subpopulation by a 
serial GA. At the end of every generation, multiple 

chromosomes are selected randomly at each node and 
exchanged among the peers, which is called “migration”. 
Migration brings in the new variety to local population and 
facilitates to build up the common trend of evolution in all 
subpopulations. 

Figure 1. Design Scheme of HPC-enabled GA-SVM feature selection model 

By distributing chromosomes to n parallel nodes, local 
population size is reduced by factor of 1/n (population size is 
an even integer before and after reduction). The execution time 
of a single GA generation is speeded up by n times 
approximately, because selection, crossover and mutation are 
of O(n) complexity and SVM evaluation is of O(n3) complexity 
with respect to population size [6]. There are however some 
drawbacks of parallelization — parallel overheads, which 
includes start-up/termination overhead, synchronization 
overhead and communication overhead. The first two 
overheads are unavoidable in order to coordinate parallel 
computing in multiple nodes; so we focus on reducing 
communication overhead in this study. As adoption of parallel 
island framework, GAs run independently at different nodes 
with their local copy of data, so the necessity of data 
communication is minimized. Another reduction is realized in 
migration operation, which requires passing around the arrays 
of bits (chromosomes) among the nodes. There are many 
migration schemes specific to certain topology in the literature. 
To minimize communication overhead, we adopt “ring” 
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topology for migration in which each node transfers the local 
best chromosomes to its neighbor on the ring. For instance, 
among three parallel nodes A, B and C, the exchange will 
happen as A B, B C and C A. Then the incurred 
communication overhead is linear w.r.t. the number of parallel 
nodes. If there are n parallel nodes, it requires n generations for 
the migrated chromosomes to travel in the ring and return to 
their original node. Therefore any serial GA should be allowed 
for termination only if there is no further improvement for at 
least n consecutive generations. Once any serial GA terminates, 
the parallel GA will stop the iteration and collect the local best 
chromosome from individual nodes to compute the final 
solution. 

GA parallelization is developed using the MPI library [7]  
and is usually catered for the distributed-memory hardware 
architecture. Parallel GA using MPI is able to scale to all the 
compute nodes available, which would significantly benefit the 
application of our HGA-SVM in large-scale datasets. With the 
introduction of multicore processors, GA parallelization can 
also be applied to mainstream shared-memory systems to 
achieve good performance speedup as well. 

B. Parallel SVM 
SVM training is compute-intensive because it requires 

quadratic programming (QP) [1] for determining the optimal 
separating hyperplane. Over the years, several methods had 
been developed to lower the computation cost. One of the 
methods is sequential minimal optimization (SMO) [8]. SMO 
divides a large QP problem into a series of smaller QP 
problems that can be solved analytically such that the training 
is speeded up. However, when SVM is required to repeat by 
thousands of times in a typical feature selection task, the SVM 
with SMO (SVM-SMO) is still considerably slow. 

To speedup the SVM-SMO, we applied the parallelization 
technique to distribute the computations to multiple 
nodes/threads for concurrent execution. As parallelization 
introduces the extra overheads in coordination and 
communication, it is wise to parallelize the most computational 
intensive section to achieve the maximal speedup. Table I 
shows a typical execution profile of SVM-SMO (retrieved from 
LibSVM [9] training execution). It is clear that kernel 
calculations take up most of the computational time.  

TABLE I. A TYPICAL EXECUTION PROFILING FOR SVM-SMO (LIBSVM)

Time 
(%) 

Self  
(sec) 

Calls 
(sec) 

Function Name 

81.15 231.34 791,262,338 Kernel::kernel 
11.67 33.27 269,460 SVC_Q::get_Q 
4.78 13.64 66,095 Solver::select_working_set 
2.22 6.34 1 Solver::Solve 
0.15 0.44 66 Solver::do_shrinking 
0.02 0.05 3,806 Cache::swap_index 

The caller function of those kernel calculations is 
comprised of an iterative loop scanning through the instance 
space to select a pair for optimization. Thus OpenMP [10], a 
parallelization protocol designed for shared-memory multi-
processor/multi-core systems, is most suitable to apply. The 

implementation of the parallel SVM is relatively simpler than 
GA parallelization. It could be done by identifying and 
resolving data dependency inside the loop, followed by 
inserting the OpenMP directives, without any modification to 
the structure of the algorithm. The parallel SVM will be able to 
utilize the multiple CPU cores concurrently in form of 
multithreading (refer to Figure 1), so effectively reduce the 
computation time. Since OpenMP also introduces the 
overheads, the parallel SVM would perform more efficiently if 
the training dataset is sufficiently large. 

In our HGA-SVM, the GA and SVM operations are 
parallelized using MPI and OpenMP respectively. The 
parallelization techniques used in both of these operations 
allow them to work together as hybrid parallelization to speed 
up the workflow concurrently. 

C. Neighbor Search 
Parameter tuning is crucial to achieve minimal 

generalization error in SVM learning; however it is also time-
consuming when employing exhaustive grid search. Inspired by 
pattern search method [11], we proposed a new derivative-free 
method, neighbor search, as a general solution to parameter 
selection problem. Neighbor search inherits the underlying 
structure from grid search but not attempt to measure every 
node in the grid. In our context, the parameters to be tuned are 
margin cost C and RBF kernel width . The neighbor search for 
C and  starts from an initial position in the grid (says 10x10 
grid) as the centroid and sample multiple neighbor nodes with 
uniform distribution within the grid of parameter domains. The 
centroid and its neighbors are measured by SVM learning 
accuracy with the corresponding pairs of parameters applied, 
and the best node (the one associated with the highest 
accuracy) is nominated as the new centroid. By repeating the 
above process, the centroid will keep moving towards the best 
node until the convergence, i.e. the centroid itself is the best 
among the group of examinees. Neighbor search is a heuristic 
search method and the confidence level of its solution depends 
on sampling size, i.e. how many neighbor nodes are sampled in 
every round. If a larger sampling size, the solution is more 
likely to be the optimal in the grid but slower as more 
measurements to be done; if a smaller sampling size, less 
confident to the solution but faster. By introducing neighbor 
search, the tradeoff between solution confidence and runtime 
cost could be adjusted appropriately to achieve considerable 
speedup with the bearable suboptimal solution. 

It is intuitive that if two chromosomes differ in few bits, 
their optimal locations in the grid might be closer to each other. 
It could be applicable to the mutated chromosomes in the new 
generation if the hamming distance between parent and child 
chromosome is small. Since neighbor search has been done for 
the parent chromosome and found the optimal node, the same 
node can be used as the initial centroid for the child 
chromosome, which would be advantageous for the faster 
convergence. 

D. Evaluation Caching 
Evaluation caching avoids the repeated unnecessary 

evaluations in the different generations by building up a cache 
to store all the past evaluated chromosomes. Whenever an 
evaluation is requested, the cache is first sought. Only if a 
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cache-miss occurs, an SVM evaluation is executed and the 
cache is updated subsequently. The efficiency of the cache 
depends on how frequent the identical chromosomes re-
emerge, which is varied and stochastic by nature. However, 
according to probability theory, the cache tends to be less 
effective when the data dimension grows, because the chance 
of encountering the identical chromosomes (after random 
mutation and crossover) decreases. The implementation of 
evaluation caching requires the additional memory space to 
store cache entries. Keeping a small footprint for the cache is a 
challenge as a large number of entries could be expectable. In 
HGA-SVM, encoding compression is introduced to reduce the 
length of individual cache entries. There are two encoding 
schemes developed for different type of data. For the low 
dimensional dataset, a simple multi-bit encoding is used to 
compress a chromosome into a multi-bit symbol string, in 
which the compression rate depends on the number of distinct 
symbols to be used; for the high dimensional sparse dataset, 
further compression could be achieved by encoding the 
difference in the consecutive bits of a chromosome followed by 
compression to the consecutive 0s in the encoded string. The 
encoding compress schemes could not only reduce the footprint 
of evaluation cache, but also cut down the computational cost 
of cache search due to shorter length of every cache entry. 

III. EXPERIMENTS AND RESULTS

Our HGA-SVM has been developed based on an open-
source GA toolbox (GAOT) [12]. The source codes were 
ported to Octave [13] and incorporated with the improvement 
strategies including parallel GA, neighbor search and 
evaluation cache. The MPI required in the parallel GA is 
supported by MPITB library [14]. The encoding compression 
required in evaluation cache was coded as C++ libraries and 
linked to Octave for efficiency purpose. The source code of 
LibSVM 2.8.6 [9] was modified to implement the parallel 
SVM and also ported to Octave as external library which 
allows direct access to runtime variables in the memory. The 
experiment platform used is a 2x Intel Xeon Quad-core 
(3.0GHz) machine with 32GB memory. 

The parameter setting of HGA-SVM is listed in Table II. 
The population/subpopulation size and crossover/mutation/ 
migration rate are self-explanatory, and their values were set 
based on experience. Max-generation refers to the maximum 
number of generations to be evolved; and max-convergence 
denotes the number of consecutive generations to be waited 
before termination if there is no further improvement to the 
fitness score, which is measured by average accuracy in 
stratified 10-fold cross validation of SVM classifier with the 
tuned parameters. The minimal update level of fitness score is 
0.01%. RBF kernel was used in SVM. C and  were tuned in 
range of 10-2 to 103 by a 10x10 grid with sample size of 8. 

TABLE II. LIST OF PRESET PARAMETERS IN GA-SVM 

GA Parameters 

# of parallel node n

population size 80 

subpopulation size 80/n
cross-over rate 60% 

mutation rate 5% 
migration rate 50% 
max-generation 100 
max-convergence n

fitness epsilon 0.01% 

SVM Parameters 

SVM kernel RBF 

cross-validation 10-fold stratified 

C and  range 10-2 to 103

grid size 10x10 

neighbor sampling size 8 

TABLE III. LIST OF DATASETS TESTED WITH GA-SVM 

Name # of Examples # of Features # of Classes 

Austrian 690 14 2 

Adult 1605 123 2 

The dataset used in the experiment are listed in Table III. 
Both datasets are the pre-processed data from the LibSVM 
(http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/). The 
performance of improvement strategies was measured by 
computation reduction (including search reduction and 
evaluation reduction) and runtime reduction per generation. 
Search reduction refers to how much percentage of search tasks 
is saved compared to grid search; and evaluation reduction 
refers to how much percentage of evaluation tasks is saved 
compared to GA without cache. As GA is a stochastic process, 
the number of generations for convergence may vary for 
different runs. Thus the overall runtime is not appropriate for 
benchmark purpose. Instead, runtime per generation could be 
used to illustrate the effectiveness of the improvement 
strategies. 

GA-SVM is time-consuming even for a small-scale dataset 
like Austrian. For 690 examples of 14 features, it took 1048 
minutes (~17.5 hours) to complete the 16 generations of GA-
SVM. The slowness affirmed our determination to speed up 
GA-SVM for any feasible application in practice. 

Parallel GA can significantly speed up the traditional GA 
by distributing chromosomes to different parallel nodes. The 
reduction on the population size would cut down the 
computational cost in all GA operations especially SVM 
evaluation. Figure 2 confirms this expectation in the 
experiment with Austrian dataset. It was observed that the 
runtime per generation decreased when the number of parallel 
nodes increased. By taking average runtime into account, 
Figure 3 plotted the relationship between (average) runtime per 
generation and the number of parallel nodes. The respective 
speedup gains for 2, 4 and 8 nodes were 2.01, 4.00 and 8.46, 
which demonstrated a linear fashion in runtime reduction. 

In Parallel-SVM, the amount of kernel computations is 
evenly distributed among multiple threads, and each thread is 
allocated to a processing core for concurrent executions. Figure 
4 shows how SVM training time changes with the growing 
number of threads (cores) with Adult dataset. The speedups for 
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2, 3 and 4 threads were 1.89, 2.60 and 2.88 (equivalent to 0.94, 
0.86 and 0.71 per thread) respectively, and the plot exhibited an 
inverse exponential fashion. That was as the result of parallel 
overheads. In our design, communication overhead had been 
minimized by data localization and faster migration algorithm. 
The rest of overheads (like thread start-up and termination) 
have a fixed cost and are independent of data size. Therefore, a 
better performance could be expected in dealing with larger 
datasets, since the cost of the overheads would be amortized. 

Figure 2. Distributions of Runtime Per Generation w.r.t. MPI Nodes 

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8

ru
nt

m
e 

pe
r 

ge
ne

ra
tio

n 
(s

ec
)

# of MPI nodes

Figure 3. Parallel-GA average runtime per generation w.r.t. MPI Nodes 
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Figure 4. Parallel-SVM training time w.r.t. number of threads 

Evaluation caching is able to avoid the unnecessary 
evaluations of identical chromosomes in the different 
generations. If the chance of cache hit (i.e. a chromosome has 
been evaluated earlier and stored in the cache) is significant, 

the overall speedup would be remarkable. Figure 5 shows how 
much percentage of evaluations was saved by caching in the 
experiment.  The frequent re-emergence of identical 
chromosomes was observed as result of low feature dimension 
and mutation rate. 76.25% of cache hit was observed in the 
experiment and led to 75.62% reduction on the average runtime 
per generation (from 61.42 to 14.97 minutes, ~4 times 
speedup). The performance of evaluation caching highly 
depends on re-emergence probability of identical 
chromosomes, which is mostly affected by feature dimension. 
As binary encoding of GA’s chromosomes, the total number of 
combinations of features is 2n where n is the feature 
dimension. When feature dimension increases, the chance of 
hitting a chromosome in the past evaluations will drop rapidly. 
This phenomenon was confirmed in the experiment with Adult 
dataset. As feature dimension rose from 14 to 123 with the 
same population size, there were only 3 cache hits during 40 
generations of GA. By considering the overhead incurred in 
caching, the results suggested that this strategy should be 
cautious in applying to high dimensional data. 

Figure 5. Evaluation Reduction Distribution for Evaluation Caching 
(left: Austrian, right: Adult) 

Figure 6. Search Reduction Distribution for Neighbor Search 
(left: Austrian, right: Adult) 

Neighbor search is an improvement to grid search for 
tuning C and  by replacing exhaustive search with neighbor 
sampling and heuristic search. Figure 6 summarizes the search 
reduction of neighbor search in the experiments with Austrian 
and Adult dataset. For Austrian dataset, two independent runs 
of HGA-SVM were conducted with grid search and neighbor 
search. Using the same 10x10 grid and parameter range, grid 
search required 8000 times (80 chromosomes x 10 x 10 grid) of 
SVM measurements per generation; and neighbor search 
measured only 1410 to 1524 times (80.95% to 82.37% 
reduction, 81.77% on average). Both runs of HGA-SVM found 
the best fitness of 87.97% classification accuracy but the one 
using neighbor search was 5.79 times faster (61.42 mins v.s. 
10.60 mins) per generation. The similar observation was also 
found with Adult dataset: 79.10% to 84.70% search reduction 
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by neighbor search, i.e., on average 5.76 times faster per 
generation. 

Figure 7. Integration of Four Improvement Strategies (Austrian) 
(left: standard GA-SVM, right: HGA-SVM) 

Finally, the collective speedup of all four improvement 
strategies was evaluated. A remarkable reduction on 
computational cost was observed. Figure 7 shows the 
distributions of runtime per generation with Austrian dataset. 
The average runtime per generation is reduced from 61.42 min 
to 0.46 min, ~133 times.  

In all the above experiments, the improvement was also 
observed to SVM learning accuracy over 10-fold cross 
validation (Figure 8). The learning accuracy was enhanced by 
3.74% - 8.10% as a result of feature selection. 

Figure 8. Improvement to Classification Accuracy 

IV. CONCLUSIONS AND FUTURE WORK

Our HGA-SVM combines parallelization and heuristic 
techniques that can effectively lower the computational cost in 
the feature selection model. We had demonstrated the 
individual speedup gain from parallel GA, parallel SVM, 
neighbor search and evaluation caching as well as their 
collective gain. Through the feature selection, the learning 
accuracy of SVM was enhanced as well. Overall, our HGA-
SVM was proved to be useful in alleviating the computational 
cost with the improved learning performance, allowing the 
feasible application to larger data and more complex data  

There is still space for the further development and research 
in HPC-enabled GA-SVM feature selection: 1) the present 
evaluation caching strategy was shown to be ineffective for 
high dimensional data. A possible solution could be applying 
distance-based fuzzy matching rather than exact matching to 
increase cache hit. 2) runtime may be further reduced by 
exploring more computational-efficient SVM algorithms, faster 
parameter tuning mechanism, and adaptive cross validation, 
etc. 3) the present efforts focus on runtime reduction with 
assumptions that the data should be containable in the memory. 
In order to deal with terabytes of data, the model might need 
some scalable tweaks such as boosting techniques. By 
committing both runtime reduction and storage stability, future 
research may aim at building a practical feature selection 
model based on HPC and heuristic techniques for solving the 
large-scale problems. 
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