
1-4244-2384-2/08/$20.00 ©2008 IEEE SMC 2008

A GA-SVM Feature Selection Model Based on High
Performance Computing Techniques

Tianyou Zhang*, Xiuju Fu*, Rick Siow Mong Goh*, Chee Keong Kwoh^, Gary Kee Khoon Lee*

*Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632
^Nanyang Technological University, Singapore 637457

Contact Email: zhangty@ihpc.a-star.edu.sg

Abstract—Supervised learning is well-known and widely
applied in many domains including bioinformatics,
cheminformatics and financial forecasting. However, the
interference from irrelevant features may lead to the poor
accuracy of classifiers. As a popular feature selection model, GA-
SVM is desirable in many of those cases to filter out irrelevant
features and improve the learning performance subsequently.
However, the high computational cost strongly discourages the
application of GA-SVM in large-scale datasets. In this paper, an
HPC-enabled GA-SVM (HGA-SVM) is proposed by integrating
data parallelization, multithreading and heuristic techniques with
the ultimate goal of robustness and low computational cost. Our
proposed model is comprised of four improvement strategies: 1)
GA Parallelization, 2) SVM Parallelization, 3) Neighbor Search
and 4) Evaluation Caching. All the four strategies improve
various aspects of the feature selection model and contribute
collectively towards higher computational throughput.

Keywords—genetic algorithm, support vector machine, HPC

I. INTRODUCTION

Selecting important features out of the original feature set is
a challenging task. Given data samples with class labels,
supervised classification models are usually used together with
optimization algorithms for feature selection in which
classification accuracies are used as fitness evaluation of the
selected feature subsets. In this work, we develop a feature
selection model which combines the merits of support vector
machine (SVM), genetic algorithm (GA) and high performance
computing techniques.

Support vector machine [1] is one of the most popular
classifiers used in supervised learning. The principle of SVM is
constructing an optimal separating hyperplane to maximize the
margin between two classes of data. The performance of SVM
classifier is often sensitive to the choice of margin cost C and
kernel parameters [2]. The optimal parameters that lead to the
minimal generalization error are data-dependent. Presently no
rules or formula can be used to compute such values
analytically, so parameter tuning is often required. An intuitive
realization of parameter tuning is grid search [3]. That is, the
parameters are varied by step-size within the preset range of
values (in a structure of “grid”); the optimal values can be
found by measuring every combination (every node in the
grid). Due to its complexity, usually two-dimensional grid is
used to tune a pair of parameters such as C and (Gaussian
function width in RBF kernel).

Even after parameter tuning, SVM classifier might deliver
poor accuracy in classifying some particular datasets. One

possible reason is noise interference in which an overwhelming
number of irrelevant features are included inside the inputs so
that a truly representative classifier cannot be learnt. If prior
knowledge is insufficient to differentiate which features are
truly relevant to the output, such that all the possible features
are included in the training data, the accuracy of learning would
be deteriorated. In those cases, the key of improving learning
performance is feature selection, which is the technique of
selecting only the relevant features to build a robust learning
function.

There are many optimization techniques that have been
used with supervised learning in feature selection. One of the
favored choices is Genetic Algorithm (GA) [4]. GA is a search
technique that is inspired by the natural evolution. In the
evolution, the individuals with better genetic merits
(chromosome) are more likely to survive under natural
selection and reproduce the offspring; the unfit ones are filtered
out. By constant filtering, generation after generation, the
population tends to carry the fitter and fitter chromosomes. To
mimic this process, all candidate solutions to a feature-selection
problem can be encoded as “chromosome” (feature subset
representation), which takes the form of bit array (e.g.
1001…0101) — 1s and 0s denote the presence or absence of
each feature. A group of those candidate solutions is sampled
randomly and form the initial population of chromosomes. The
chromosomes are then evaluated by objective function to
compute the fitness scores. Multiple chromosomes are
stochastically selected based on their fitness, recombined
(crossover) and mutated, and finally form the next generation.
By means of random mutation and crossover, the variety of
chromosomes is introduced and evaluated in every generation
and gradually evolve the solutions towards the optimal. The
process will be iterated until convergence, i.e. there is no more
improvement to the best fitness score in the population. At the
end, the chromosome with the best-ever fitness will be the final
solution and all the features denoted by 0s will then be filtered
out.

GA-SVM had been widely used to filter out the irrelevant
features and improve the learning accuracy in the noisy
settings. However, one practical problem of GA-SVM is its
extremely high computational cost. Assuming m population
and g generations in GA, w x w grid in parameter tuning and t
seconds for SVM plus 10-fold cross validation, then the overall
runtime will cost mgw2t seconds. It is a time-consuming
process that even a small-scale problem may need nearly a day
to complete (demonstrated in the Result section). That strongly
discourages the application of GA-SVM to larger and more

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2732

 SMC 2009

complex data. In this paper, we introduce high performance
computing (HPC) techniques and heuristic methods to speed up
the traditional GA-SVM feature selection model. In our HPC-
enabled GA-SVM (HGA-SVM), we employ data
parallelization, multithreading, repeated evaluation reduction
and heuristic optimization, with the ultimate goal of trimming
down computational cost and making large-scale feature
selection more feasible. The HGA-SVM is comprised of four
improvement strategies: 1) GA Parallelization, 2) SVM
Parallelization, 3) Neighbor Search, and 4) Evaluation Caching.
All the four strategies work collectively towards higher
computational efficiency.

II. METHODOLOGY

A standard GA-SVM feature selection model is comprised
of three operators: crossover, mutation, and SVM evaluation.
With respect to population size, the first two are of linear
complexity; and the last one is of quadratic complexity. It is
clear that reducing population size could lower computational
cost effectively. Moreover, when input data grows larger and
more complex, most of time lag would rise in SVM evaluation
since all other operators only work in chromosome layer.
Imagine if a single SVM training is slowed down by t seconds
in a larger dataset, by the effect of 10-fold cross validation and
10x10 grid search, the time lag of each chromosome in every
generation would be amplified to 1000t seconds. Apparently
SVM evaluation is the biggest factor in GA-SVM that
discourages the application in large-scale dataset and so
speedup specific to SVM would be desirable.

Identical chromosomes may re-emerge in the different GA
generations due to random mutation and crossover. Since a
standard GA does not keep any historical records on the past-
evaluated chromosomes, it has to evaluate every appearance of
those identical chromosomes. That will waste the computation
power for the unnecessary evaluations and increase the
runtime.

Exhaustive grid search for parameter tuning is slow despite
the grid dimension is small. In a simple 10x10 grid search, it
requires 100 times of SVM learning (with 10-fold cross
validation) for each chromosome in every generation. This
exhaustive search will incur a huge computational cost.
However, parameter tuning cannot be omitted even though the
cost is high. Otherwise SVM learning would be biased and the
purpose of improving learning performance is undermined.

Four improvement strategies were designed to alleviate
computational cost. Parallel GA and parallel SVM speed up the
GA and SVM respectively; neighbor search replaces grid
search to reduce the number of combinations to be measured;
and lastly evaluation caching avoids the repeated unnecessary
evaluations. Figure.1 shows the workflow of all four
improvement strategies in HGA-SVM.

A. Parallel/Distributed GA
The design of GA parallelization follows parallel island

model [5] in a coarse grained architecture. The entire
population of chromosomes is divided into n subpopulation and
each subpopulation is assigned to a different parallel node.
Every parallel node evolves their local subpopulation by a
serial GA. At the end of every generation, multiple

chromosomes are selected randomly at each node and
exchanged among the peers, which is called “migration”.
Migration brings in the new variety to local population and
facilitates to build up the common trend of evolution in all
subpopulations.

Figure 1. Design Scheme of HPC-enabled GA-SVM feature selection model

By distributing chromosomes to n parallel nodes, local
population size is reduced by factor of 1/n (population size is
an even integer before and after reduction). The execution time
of a single GA generation is speeded up by n times
approximately, because selection, crossover and mutation are
of O(n) complexity and SVM evaluation is of O(n3) complexity
with respect to population size [6]. There are however some
drawbacks of parallelization — parallel overheads, which
includes start-up/termination overhead, synchronization
overhead and communication overhead. The first two
overheads are unavoidable in order to coordinate parallel
computing in multiple nodes; so we focus on reducing
communication overhead in this study. As adoption of parallel
island framework, GAs run independently at different nodes
with their local copy of data, so the necessity of data
communication is minimized. Another reduction is realized in
migration operation, which requires passing around the arrays
of bits (chromosomes) among the nodes. There are many
migration schemes specific to certain topology in the literature.
To minimize communication overhead, we adopt “ring”

2733

 SMC 2009

topology for migration in which each node transfers the local
best chromosomes to its neighbor on the ring. For instance,
among three parallel nodes A, B and C, the exchange will
happen as A B, B C and C A. Then the incurred
communication overhead is linear w.r.t. the number of parallel
nodes. If there are n parallel nodes, it requires n generations for
the migrated chromosomes to travel in the ring and return to
their original node. Therefore any serial GA should be allowed
for termination only if there is no further improvement for at
least n consecutive generations. Once any serial GA terminates,
the parallel GA will stop the iteration and collect the local best
chromosome from individual nodes to compute the final
solution.

GA parallelization is developed using the MPI library [7]
and is usually catered for the distributed-memory hardware
architecture. Parallel GA using MPI is able to scale to all the
compute nodes available, which would significantly benefit the
application of our HGA-SVM in large-scale datasets. With the
introduction of multicore processors, GA parallelization can
also be applied to mainstream shared-memory systems to
achieve good performance speedup as well.

B. Parallel SVM
SVM training is compute-intensive because it requires

quadratic programming (QP) [1] for determining the optimal
separating hyperplane. Over the years, several methods had
been developed to lower the computation cost. One of the
methods is sequential minimal optimization (SMO) [8]. SMO
divides a large QP problem into a series of smaller QP
problems that can be solved analytically such that the training
is speeded up. However, when SVM is required to repeat by
thousands of times in a typical feature selection task, the SVM
with SMO (SVM-SMO) is still considerably slow.

To speedup the SVM-SMO, we applied the parallelization
technique to distribute the computations to multiple
nodes/threads for concurrent execution. As parallelization
introduces the extra overheads in coordination and
communication, it is wise to parallelize the most computational
intensive section to achieve the maximal speedup. Table I
shows a typical execution profile of SVM-SMO (retrieved from
LibSVM [9] training execution). It is clear that kernel
calculations take up most of the computational time.

TABLE I. A TYPICAL EXECUTION PROFILING FOR SVM-SMO (LIBSVM)

Time
(%)

Self
(sec)

Calls
(sec)

Function Name

81.15 231.34 791,262,338 Kernel::kernel
11.67 33.27 269,460 SVC_Q::get_Q
4.78 13.64 66,095 Solver::select_working_set
2.22 6.34 1 Solver::Solve
0.15 0.44 66 Solver::do_shrinking
0.02 0.05 3,806 Cache::swap_index

The caller function of those kernel calculations is
comprised of an iterative loop scanning through the instance
space to select a pair for optimization. Thus OpenMP [10], a
parallelization protocol designed for shared-memory multi-
processor/multi-core systems, is most suitable to apply. The

implementation of the parallel SVM is relatively simpler than
GA parallelization. It could be done by identifying and
resolving data dependency inside the loop, followed by
inserting the OpenMP directives, without any modification to
the structure of the algorithm. The parallel SVM will be able to
utilize the multiple CPU cores concurrently in form of
multithreading (refer to Figure 1), so effectively reduce the
computation time. Since OpenMP also introduces the
overheads, the parallel SVM would perform more efficiently if
the training dataset is sufficiently large.

In our HGA-SVM, the GA and SVM operations are
parallelized using MPI and OpenMP respectively. The
parallelization techniques used in both of these operations
allow them to work together as hybrid parallelization to speed
up the workflow concurrently.

C. Neighbor Search
Parameter tuning is crucial to achieve minimal

generalization error in SVM learning; however it is also time-
consuming when employing exhaustive grid search. Inspired by
pattern search method [11], we proposed a new derivative-free
method, neighbor search, as a general solution to parameter
selection problem. Neighbor search inherits the underlying
structure from grid search but not attempt to measure every
node in the grid. In our context, the parameters to be tuned are
margin cost C and RBF kernel width . The neighbor search for
C and starts from an initial position in the grid (says 10x10
grid) as the centroid and sample multiple neighbor nodes with
uniform distribution within the grid of parameter domains. The
centroid and its neighbors are measured by SVM learning
accuracy with the corresponding pairs of parameters applied,
and the best node (the one associated with the highest
accuracy) is nominated as the new centroid. By repeating the
above process, the centroid will keep moving towards the best
node until the convergence, i.e. the centroid itself is the best
among the group of examinees. Neighbor search is a heuristic
search method and the confidence level of its solution depends
on sampling size, i.e. how many neighbor nodes are sampled in
every round. If a larger sampling size, the solution is more
likely to be the optimal in the grid but slower as more
measurements to be done; if a smaller sampling size, less
confident to the solution but faster. By introducing neighbor
search, the tradeoff between solution confidence and runtime
cost could be adjusted appropriately to achieve considerable
speedup with the bearable suboptimal solution.

It is intuitive that if two chromosomes differ in few bits,
their optimal locations in the grid might be closer to each other.
It could be applicable to the mutated chromosomes in the new
generation if the hamming distance between parent and child
chromosome is small. Since neighbor search has been done for
the parent chromosome and found the optimal node, the same
node can be used as the initial centroid for the child
chromosome, which would be advantageous for the faster
convergence.

D. Evaluation Caching
Evaluation caching avoids the repeated unnecessary

evaluations in the different generations by building up a cache
to store all the past evaluated chromosomes. Whenever an
evaluation is requested, the cache is first sought. Only if a

2734

 SMC 2009

cache-miss occurs, an SVM evaluation is executed and the
cache is updated subsequently. The efficiency of the cache
depends on how frequent the identical chromosomes re-
emerge, which is varied and stochastic by nature. However,
according to probability theory, the cache tends to be less
effective when the data dimension grows, because the chance
of encountering the identical chromosomes (after random
mutation and crossover) decreases. The implementation of
evaluation caching requires the additional memory space to
store cache entries. Keeping a small footprint for the cache is a
challenge as a large number of entries could be expectable. In
HGA-SVM, encoding compression is introduced to reduce the
length of individual cache entries. There are two encoding
schemes developed for different type of data. For the low
dimensional dataset, a simple multi-bit encoding is used to
compress a chromosome into a multi-bit symbol string, in
which the compression rate depends on the number of distinct
symbols to be used; for the high dimensional sparse dataset,
further compression could be achieved by encoding the
difference in the consecutive bits of a chromosome followed by
compression to the consecutive 0s in the encoded string. The
encoding compress schemes could not only reduce the footprint
of evaluation cache, but also cut down the computational cost
of cache search due to shorter length of every cache entry.

III. EXPERIMENTS AND RESULTS

Our HGA-SVM has been developed based on an open-
source GA toolbox (GAOT) [12]. The source codes were
ported to Octave [13] and incorporated with the improvement
strategies including parallel GA, neighbor search and
evaluation cache. The MPI required in the parallel GA is
supported by MPITB library [14]. The encoding compression
required in evaluation cache was coded as C++ libraries and
linked to Octave for efficiency purpose. The source code of
LibSVM 2.8.6 [9] was modified to implement the parallel
SVM and also ported to Octave as external library which
allows direct access to runtime variables in the memory. The
experiment platform used is a 2x Intel Xeon Quad-core
(3.0GHz) machine with 32GB memory.

The parameter setting of HGA-SVM is listed in Table II.
The population/subpopulation size and crossover/mutation/
migration rate are self-explanatory, and their values were set
based on experience. Max-generation refers to the maximum
number of generations to be evolved; and max-convergence
denotes the number of consecutive generations to be waited
before termination if there is no further improvement to the
fitness score, which is measured by average accuracy in
stratified 10-fold cross validation of SVM classifier with the
tuned parameters. The minimal update level of fitness score is
0.01%. RBF kernel was used in SVM. C and were tuned in
range of 10-2 to 103 by a 10x10 grid with sample size of 8.

TABLE II. LIST OF PRESET PARAMETERS IN GA-SVM

GA Parameters

of parallel node n

population size 80

subpopulation size 80/n
cross-over rate 60%

mutation rate 5%
migration rate 50%
max-generation 100
max-convergence n

fitness epsilon 0.01%

SVM Parameters

SVM kernel RBF

cross-validation 10-fold stratified

C and range 10-2 to 103

grid size 10x10

neighbor sampling size 8

TABLE III. LIST OF DATASETS TESTED WITH GA-SVM

Name # of Examples # of Features # of Classes

Austrian 690 14 2

Adult 1605 123 2

The dataset used in the experiment are listed in Table III.
Both datasets are the pre-processed data from the LibSVM
(http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/). The
performance of improvement strategies was measured by
computation reduction (including search reduction and
evaluation reduction) and runtime reduction per generation.
Search reduction refers to how much percentage of search tasks
is saved compared to grid search; and evaluation reduction
refers to how much percentage of evaluation tasks is saved
compared to GA without cache. As GA is a stochastic process,
the number of generations for convergence may vary for
different runs. Thus the overall runtime is not appropriate for
benchmark purpose. Instead, runtime per generation could be
used to illustrate the effectiveness of the improvement
strategies.

GA-SVM is time-consuming even for a small-scale dataset
like Austrian. For 690 examples of 14 features, it took 1048
minutes (~17.5 hours) to complete the 16 generations of GA-
SVM. The slowness affirmed our determination to speed up
GA-SVM for any feasible application in practice.

Parallel GA can significantly speed up the traditional GA
by distributing chromosomes to different parallel nodes. The
reduction on the population size would cut down the
computational cost in all GA operations especially SVM
evaluation. Figure 2 confirms this expectation in the
experiment with Austrian dataset. It was observed that the
runtime per generation decreased when the number of parallel
nodes increased. By taking average runtime into account,
Figure 3 plotted the relationship between (average) runtime per
generation and the number of parallel nodes. The respective
speedup gains for 2, 4 and 8 nodes were 2.01, 4.00 and 8.46,
which demonstrated a linear fashion in runtime reduction.

In Parallel-SVM, the amount of kernel computations is
evenly distributed among multiple threads, and each thread is
allocated to a processing core for concurrent executions. Figure
4 shows how SVM training time changes with the growing
number of threads (cores) with Adult dataset. The speedups for

2735

 SMC 2009

2, 3 and 4 threads were 1.89, 2.60 and 2.88 (equivalent to 0.94,
0.86 and 0.71 per thread) respectively, and the plot exhibited an
inverse exponential fashion. That was as the result of parallel
overheads. In our design, communication overhead had been
minimized by data localization and faster migration algorithm.
The rest of overheads (like thread start-up and termination)
have a fixed cost and are independent of data size. Therefore, a
better performance could be expected in dealing with larger
datasets, since the cost of the overheads would be amortized.

Figure 2. Distributions of Runtime Per Generation w.r.t. MPI Nodes

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8

ru
nt

m
e

pe
r

ge
ne

ra
tio

n
(s

ec
)

of MPI nodes

Figure 3. Parallel-GA average runtime per generation w.r.t. MPI Nodes

0

20

40

60

80

100

120

1 2 3 4

ru
nt

im
e

(s
ec

)

of threads

Figure 4. Parallel-SVM training time w.r.t. number of threads

Evaluation caching is able to avoid the unnecessary
evaluations of identical chromosomes in the different
generations. If the chance of cache hit (i.e. a chromosome has
been evaluated earlier and stored in the cache) is significant,

the overall speedup would be remarkable. Figure 5 shows how
much percentage of evaluations was saved by caching in the
experiment. The frequent re-emergence of identical
chromosomes was observed as result of low feature dimension
and mutation rate. 76.25% of cache hit was observed in the
experiment and led to 75.62% reduction on the average runtime
per generation (from 61.42 to 14.97 minutes, ~4 times
speedup). The performance of evaluation caching highly
depends on re-emergence probability of identical
chromosomes, which is mostly affected by feature dimension.
As binary encoding of GA’s chromosomes, the total number of
combinations of features is 2n where n is the feature
dimension. When feature dimension increases, the chance of
hitting a chromosome in the past evaluations will drop rapidly.
This phenomenon was confirmed in the experiment with Adult
dataset. As feature dimension rose from 14 to 123 with the
same population size, there were only 3 cache hits during 40
generations of GA. By considering the overhead incurred in
caching, the results suggested that this strategy should be
cautious in applying to high dimensional data.

Figure 5. Evaluation Reduction Distribution for Evaluation Caching
(left: Austrian, right: Adult)

Figure 6. Search Reduction Distribution for Neighbor Search
(left: Austrian, right: Adult)

Neighbor search is an improvement to grid search for
tuning C and by replacing exhaustive search with neighbor
sampling and heuristic search. Figure 6 summarizes the search
reduction of neighbor search in the experiments with Austrian
and Adult dataset. For Austrian dataset, two independent runs
of HGA-SVM were conducted with grid search and neighbor
search. Using the same 10x10 grid and parameter range, grid
search required 8000 times (80 chromosomes x 10 x 10 grid) of
SVM measurements per generation; and neighbor search
measured only 1410 to 1524 times (80.95% to 82.37%
reduction, 81.77% on average). Both runs of HGA-SVM found
the best fitness of 87.97% classification accuracy but the one
using neighbor search was 5.79 times faster (61.42 mins v.s.
10.60 mins) per generation. The similar observation was also
found with Adult dataset: 79.10% to 84.70% search reduction

2736

 SMC 2009

by neighbor search, i.e., on average 5.76 times faster per
generation.

Figure 7. Integration of Four Improvement Strategies (Austrian)
(left: standard GA-SVM, right: HGA-SVM)

Finally, the collective speedup of all four improvement
strategies was evaluated. A remarkable reduction on
computational cost was observed. Figure 7 shows the
distributions of runtime per generation with Austrian dataset.
The average runtime per generation is reduced from 61.42 min
to 0.46 min, ~133 times.

In all the above experiments, the improvement was also
observed to SVM learning accuracy over 10-fold cross
validation (Figure 8). The learning accuracy was enhanced by
3.74% - 8.10% as a result of feature selection.

Figure 8. Improvement to Classification Accuracy

IV. CONCLUSIONS AND FUTURE WORK

Our HGA-SVM combines parallelization and heuristic
techniques that can effectively lower the computational cost in
the feature selection model. We had demonstrated the
individual speedup gain from parallel GA, parallel SVM,
neighbor search and evaluation caching as well as their
collective gain. Through the feature selection, the learning
accuracy of SVM was enhanced as well. Overall, our HGA-
SVM was proved to be useful in alleviating the computational
cost with the improved learning performance, allowing the
feasible application to larger data and more complex data

There is still space for the further development and research
in HPC-enabled GA-SVM feature selection: 1) the present
evaluation caching strategy was shown to be ineffective for
high dimensional data. A possible solution could be applying
distance-based fuzzy matching rather than exact matching to
increase cache hit. 2) runtime may be further reduced by
exploring more computational-efficient SVM algorithms, faster
parameter tuning mechanism, and adaptive cross validation,
etc. 3) the present efforts focus on runtime reduction with
assumptions that the data should be containable in the memory.
In order to deal with terabytes of data, the model might need
some scalable tweaks such as boosting techniques. By
committing both runtime reduction and storage stability, future
research may aim at building a practical feature selection
model based on HPC and heuristic techniques for solving the
large-scale problems.

REFERENCE

[1] B.E. Boser, I.M. Guyon, and V.N. Vapnik, “A training algorithm for
optimal margin classifiers,” Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, 1992, pp. 144--152.

[1] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing
Multiple Parameters for Support Vector Machines,” Machine
Learning, vol. 46, Jan. 2002, pp. 131-159.

[3] C.W. Hsu, C.C. Chang, and C.J. Lin, A practical guide to support
vector classification, 2003.

[1] M. Mitchell, An Introduction to Genetic Algorithms, 1998.
[5] R. Tanese, “Distributed genetic algorithms,” Proceedings of the third

international conference on Genetic algorithms, George Mason
University, United States: Morgan Kaufmann Publishers Inc., 1989,
pp. 434-439.

[6] V.N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998.
[7] I. Foster, Designing and Building Parallel Programs: Concepts and

Tools for Parallel Software Engineering, Addison Wesley, 1995.
[8] J. Platt, “Sequential minimal optimization: A fast algorithm for

training support vector machines,” Advances in Kernel Methods-
Support Vector Learning, 1999, pp. 185-208.

[9] C.C. Chang and C.J. Lin, “LIBSVM: a library for support vector
machines,” Software available at http://www. csie. ntu. edu.
tw/cjlin/libsvm, vol. 80, 2001, pp. 604–611.

[10] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for
Shared-Memory Programming,” IEEE COMPUTATIONAL SCIENCE
& ENGINEERING, 1998, pp. 46-55.

[11] M. Momma and K.P. Bennett, “A pattern search method for model
selection of support vector regression,” IN PROCEEDINGS OF THE
SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2002.

[12] C.R. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for
Function Optimization: A Matlab Implementation,” NCSU-IE TR,
vol. 95, 1995.

[13] J.W. Eaton, “Octave,” http://www.gnu.org/software/octave/.
[14] J. Fernández, M. Anguita, E. Ros, and J. Bernier, “SCE Toolboxes for

the Development of High-Level Parallel Applications,” Computational
Science – ICCS 2006, 2006, pp. 518-525.

2737

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

