
A Novel Discrete Differential Evolution Algoritnm 
for Task Scheduling in Heterogeneous Computing 

Systems 

Qinma Kang*

School of Electronics and Information Engineering 
Tongji University 

Shanghai 201804, China 

Hong He 
School of Information Engineering 

Shandong University at Weihai 
Weihai 264209, China

Abstract—Task scheduling is one of the core steps to 
effectively exploit the capabilities of distributed heterogeneous 
computing systems. In this paper, a novel discrete differential 
evolution (DDE) algorithm is presented to address the task 
scheduling problem. The encoding schemes and the adaptation of 
classical differential evolution algorithm for dealing with discrete 
variables are discussed as well as the technique needed to handle 
boundary constraints. The performance of the proposed DDE 
algorithm is showed by comparing it with a genetic algorithm, 
which is a well-known population-based probabilistic heuristic, 
on a large number of randomly generated instances. 
Experimental results indicate that the proposed DDE algorithm 
has generated better results than GA in terms of both solution 
quality and computational time. 

Keywords—Discrete differential evolution algorithm; 
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I. INTRODUCTION

Heterogeneous computing systems (HCS) are composed of 
a heterogeneous suite of machines with varied computational 
capabilities interconnected by high-speed networks, and have 
emerged as a powerful platform to execute computationally 
intensive applications that have diverse computational 
requirements [1]. One of the major challenges for harnessing 
the computing power of HCS to achieve high performance for 
tasks is the scheduling problem, i.e., we need address that each 
task should be mapped to its suited machine architecture. The 
mapping methods can be grouped into two categories: on-line 
mode and batch-mode [2]. In the on-line mode, a task is 
mapped onto a machine as soon as it arrives at the scheduler. In 
the batch mode, tasks are not mapped onto the machines as 
they arrive; instead they are collected into a set that is 
examined for mapping at prescheduled times called mapping 
events. The independent set of tasks that is considered for 
mapping at the mapping events is called a meta-task [1, 3]. In 
this study, we consider the meta-task scheduling problem, 
which is to find a task assignment scheme that minimizes the 
schedule length of a meta-task .

                                                          
*The author is also affiliated to School of Information Engineering, Shandong 
University at Weihai, Weihai 264209, China.

The meta-task scheduling problem is known to be NP-
complete [2]. Therefore, only small-sized instances of the 
scheduling problem can be solved optimally within a 
reasonable computational time using exact algorithms. 
Heuristic algorithms, on the other hand, have generally 
acceptable computation time and memory requirements to 
obtain a near-optimal or optimal solution. For this reason, most 
research focused on developing heuristic algorithms. Some of 
the well-known fast constructive heuristics, which have been 
reported in the literature, include Min-min, Max-min, Sufferage 
[3], Qos Guided Min-min [4], Segmented Min-min [5], etc. In 
recent years, a growing body of literature suggests the use of 
meta-heuristic search methods for combinatorial optimization 
problems (COPs). Several meta-heuristic algorithms that have 
been identified as having great potential to address practical 
optimization problems include Genetic Algorithms (GA) [6, 7], 
Simulated Annealing (SA), Tabu Search (TS) and Particle 
Swarm Optimization (PSO), etc. Consequently, over the past 
few years, several researchers have demonstrated the 
applicability of these methods to task assignment problem [8-
11].  A good overview of the task assignment algorithms can be 
found in [12]. Due to the intractable nature of the matching and 
scheduling problem and its importance in HCS, new efficient 
techniques are always desirable to obtain the best possible 
solution within an acceptable computational time. 

Differential evolution (DE) is a population-based meta-
heuristic algorithm recently proposed by Storn and Price [13] 
for global optimization over continuous spaces. In the mutation 
process of a DE algorithm, the weighted difference between 
two randomly selected population members is added to a third 
member to generate a mutated solution. Then, a crossover 
operator follows to combine the mutated solution with a target 
solution so as to generate a trial solution. Thereafter, a selection 
operator is applied to compare the fitness function value of 
both competing solutions, namely, target and trial solutions to 
determine who can survive for the next generation. Since its 
invention, DE has been applied with high success to many 
numerical optimization problems. Moreover, different variants 
of the basic DE model have been proposed to improve its 
efficiency over continues problems. 

Despite the simplicity and the high efficiency of DE, its 
application on the solution of COPs with discrete decision 
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variables is still limited. The major obstacle of successfully 
applying a DE algorithm to solve COPs in the literature is due 
to its continuous nature. To remedy this drawback, this 
research introduces a novel discrete differential evolution 
(DDE) algorithm for solving meta-task scheduling problem to 
effectively exploit the capabilities of heterogeneous computing 
systems. 

The remaining paper is organized as follows. Section 2 
gives a brief introduction to DE. Section 3 describes the 
formulation of meta-task scheduling problem. Section 4 
introduces the discrete differential evolution algorithm. Section 
5 reports the comparative performance and convergence 
analysis. Finally, section 6 summarizes the concluding remarks. 

II. Brief Introduction to DE 
As with all evolutionary optimization algorithms, DE starts 

with a population of D-dimensional search-variable vectors 
called individuals, where D corresponds to the number of 
problem’s parameters, and each vector represents potential 
solution for the optimization problem at hand. It finds the 
global optima by utilizing the distance and direction 
information according to the differentiations among population. 
Currently, there are several variants of DE, which vary based 
on the base vector to be perturbed, the number and selection of 
the difference vectors and the type of crossover operators. The 
common format of DE is DE/x/y/z, where x represents a base 
vector to be perturbed, y is the number of difference vectors 
used for perturbation of x, and z stands for the type of 
crossover being used (bin: binomial; exp: exponential). Let t 
denote the number of iterations, the i-th vector of the 
population at the current generation can be represented 
by

,1 ,2 ,( , , ..., )t t t t
i i i i DX X X X= . Let PS denote the number of 

individuals in the initial population, namely population size, 
and the population size is usually kept constant throughout 
iterations. For a minimization problem, the basic procedure of 
DE, which is denoted as DE/rand/1/bin [13], can be given 
below:  

Step 1: Initialize population. 

For each search-variable, there may be a certain range 
within which value of the parameter should lie for better search 
results. At the very beginning of a DE run or at t = 0, problem 
parameters or independent variables are initialized somewhere 
in their feasible numerical range. Therefore, if the j-th 
parameter of the given problem has its lower and upper bound 
as L

jx and U
jx respectively, then we may initialize the j-th 

component of the i-th population members as 
0
, (0,1) ( )L U L

i j j j jX x rand x x= + × −   (1) 

where rand(0,1) represents a uniformly distributed random 
value that ranges from 0 to 1. 

Step 2: Mutation phase. 

In the mutation phase, for each target vector t
iX , i {1, 2, 

…, PS}, a mutant vector t
iV is obtained by 

1 2 3
( )t t t t

i r r rV X F X X= + × −    (2) 

where r1, r2, r3 {1, 2, …, PS} are mutually distinct random 
indices and are also different from the current target index i.

The vector
1

t
rX is known as the base vector to be perturbed, and 

F > 0 is a scaling parameter. 

Step 3: Crossover phase. 

For each target t
iX , a trial vector t

iY is formed as: 

,
,

,

(0,1)t
i jt

i j t
i j

V if rand CR or j k
Y

X else

< =
=  (3) 

where k is a randomly chosen integer in the set {1, 2, ..., D}; 
the subscript j represents the j-th component of respective
vectors; rand(0,1) (0, 1), drawn randomly for each j; CR (0, 
1) is crossover probability that affects the convergence rate and 
robustness of the search process. 

Step 4:  Selection phase. 

The selection scheme of DE also differs from the other 
evolutionary algorithms. In the selection phase, the function 
value of the trial vector, f ( 1t

iY + ), is compared to f ( t
iX ), to 

determine which one of the target vector and the trial vector 
will survive in the next generation. The process may be 
outlined as: 

1
( ) ( )t t t

i i it
i t

i

Y if f Y f X
X

X else
+

<
=   (4) 

where f is the function to be minimized. So if the new trial 
vector yields a better value of the fitness function, it replaces its 
target in the next generation; otherwise the target vector is 
retained in the population. Hence the population either gets 
better or remains constant but never deteriorates. 

Recombination (mutation and crossover) and selection 
continues until a stopping criterion is satisfied, and then the 
best individual of the population found so far is reported as the 
final solution. 

The scheme described above is only one variant of the basic 
DE algorithm. There are some other DE variants, mainly 
differing in the way they create the mutant vector (Equation 
(2)). The creation of the i-th mutant vector in another well-
known variant called DE/best/1/bin [13] is given by the 
following relation: 

1 2
( )t t t t

i best r rV X F X X= + × −    (5)

where t
bestX is the best vector of the current population.

III. META-TASK SCHEDULING PROBLEM

A meta-task is defined as a collection of independent tasks 
that is considered for mapping at the scheduling events, and 
makespan the completion time for the entire meta-task [12]. A 
typical example of meta-task scheduling is the mapping of an 
arbitrary set of independent tasks from different users waiting 
to execute on a heterogeneous suite of machines. Each task in a 
meta-task may have associated properties, such as a deadline or 
a priority. It is assumed that each machine executes a single 
task at a time, in the order in which the tasks arrived, and the 
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size of the meta-task (number of tasks to execute), N, and the 
number of machines in the HCS, M, are static and known a 
priori. Therefore, task scheduling problem can be defined as N
tasks are assigned on M heterogeneous resources with the 
objective of minimizing the completion time and utilizing the 
resources effectively. 

To formulate the problem, define P = {p1, p2, …, pM}) as 
the set of M heterogeneous machines and T = {t1, t2, …, tN} as 
the set of N independent tasks to be assigned to the machines. 
Because of the heterogeneous nature of the machines and 
dissimilar nature of the tasks, the expected execution times of a 
task on different machines are different. Every task has an 
expected time to compute (ETC) on a specific machine. We 
assume that the ETC of each task on each machine is known 
based on user-supplied information, task profiling and 
analytical benchmarking. The assumption of such ETC
information is a common practice in scheduling research (e.g. 
[2-5]). So we can obtain an N×M ETC matrix. ETC (i, j) is the 
estimated execution time for task i on machine j. The total 
execution time used by machine pj is the sum of the expected 
execution times of those tasks that are mapped to the machine. 
The makespan of a schedule is the maximum of the total 
execution times of those machines. To calculate the makespan 
of a schedule, we first introduce a vector of machine 
completion time which size is M [14]. Formally, for a machine 
pm and a schedule S, the completion time of pm is defined as 
follows: 

[ ] ,

[ ] ( , )
jS j m t T

completion m ETC j m
= ∀ ∈

=  (6) 

where S[j]=m denotes the task tj is assigned to machine m under 
the schedule S.

We can use the completion time of machines to compute 
the makespan as follows: 

max{ [ ] | }mmakespan completion m p P= ∀ ∈  (7)
The objective of this work is to find a schedule scheme with 

the minimum makespan. 

IV. THE PROPOSED DDE ALGORITHM

A. Solution Representation and Initial Swarm Generation 
One of the key issues in designing a successful DE 

algorithm is the solution representation, i.e. finding a suitable 
mapping between problem solution and DE individual. The 
natural coding for task scheduling problems is the integer 
vectors as used in GAs [12]. In this paper, each individual S 
corresponding to a feasible solution of the underlying problem 
is represented as a vector of size N in which its j↩th position 
(an integer value) indicates the machine to which task j is 
assigned: S[j] = m, m {1, 2, . . . , M}. 

The DE is a population-based searching paradigm that 
explores the solution space by recombining a number of 
individuals, called a population. An initial population is 
randomly generated for iterative improvement according to 
equation (8), which is presented for the j-th dimension of the i-
th particle. 

0
, (1 (0,1) ) 1 ,1i jX INT rand M i PS j N= + × ≤ ≤ ≤ ≤   (8)

where INT is a function for converting a real-value to an 
integer value by truncation and rand(0,1) is a uniform random 
number in the range (0,1). 

B. Fitness Value 
In DE algorithm, all individuals at each iteration step are 

evaluated according to a measure of solution quality, called 
fitness. For the problem at hand, we use the makespan of an 
individual as its fitness value. See section 2. 

C. The Proposed DDE Algorithm 
In its canonical form, the DE algorithm is only capable of 

handling continuous variables. In order to apply the DE 
algorithm to integer optimization problems, it is crucial to 
design a suitable encoding scheme that maps the floating-point 
vectors to integer vector solutions. Several approaches have 
been used to deal with discrete variable optimization. Most of 
them round off the variable to the nearest available value 
before evaluating each trial vector, i.e., integer values are used 
to evaluate the objective function, even though DE itself may 
still works internally with continuous floating-point values 
[15]. Another widely used representation technique that deals 
with floating-point vectors for discrete optimization problems 
is the random-keys encoding. According to this technique, each 
solution is encoded as a vector of N floating-point numbers. 
The components of the vector are sorted and their order in the 
vector determines the final solution to the problem. However, 
this encoding scheme has been demonstrated to be poor suited 
within the DE algorithm to address discrete optimization 
problems [16]. Moreover, the techniques used to deal with 
sequencing optimization problem cannot be applied directly to 
task scheduling in HCS generally. 

It is important to note that DE is self-adaptive. At the 
beginning of the evolution process, the mutation operator of 
DE favors exploration since parent individuals are far away to 
each other. As the evolutionary process proceeds to the final 
stage, the mutation operator favors exploitation in that the 
population converges to a small region. As a result, the 
adaptive search step enables the evolution algorithm to perform 
global search with a large search step at the beginning and 
refine the population with a small search step at the end. 
Therefore, extending DE to optimization of integer variables is 
rather easy. Only the scaling parameter is set to 1. Based on 
this idea, we propose a discrete variant of DE denoted as 
DE/i/1/bin. In the proposed algorithm, a mutant vector t

iV is 
obtained by 

1 2

t t t t
i i r rV X X X= + −    (9) 

where r1, r2 {1, 2, …, PS}←are mutually distinct random 
indices and are also different from the current target index i.
The trial vector t

iY is formed as: 

,
,

,

(0,1)t
i jt

i j t
best j

V if rand CR
Y

X else

<
=   (10) 

Note that we use the i-th vector as base vector for the i-th 
target individual, and then the mutant vector is combined with 
the best individual of the current population for yielding the 
trial vector at each iteration step. 

5153



D. Boundary Constraints 
It is important to notice that the recombination operation of 

DE is able to extend the search outside of the initialized range 
of the search space, which leads to illegal solutions. For the 
problem under investigation, it is essential to ensure that 
parameter values lie inside their allowed ranges after 
recombination. A simple way to guarantee this is to replace 
parameter values that violate boundary constraints with random 
values generated within the feasible range: 

,

,

,

(1 (0,1) / 2) 1

( / 2 (0,1) ( / 2 1))

t
i j

t
i j

t
i j

INT rand M if V

V INT M rand M
if V M

+ × <

= + × +
>

 (11) 

E. The DDE Algorithm 
The details of the proposed DDE algorithm are presented in 

Fig. 1. The algorithm starts with an initial population of PS
individuals. Each individual vector corresponds to a candidate 
solution under investigation. Then, all of the individuals are 
iteratively improved until one of stopping criteria is satisfied. 
When the algorithm is terminated, the incumbent global best 
individual and the corresponding fitness value are output as the 
optimal task scheduling scheme and the minimum makespan. 

Figure 1. Pseude Code of DDE Algorithm.  

V. EXPERIMENT RESULTS

To evaluate the efficiency and effectiveness of the proposed 
algorithm, intensive experiments have been conducted. A large 
simulation dataset is created which features different mapping 
situations. The proposed algorithm is compared with the 
genetic algorithm (GA) proposed by Braun et al. [12] because 
both of them are population-based evolutionary algorithms. 
Both the algorithms for meta-task scheduling are coded in 
MATLAB6.5 and experiments are executed on a Pentium Dual 

1.6GHz processor with 1GB main memory running under 
Windows XP environment. 

 The GA is implemented with roulette wheel selection, one-
point crossover operator, a mutation operator and an elitism 
mechanism for the comparison purpose. The parameters of GA 
are set as follows: crossover probability = 0.8, mutation 
probability = 0.1, population size = 100 and their GA finalizes 
when either 1000 iterations have been executed, or, when the 
chromosome elite have not varied during 150 iterations. 

The crossover rate CR in DDE is determined 
experimentally by incrementing from 0.1 to 0.9 in 0.1 steps. In 
the simulation trials tested, the performance peak is detected 
with CR equal to 0.4. The size of the initial population is set to 
100 and we use the same stopping criteria as that used in GA 
for the fair comparison purpose.  

The simulation model presented in [12] is also employed 
here for our comparison study. In this model, characteristics of 
the ETC matrices are varied in an attempt to simulate various 
possible heterogeneous computing environments. This kind of 
variation is implemented by setting the value scope of random 
numbers used to produce ETC matrices. Firstly, an N 1
baseline column vector B is generated, where each element 
B(i), 1 N, is a uniform random number between 1 and 

b. Then, the rows of the ETC matrix are constructed. Each 
element ETC(i, j), 1 i N, 1 j M, of ETC matrix is 
created by taking baseline value, B(i), and multiplying it by a 
uniform random number x(i, j) , whose value is between 1 and 

r. Therefore, any given value in the ETC matrix is within the 
range [1, b r].

To denote various kinds of mapping situations, the matrices 
are classified into 12 different types according to three metrics: 
task heterogeneity, machine heterogeneity and consistency. The 
task heterogeneity describes the amount of variance among the 
execution times of the tasks in the meta-task for a given 
machine, two possible values are defined: high and low. 
Machine heterogeneity describes the possible variation of the 
running time of a particular task across all the machines, and 
again has two values: high and low. Each of the different task 
and machine heterogeneities is modeled by using different b
and r values: high task heterogeneity is represented by setting 

b = 3000 and low task heterogeneity is modeled using b = 
100. High machine heterogeneity is represented by setting r = 
1000, and low machine heterogeneity is modeled using r = 
10.  

An ETC matrix is considered consistent when, if a machine 
mi executes task tk faster than machine mj, then mi executes all 
the tasks faster than mj. Inconsistency means that a machine is 
faster for some tasks and slower for some others. An ETC
matrix is considered semi-consistent if it contains a consistent 
sub-matrix. All instances consist of 256 tasks and 16 machines 
and are labeled u_x_yyzz whose meaning is the following: 

u means uniform distribution (used in generating the 
matrices). 

x means the type of inconsistency (c–consistent, i–
inconsistent and s means semi-consistent). 

DDE
{ Initialize parameters.    

Generate PS individuals at random using equation (8). 
 Evaluate the individuals and determine the best 

individual. 
Repeat 
{    Mutation step: 

Generate mutant individuals using equation (9); 
Test boundary constraints for the mutant 

individuals. If violation occurs, the value is 
dragged to the feasible range using 
equation (11). 

Crossover step: 
Generate trial individuals using equation (10). 

Selection step: 
Determine the individuals of the next 

generation using equation (4); 
Determine the best individual of the population. 

} until one of the stopping criteria is satisfied; 
Return the best individual and its fitness value. 

}
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TABLE I. COMPARATIVE RESULTS FOR DDE AND GA

Instrance GA 
Mavg(s)    Mstd  Tavg(s) 

DDE 
Mavg(s)    Mstd  Tavg(s) 

Improvment 
over GA 

NRT  

u_i_hihi 
u_i_hilo 
u_i_lohi 
u_i_lolo 

8.833*106   7.13   64.39 
1.175*105   0.72   61.92 
2.998*105   2.06   61.60 
4.053*103   66.5   62.53 

6.292*106   5.35   62.19 
0.940*105   0.54   59.03 
2.127*105   1.63   59.14 
3.075*103   72.4   61.39 

28.77% 
20.00% 
29.05% 
24.13% 

1.03 
1.05 
1.04 
1.02 

u_c_hihi 
u_c_hilo 
u_c_lohi 
u_c_lolo 

8.289*106   4.73   64.59 
1.135*105   0.35   61.73 
2.927*105   1.52   61.59 
3.871*103   79.5   62.32 

6.438*106   4.52   63.30 
1.021*105   0.29   59.54 
2.254*105   1.14   58.66 
3.377*103   58.2   61.31 

22.33% 
10.04% 
22.99% 
12.76% 

1.02 
1.04 
1.05 
1.02 

u_s_hihi 
u_s_hilo 
u_s_lohi 
u_s_lolo 

9.392*106   5.20   64.53 
1.192*105   0.60   61.77 
3.077*105   1.45   61.69 
4.061*103   73.8   62.43 

7.303*106   3.22   62.57 
1.049*105   0.47   59.18 
2.458*105   1.44   59.11 
3.446*103   11.1   61.44 

22.24% 
11.99% 
20.12% 
15.14% 

1.03 
1.04 
1.04 
1.02 

Average                                                                                                             19.96% 1.03

yy indicates the heterogeneity of the tasks (hi–high, and 
lo–low). 

zz indicates the heterogeneity of the resources (hi–high, 
and lo–low). 

This set of instances has been actually considered as the 
most difficult one for the scheduling problem in heterogeneous 
environments and it is the main reference in the literature. 

The size of the initial population is set to 100 and we use 
the same stopping criteria as that used in GA for the fair 
comparison purpose. As performance metrics, we consider the 
quality of the solution (makespan) and the amount of CPU time 
used for the benchmarks. The percentage improvement is 
computed as: 

100%1 DDE

GA

makespan
makespan

×−    (13) 

and the normalized running time (NRT) is computed by 
dividing the total GA algorithm running time with DDE 
algorithm running time for the benchmark under consideration. 
Moreover, both GA and DDE are stochastic-based algorithms 
and each independent run of the same algorithm on a particular 
testing instance may yield a different result, we thus calculate 
the average makespan and the average computation time over 
20 independent runs of each algorithm for every problem 
instance. And the standard deviation of makespans is also 
computed for each instance. 

All experimental results are summarized in table 1, where 
Mavg, Mstd and Tavg, respectively, denote the average 
makespan, the standard deviation of makespans and the 
average computation time. It can be observed that the proposed 
DDE algorithm outperforms the GA in terms of both solution 
quality and computational time for all the instances. 
Improvement of DDE over GA is between 10.04% and 29.05% 
with an average of 19.96%. Moreover, GA on the average runs 
1.03 times slower than DDE technique. The DDE is also 
superior in terms of standard deviation. These results indicate 
that the proposed DDE algorithm is a viable alternative for 
solving the task scheduling problem.  

These results are not compared with the traditional methods 
since earlier studies of Braun et al. [12] show that GA based 

algorithm for meta-task assignment problems outperform other 
traditional approaches such as SA and TS. Also, our 
preliminary tests indicate that PSO based algorithm [11] 
proposed for homogeneous systems is poorly suited for 
medium to large-sized problems of meta-task scheduling 
problems in HCS. 

To analyze the convergence behavior of the proposed 
algorithms, we have recorded the variation of the makespans of 
the two algorithms at each iteration step. Fig. 2 displays a 
typical run of two algorithms for solving a problem instance 
with the number of tasks being equal to 256 and that of 
machines 16. From the evolutional processes of the algorithms, 
we find that DDE delivers better performance than GA in terms 
of solution quality. The graph also indicates GA evolves slower 
than DDE after approximately 300 iteration steps and the 
decrement of makespan almost stagnates. 

Figure 2. Convergence properties of GA and DDE. 

VI. CONCLUSIONS

In distributed heterogeneous computing systems, qualified 
task scheduling among processors is an important step for 
efficient utilization of resources. In this paper, a new heuristic 
algorithm called DDE algorithm is proposed for the task 
scheduling problem in heterogeneous computing environments. 
DE is one of the recent evolutionary optimization methods. It 
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has been widely used in a wide range of applications. Unlike 
the standard DE, the DDE algorithm employs an integer-valued 
solution vector and work on the discrete domain. The 
performance of DDE algorithm is evaluated in comparison with 
a well-known GA algorithm for a number of randomly 
generated mapping problem instances. The results showed that 
the DDE algorithm solution quality is better than that of GA in 
all cases. Moreover, the DDE algorithm runs faster as 
compared with GA. These results indicate that the proposed 
DDE algorithm is an attractive alternative for solving the task 
scheduling problem. A natural extension to this work would be 
hybridizing DDE with a local search heuristic and a widespread 
search heuristic to promote a search for a global optimum. 
Moreover, DDE application to other combinatorial 
optimization problems needs further investigation. 
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