
Job Batching and Scheduling for Parallel Non-
Identical Machines via MILP and Petri Nets

Ralf Fröhlich
Institute of Automation

Hamburg University of Technology
Hamburg, Germany

ralf.froehlich@tu-harburg.de

Matthias Hüsig
Institute of Automation

Hamburg University of Technology
Hamburg, Germany

matthias.huesig@tu-harburg.de

Abstract This paper presents two modeling approaches for
batching and scheduling jobs on parallel non-identical machines.
For scheduling of jobs the due dates as a hard restriction and
machine dependent processing times are considered. Between
each of the jobs a setup may be necessary or not, depending on
the predecessor. The setup of the machines is done by a single
worker who needs to be scheduled as well, since only he can serve
one machine at a time. The objective is to maximize the overall
workload of the machines meeting the constraint of the due dates.
While the first approach uses Mixed Integer Linear
Programming to calculate an optimal schedule, the second one
uses a simulation, based on colored Petri nets. Both methods are
tested and evaluated using illustrative simulation examples.

Keywords Family Setup Times, Scheduling on Parallel Non-
Identical Machines, Mixed Integer Linear Programming, Colored
Petri Nets

I. PROBLEM STATEMENT
We consider the following application of selecting,

batching and scheduling. Suppose we select a number of jobs
out of a stock with jobs. These jobs are processed by a set
of machines which are used to perform the same kind of
processing on a number of jobs without preemption. Due dates
are assigned to the jobs and between each of the jobs a fixed
setup time may be necessary or not, depending on the
predecessor. The setup of the machines is done by a single
worker. He can be seen as an exclusive resource and can only
set up one machine at the same time. In addition the machines
are non-identical and therefore the processing time of the same
job on different machines may differ as well. Therefore the
problem turns up to be a problem of scheduling and batching N
jobs on non-identical parallel machines with fixed family
setup times. The jobs are stored in a common stock and
need to be allocated to one of the machines. At the same time
the jobs on each machine need to be sequenced. The worker
needs to be scheduled to perform the setup of the machines if
necessary. The objective is to schedule the jobs and the worker
to maximize the work load of the machines under the hard
restriction of the due dates. In this paper two approaches are
presented to perform the scheduling using a Mixed Linear
Integer Programming model resp. a Petri net simulation. For
the jobs, the machines and the worker the following
characteristics can be stated:

Job characteristics:
C1. No pre-emption (i.e. interruption) of jobs is allowed.
C2. Jobs may be started at any time.
C3. A due date is associated to each job.
C4. Processing time of a job is machine dependent.

Machine characteristics:

C5. A machine may process only one job at the same time.
C6. Machines are available at all times.
C7. Machines may be idle within the scheduled period.
C8. Machines have setup times.

Worker characteristics:

C9. The worker can only serve one machine at a time.
C10. Each setup must be processed to completion.

Both of the presented approaches need to perform the
following tasks while finding a feasible and suitable schedule:

- Select the jobs out of the stock to be processed in a
production period (e.g. a day).

- Select the machine out of the set of machines on
which the job has to be processed.

- Determine the order of the jobs on each machine
according to the setup times.

- Schedule the worker to perform the necessary setup.
The schedule needs to be calculated for each production period.
At the end of this paper the presented approaches will be
validated and compared to each other by using real life data in
different machine settings.

II. STATE OF THE ART
Scheduling of jobs on parallel machines and scheduling

with fixed family setup times were studied during the past
decades. A good overview can be found in [1], [2] and [5].

However the given problem, especially the concurrence of
family setup times for the jobs and machine dependent
processing times makes it difficult to use an established
batching and scheduling procedure. Since two approaches for
the given problem are presented in this paper, the following
sections give an overview of the current work on related
problems.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
299

A. MILP Batching and Scheduling
The given problem of scheduling on non-identical parallel

machines is a combinatorial complex problem which is NP-
hard, even without the considered setup operations [5]. It is
therefore difficult to solve or even incomputable in general. To
deal with the complexity it is necessary to decompose the
overall problem into sub problems to reduce the complexity.
First it is useful to build batches which include only jobs that
are members of the same setup family [1], since this reduces
the necessary setup operations per production period. Jobs with
a due date within the production period need to be processed in
any case. Selecting the jobs out of the stock and form the
batches can be seen as a kind of knapsack problem, while some
of the jobs need to be performed and others might be selected
or not according to some optimization function. Knapsack
optimization is a well studied problem; see e.g. [5] or [6].

The second sub problem is the allocation of the formed
batches to the machines considering the exclusive resource of
the worker who performs the setup of the machines. Since the
processing time of the jobs on the machines may be different,
the processing times of the batches on the machines are
different as well. The scheduling of the batches and the
allocation can be seen as a scheduling problem of parallel
unrelated machines. Each of two sub problems is solved for a
complete production period. However since the optimization is
done for the two sub problems separately, the global optimum
for the overall problem of scheduling is not guaranteed, since it
might be advantageous to split batches or to perform the
optimization for the whole stock and not only for the
considered production period.

B. Petri Net based Approaches
In production planning Petri nets are used to model and

analyze discrete event systems like production systems [13].
Petri nets provide a very general framework to model timed
discrete event systems with parallel processes and mutual
exclusive resources. One typical modeling method, the so

- to create Petri nets for discrete event
control is described in [13] and is adjusted to colored Petri nets
among others by [8] getting compact Petri net models.

Controllers can be implemented as Petri nets as described in
[9]. All this is used to analyze discrete event systems by
simulation. As described in [12] there are also some approaches
which use the reachability graph in order to analyze discrete
event systems. This graph can be used to create an optimal
controller by supervisory control. In [10] the generation of
schedules by means of the reachability graph analysis is
compared with a method which generates schedules by
simulation. The computational effort to generate a supervisory
controller out of the reachability graph for event driven systems
increases very much with the size of the problem. Therefore it
is not suitable to solve the considered problem in adequate
time. Petri net simulations are suited to evaluate the
performance of heuristic scheduling, priority and dispatching
rules [11], [7]. In [14] the main idea of using the request
allocation principle for the controller design is presented. The
developed Petri net approach is based on this principle.

III. BATCHING AND SCHEDULING WITH MILP
The problem of selecting, batching and scheduling jobs for

a given production period can be separated into two sub
problems. First the selection of the jobs out of the stock and the
composing of the batches are considered. These batches shall
contain only jobs which require the same setup on the
machines. Second the task of allocation and sequencing of the
batches on the machines is done by an optimization.

A. Batching via MILP
Out of the stock of jobs the jobs, which need to be

processed in any case in the production period, since their due
date is within the production period, are used to compose
batches, with . The remaining jobs with a due
date later than the considered production period are used to top
up the built batches if the required setup fits the setup of one of
the batches. The processing time of all batches needs to
match the production period. The decision which of the
remaining jobs is used to top up the batches can therefore be
stated as a Knapsack optimization problem. The aim should be
to allocate as many of the remaining jobs to the composed
batches as possible. The problem can be formulated as a
selection maximization:

there the Boolean stands for the allocation of the ith job to a
matching batch. The capacity constraint that the processing
time of all machines should be greater than the overall
batch processing time can then be stated as:

there is the processing time of job i on machine m. This
assures that at the end of the production period the batches are
processed completely. Note that the setup time of the machines

 need to be considered only once per batch. Since the
processing time for the jobs may be different on different
machines, equation (2) estimates the processing time of the
batches at all machines.

B. Scheduling via MILP
The formed batches are used for the scheduling. The

processing time of a batch j on machine m is stored in ,
while stands for the setup time for each batch. The
optimization goal of minimizing the end of the last processing
time can then be stated as:

For the machine batch allocation

300

is used and marks the starting time of a batch j. For all
batches the setup of the machine needs to be done in front of
the processing, therefore:

Since each batch needs to be allocated to one machine only:

needs to be fulfilled. Introducing a sequence variable , for
the batches with

the sequence condition that

can be introduced, which assures that a batch starts either
before or after another batch. For the starting times four
conditions need to be fulfilled. If the batches are allocated to
the same machine, then the conditions

assure that between two starting times of the batches the later
one does not start before the setup is made. M is a sufficiently
large number compared to the starting times. This models the
exclusive use of the setup resource, see Fig. 1a.

In addition, if the two batches are processed on the same
machine the processing time of the earlier one needs to be
considered:

The timing situation for this is depicted in Fig. 1.b.

IV. BATCHING AND SCHEDULING WITH PETRI NETS
A schedule for the given problem is generated by using a

Petri net simulation which models the controller and the plant.
The plant is modeled as a discrete event system and for the
controller dispatching rules are used. The plant is implemented
as a modular scenery in which the number of machines can be
easily adapted. The simulation environment is implemented

using colored and timed Petri nets. This allows to manipulate
attributes of tokens and to execute code fragments during the
firing of the transitions. In this simulation environment the
machines, the worker and the controller are modeled with the
A-path method [14]. The simulation is initialized using the jobs
to be processed within the production period as these jobs are
batched and scheduled on the given machines first. If there is
some processing capacity left after the first simulation run the
load will be increased repeatedly until the production period is
fully utilized.

The process of this Petri net simulation is as follows: Each
machine generates requests for new jobs if idle. The controller
allocates jobs, forms batches and passes them to the machines.
The coactions of requests, allocations and the simulation of the
plant generate the machine schedule during the simulation run.
If the simulation reaches the termination condition, i.e. the
production capacity is fully used up, a valid schedule is found
for the scheduling problem. The simulation model consists of
two parts. One part is a model of the production plant that is
used to keep the boundary conditions. The other part contains
the controller of the production plant. Fig. 2 shows the main
level of the simulation model. It shows circles named places,
directed edges named arcs and grey boxes named modules.
Places and arcs are normal Petri net structures. The modules
are structural Petri net elements and contain subnets. There are
three different types of places between the controller and the
machines in the Petri net. Places labeled with represent
the buffer of the particular machine . For every job to be
produced on this machine one token is generated in this place.
If a machine runs idle a request is sent to the controller in order
to get a new batch. For every request one token is generated in
the place labeled . These requests are produced by the
machines which act as event generators. The controller handles
this request directly and determines heuristically the best batch
for this particular machine to be processed next. After the
evaluation of the batches new jobs are released to the machine
if the worker is available. The availability of the worker is
tested by connecting the place and the controller with a
test arc. For a better understanding of the operating principle of
the controller, the subnet of the controller module C is depicted
in Fig. 3. It shows the part of the controller which processes the
requests of machine 1. Some of the Petri net elements are
drawn in grey others in black.

Figure 1. Timing constraints for distinct (a) and identical (b) machines

M1

M2

t

setup

tj tk

pjM2

pkM1

(a)

M1

M2

setup

tj tk

pjM1 pkM1

(b)

Ts Ts Ts Ts

t

O1

C

M1 Mn

B1 BnR

On

...

stock

W

Figure 2. Main level of the hierarchical Petri net model with a controller C,
machines M and places in between. Input buffer B, output buffer O, request
place R and the worker W.

301

The black elements are used for all request replies, the gray
ones just for the decision of machine 1. At the beginning of the
simulation the data of all jobs in the stock is read in. Jobs are
classified into jobs with a due date in the current production
period and a due date in future. Depending on the due date of
the job transition either t1 or t2 is activated, respectively. Each
job is represented by a token. The first group of jobs is stored
in the place named settled stock. Jobs in this place are used as
the basis for the scheduling algorithm and have to be processed
within the production period. Jobs in the place flexible stock
can be used to fill idle times and to enlarge the scope of work
in the settled stock. The jobs within the settled stock are used to
compose batches which require the same setup. At the
beginning of the simulation run the jobs can be transferred
from the flexible to the settled stock. This is done in the module
update settled stock. All jobs in the place settled stock belong
to one of the batches. For each batch the properties are
determined like the numbers of jobs or the average processing
time. For each batch a token with the batch properties is
generated during the read in of the jobs and stored in the place
bp. Later on, the stored information is used to allocate the jobs
and to make sure that each setup is used only once within a
production period.

Requests for new jobs are generated by the machines and
handled by the controller. The worker has to retool the machine
first if a new batch should be processed. The transition t3 is
only enabled if there is a token at the place , at the place
and the place otherwise transition t5 is enabled. If t3 fires, the
choice net is activated and a new batch is determined. The
choice net evaluates the remaining batches. For each machine a
choice net has to be implemented and be parameterized
according to the machine properties. The decision which batch
to be processed next depends on the machine type and is done
via a priority dispatching rule. After choosing the best batch a
token is generated in place chosen batch containing the number
of the batch to be processed next. If the value of the attributes
in settled stock and chosen batch matches, transitions t4 or t6

are activated or deactivated, respectively. Transition t6 fires
until all jobs related to this batch are released. After this
transition t4 is enabled, the token in place chosen batch is
removed and added to place Rc. This place denotes that the
controller is available for the next request. Transition t5 fires if
the worker is not available, i.e. there is no token in the place
at the time of a request. The controller releases then a new job
from the flexible stock if the setup of the machine and the one
required by the job match. This bridges the time span until the
worker is available again. The request generation is repeated
until all jobs in the place settled stock are processed. After each
simulation run the overall processing time of the selected jobs
and the production period are compared. If the processing time
is less than the production period, the scope of work is
increased. The implemented controller enhances the batch sizes
to increase the processing time. Batches with fewer jobs are
stocked up first to justify the expense of retooling. Jobs which
enlarge the scope of work are reclassified from the flexible
stock to the settled stock, as depicted in Fig. 4. The number of
tokens within the place start defines the number of additional
jobs to be processed. The module get sparse batch contains a
sort of algorithm which returns the batch with the smallest
number of jobs. After that the transition t can fire if the
attribute b of one of the tokens in place flexible stock is similar
to the attribute b of the token in place P2. The job is then added
to the place settled stock. After this modification the properties
of the setup family have to be updated. Afterwards the next
sparse batch is determined and enlarged.

The worker represented as a token in place W is modeled as
a parallel mutual exclusion (PME) in the Petri net. Two
processes designed as A-paths both need the resource worker
W exclusively (Fig. 5). If a setup is started in one of the
machines the token in place is removed. In this case the
transition for starting the setup of the other machine is not able
to fire. After the completion of setup the stop transition fires
and a token is generated in place .

W

A-Path
Setup M1

A-Path
Setup Mn

start

stop

start

stop

Figure 5. Worker modeled as parallel mutual exclusion (PME)

get
sparse
batch

(b)

(job b)

(b)

(job b)

bp

P2

settled
stock

flexible
stock

t

start

Figure 4. Module update settled stock enlarge sparse batches

choice
net

WR

settled
stock

start

chosen
batch

Rc

bp

B1

t2t1

t3

t4

stock
controller

t5

t6

flexible
stock

update
bp

update
settled
stock

Figure 3. Subnet of the controller module C. Input jobs in stock and requests
R, outputs machine buffer B.

302

V. EVALUATION OF RESULTS
For comparing the two presented approaches three different

test scenarios are calculated. The goal is to obtain schedules
maximizing the overall workload of the machines maintaining
the due dates of the jobs. For this batches need to be built,
allocated and to be sequenced on the machines. While the
MILP optimization handles the data for the whole production
period at once, the Petri net simulation runs until the end of the
production period is reached. While the batching in the MILP
method is done prior to the actual scheduling, the Petri net
approach batches all jobs dynamically. The static batching of
the MILP approach does not take the impact of the imbalance
of the processing times on different machine into account.
Since the approximated overall batch processing time of
equation (2) is only a rough guess, the machine production time
may not be used as well as possible. On the other hand the
dynamical batching of the Petri net approach makes it
necessary to simulate the whole production period repeatedly to
get a packed schedule. The worker is considered in the MILP
model explicitly while in the Petri net approach the worker is
considered only if a machine runs idle. The exclusivity
constraint may sometimes only be assured by adding waiting
times. The Petri net approach always calculates a feasible
schedule in the first simulation which includes at least the
compulsory jobs. In the worst case the idle time of the
machines due to the worker s occupation is half of the setup
time for the two machine case. On the other hand the MILP
approach might not be able to find a feasible schedule which
ends within the required production period, since it builds the
batches prior to the actual scheduling. For all sample data a
fixed production period of eight hours is considered. The
results overview can be studied in Table I.

The first test scenario is based on real production data from
a two machine batching and sequencing problem, arising in a
printing workstation in the production of semiconductors.
There are 220 jobs in the stock, 93 of them compulsory. The
jobs usually need between 2 to 10 minutes to be processed
dependent on which of the two machines the processing takes
place. Since machine M2 is a more sophisticated one, the
processing time on M2 is always equal or smaller than on M1.
The setup time between the batches shall be 10 minutes. The
resulting Gantt charts for the batched jobs can be studied in
Fig. 6. Both approaches achieve the objective that all jobs with
a due date within the production period are processed and
generate therefore valid schedules. In this example a few
characteristics of the two methods can be studied, e.g. that the
MILP approach does not use the whole machine processing
time. This results in an idle time at the end of the production

period due to the bad prediction of the necessary processing
time. The Petri net schedule does not use the whole machine
time either, since the worker is busy retooling another machine
while the end of a batch is reached. This controller can only use
this idle time if there are jobs left in the stock which need the
same setup. Due to the local decision of the Petri net approach,
made when a machine runs idle, the allocation of the batches
and the machines is not done in an optimal way. Since the
optimization of equation (3) is doing the allocation for the
whole production period at the same time, the machines are
used for the most suited batches.

The results for the second test scenario are depicted in Fig.
7. In this case 17 different batches need to be processed during
the production period, while 180 jobs are considered. The data
for this example is generated using an unequally distributed
number of jobs per setup family. Both approaches generate a
feasible schedule. On the one hand the Gantt chart generated by
the Petri net approach shows the result of preferring the big
batches at the beginning of the production period. The filling
up procedure becomes much more complicated for small
batches at the end of the production period, since there are not
enough jobs remaining in the stock. On the other hand the
MILP procedure does not even consider the size of the batches
for the selection from the stock, but prefers small jobs in the
optimization equation (1). Due to that the remaining jobs in the
stock may be less but need more processing time than the ones
left by the Petri net controller. In Fig. 8 the results for the third
sample data set are shown. Here the doubled real world data
were used to calculate a schedule for a three machine case,
while M2 has the same characteristic as M3. As the number of
machines and jobs increases the complexity increases as well.
However for the presented data the schedule was still
computable in reasonable time, this is mainly because the
compulsory jobs still have a big share and therefore keep the
knapsack problem for the MILP approach small. Also, the

t

M2
M1

setup
a)

b)

M3

M1
setup

84

t84

M3

M2

Figure 8. Test data for 3 machines with 10 batches for MILP a) and Petri net b)

t

M2
M1

setup
a)

b)

M2
M1

setup
84

t84

Figure 7. Generated test data with 17 batches for MILP a) and Petri net b)

t

M2
M1

setup
a)

b)

M2
M1

setup
84

t84

Figure 6. Real test data with 10 batches for MILP a) and Petri net b)

303

number of batches to be scheduled is constant and there are still
only two different kinds of machines since M2 and M3 are
identical. The computational time for the Petri net schedule
increases as well but its amount is still reasonable. The MILP
approach only needs a few seconds for the calculation of the
three schedules shown in Fig. 6 to Fig. 8. For the Petri net
approach the computational effort increases mainly due to the

, which is performed repeatedly until the
final schedule is found. However the first feasible schedule is
found in less than 10 sec. for all of the considered data. As can
be studied in Table I, both approaches calculate nearly fully
stretched workloads for the machines.

VI. CONCLUSION
This paper presents two scheduling approaches for the job

batching and scheduling problem with family setup times on
parallel unrelated machines. In addition the setup of the
machines is done by a single worker and needs to be
considered as well. The presented approaches use a mixed
integer linear programming and a Petri net model to solve the
scheduling problem. Handling the task quite differently, both
approaches calculate valid schedules for a given production
period. The performance of the two methods are validated and
compared using a real world problem. The objective of
maximizing the workload is considered by both approaches by
increasing the processed jobs. The MILP method maximizes
the number of the processed job despite the job processing
time. The Petri net approach increases the number of processed
jobs by increasing the batch size of the smallest one.

The determining of the batch size is done prior to the
scheduling and sequencing in the MILP method using an
estimated workload. This leads to the situation that the machine
time may not be used efficiently or the batches may not be
processed completely. Here a sequence of repeated
optimizations, updating the estimated workload, would help but
it increases the computational expenses a lot.

On the other hand the Petri net approach batches all jobs
dynamically and determines a feasible schedule within the first
simulation run. This first schedule includes the compulsory
jobs and is then used to add proper jobs successively. However,
this is done in a pragmatic fashion which does not guarantee
the efficient use of the worker.

For the implementation of both approaches standard
software tools were used. There can be made further
investigation about the worker schedule since this is not
considered in both approaches at the moment. Imaginable
would be an equally distributed workload or the incorporation
of breaks for the worker.

For the given problem both approaches lead to feasible
schedules. Considering an increasing complexity for the given
problem, e.g. if the number of jobs or machines increases, the
Petri net approach is to be preferred. This is due to the fact that
a feasible schedule is calculated within the first simulation run.
The MILP approach however can be used to check the
performance of the Petri net approach and to enhance the used
request allocation principle of the Petri net approach.

REFERENCES
[1]

flowshop scheduling res
Operations Management, Vol. 9, No. 3, 2000, pp. 262-282

[2] -

2007, pp.353-364
[3] Shisheng -machine parallel-batching

Journal of Combinatorial Optimization, Springer online, May 2008
[4] Order Scheduling Models An Overview, Multidisciplinary Scheduling:

Theory and Applications. 1st International Conference, MISTA '03
Nottingham, UK, 13 15 August 2003

[5] J. Y.-
2004

[6] -
ILOG, 2007, www.ilog.com

[7] Me
th International Conference on Production Research,

August 2007
[8] M. Aguiar, R. Barreto, R. Caldas, J. Edgar, and C. Filho, "Modeling and

analysis of Flexible Manufacture Systems through hierarchical and
Colored Petri Nets", Industrial Technology, 2008. ICIT 2008. IEEE
International Conference on, pp. 1 6.

[9] M. Dahms, and M. Schmidt, "Modeling of dispatching-rules for job shop
scheduling in manufacturing systems - a Petri net approach", Systems,
Man and Cybernetics, 2005 IEEE International Conference on, vol. 3,
pp. 2025-2030 Vol. 3.

[10] Hehua Zhang, Ming Gu, and Xiaoyu Song, "Modeling and Analysis of
Real-Life Job Shop Scheduling Problems by Petri nets", Simulation
Symposium, 2008. ANSS 2008. 41st Annual, pp. 279 285.

[11] Chun Wang, H. Ghenniwa, and Weiming Shen, "Heuristic scheduling
algorithm for flexible manufacturing systems with partially overlapping
machine capabilities", Mechatronics and Automation, 2005 IEEE
International Conference, vol. 3, pp. 1139-1144 Vol. 3.

[12] W.M. Wonham, Supervisory Control of Discrete-Event Systems:
Unversity of Toronto, 2008.

[13] M. Zhou, and F. DiCesare, Petri net synthesis for discrete event control
of manufacturing systems. Boston: Kluwer Acad., 1993.

[14] W. Meyer, and C. Fiedler, "Mission control by coordinating shared
resources", System of Systems Engineering, 2006 IEEE/SMC
International Conference on, 2006, pp. 13 pp.-.

TABLE I. TEST SCENARIOS AND RESULTS FOR MILP AND PETRI NET
APPROACH

Approach Scenario Jobs
processed/left

Work-
Load

Jobs processing
time

M1+M2(+M3)

Jobs processing time Left
M1/M2/M3

MILP 220 jobs
(93 compulsory)

10 setups
2 machines

148/72 91.03% 14.56h 11.09h/10.72h

Petri net 143/77 96.41% 15.43h 8.98/8.13h

MILP 180 jobs
(86 compulsory)

17 setups
2 machines

135/45 98.18% 15.71h 7.09h/6.89h

Petri net 125/55 96.26% 15.4h 6.4h/5.79h

MILP 440 jobs
(186 compulsory)

10 setups
3 machines

210/230 96.21% 23.09h 27.22h/24.75h/24.75h

Petri net 202/238 94.31% 22.63h 26.53h/23.72h/23.72h

304

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

