
A Novel Discrete Differential Evolution Algoritnm
for Task Scheduling in Heterogeneous Computing

Systems

Qinma Kang*

School of Electronics and Information Engineering
Tongji University

Shanghai 201804, China

Hong He
School of Information Engineering

Shandong University at Weihai
Weihai 264209, China

Abstract—Task scheduling is one of the core steps to
effectively exploit the capabilities of distributed heterogeneous
computing systems. In this paper, a novel discrete differential
evolution (DDE) algorithm is presented to address the task
scheduling problem. The encoding schemes and the adaptation of
classical differential evolution algorithm for dealing with discrete
variables are discussed as well as the technique needed to handle
boundary constraints. The performance of the proposed DDE
algorithm is showed by comparing it with a genetic algorithm,
which is a well-known population-based probabilistic heuristic,
on a large number of randomly generated instances.
Experimental results indicate that the proposed DDE algorithm
has generated better results than GA in terms of both solution
quality and computational time.

Keywords—Discrete differential evolution algorithm;
Heterogeneous computing; Task scheduling; Genetic algorithm

I. INTRODUCTION

Heterogeneous computing systems (HCS) are composed of
a heterogeneous suite of machines with varied computational
capabilities interconnected by high-speed networks, and have
emerged as a powerful platform to execute computationally
intensive applications that have diverse computational
requirements [1]. One of the major challenges for harnessing
the computing power of HCS to achieve high performance for
tasks is the scheduling problem, i.e., we need address that each
task should be mapped to its suited machine architecture. The
mapping methods can be grouped into two categories: on-line
mode and batch-mode [2]. In the on-line mode, a task is
mapped onto a machine as soon as it arrives at the scheduler. In
the batch mode, tasks are not mapped onto the machines as
they arrive; instead they are collected into a set that is
examined for mapping at prescheduled times called mapping
events. The independent set of tasks that is considered for
mapping at the mapping events is called a meta-task [1, 3]. In
this study, we consider the meta-task scheduling problem,
which is to find a task assignment scheme that minimizes the
schedule length of a meta-task .

*The author is also affiliated to School of Information Engineering, Shandong
University at Weihai, Weihai 264209, China.

The meta-task scheduling problem is known to be NP-
complete [2]. Therefore, only small-sized instances of the
scheduling problem can be solved optimally within a
reasonable computational time using exact algorithms.
Heuristic algorithms, on the other hand, have generally
acceptable computation time and memory requirements to
obtain a near-optimal or optimal solution. For this reason, most
research focused on developing heuristic algorithms. Some of
the well-known fast constructive heuristics, which have been
reported in the literature, include Min-min, Max-min, Sufferage
[3], Qos Guided Min-min [4], Segmented Min-min [5], etc. In
recent years, a growing body of literature suggests the use of
meta-heuristic search methods for combinatorial optimization
problems (COPs). Several meta-heuristic algorithms that have
been identified as having great potential to address practical
optimization problems include Genetic Algorithms (GA) [6, 7],
Simulated Annealing (SA), Tabu Search (TS) and Particle
Swarm Optimization (PSO), etc. Consequently, over the past
few years, several researchers have demonstrated the
applicability of these methods to task assignment problem [8-
11]. A good overview of the task assignment algorithms can be
found in [12]. Due to the intractable nature of the matching and
scheduling problem and its importance in HCS, new efficient
techniques are always desirable to obtain the best possible
solution within an acceptable computational time.

Differential evolution (DE) is a population-based meta-
heuristic algorithm recently proposed by Storn and Price [13]
for global optimization over continuous spaces. In the mutation
process of a DE algorithm, the weighted difference between
two randomly selected population members is added to a third
member to generate a mutated solution. Then, a crossover
operator follows to combine the mutated solution with a target
solution so as to generate a trial solution. Thereafter, a selection
operator is applied to compare the fitness function value of
both competing solutions, namely, target and trial solutions to
determine who can survive for the next generation. Since its
invention, DE has been applied with high success to many
numerical optimization problems. Moreover, different variants
of the basic DE model have been proposed to improve its
efficiency over continues problems.

Despite the simplicity and the high efficiency of DE, its
application on the solution of COPs with discrete decision

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
5151

variables is still limited. The major obstacle of successfully
applying a DE algorithm to solve COPs in the literature is due
to its continuous nature. To remedy this drawback, this
research introduces a novel discrete differential evolution
(DDE) algorithm for solving meta-task scheduling problem to
effectively exploit the capabilities of heterogeneous computing
systems.

The remaining paper is organized as follows. Section 2
gives a brief introduction to DE. Section 3 describes the
formulation of meta-task scheduling problem. Section 4
introduces the discrete differential evolution algorithm. Section
5 reports the comparative performance and convergence
analysis. Finally, section 6 summarizes the concluding remarks.

II. Brief Introduction to DE
As with all evolutionary optimization algorithms, DE starts

with a population of D-dimensional search-variable vectors
called individuals, where D corresponds to the number of
problem’s parameters, and each vector represents potential
solution for the optimization problem at hand. It finds the
global optima by utilizing the distance and direction
information according to the differentiations among population.
Currently, there are several variants of DE, which vary based
on the base vector to be perturbed, the number and selection of
the difference vectors and the type of crossover operators. The
common format of DE is DE/x/y/z, where x represents a base
vector to be perturbed, y is the number of difference vectors
used for perturbation of x, and z stands for the type of
crossover being used (bin: binomial; exp: exponential). Let t
denote the number of iterations, the i-th vector of the
population at the current generation can be represented
by

,1 ,2 ,(, , ...,)t t t t
i i i i DX X X X= . Let PS denote the number of

individuals in the initial population, namely population size,
and the population size is usually kept constant throughout
iterations. For a minimization problem, the basic procedure of
DE, which is denoted as DE/rand/1/bin [13], can be given
below:

Step 1: Initialize population.

For each search-variable, there may be a certain range
within which value of the parameter should lie for better search
results. At the very beginning of a DE run or at t = 0, problem
parameters or independent variables are initialized somewhere
in their feasible numerical range. Therefore, if the j-th
parameter of the given problem has its lower and upper bound
as L

jx and U
jx respectively, then we may initialize the j-th

component of the i-th population members as
0
, (0,1) ()L U L

i j j j jX x rand x x= + × − (1)

where rand(0,1) represents a uniformly distributed random
value that ranges from 0 to 1.

Step 2: Mutation phase.

In the mutation phase, for each target vector t
iX , i {1, 2,

…, PS}, a mutant vector t
iV is obtained by

1 2 3
()t t t t

i r r rV X F X X= + × − (2)

where r1, r2, r3 {1, 2, …, PS} are mutually distinct random
indices and are also different from the current target index i.

The vector
1

t
rX is known as the base vector to be perturbed, and

F > 0 is a scaling parameter.

Step 3: Crossover phase.

For each target t
iX , a trial vector t

iY is formed as:

,
,

,

(0,1)t
i jt

i j t
i j

V if rand CR or j k
Y

X else

< =
= (3)

where k is a randomly chosen integer in the set {1, 2, ..., D};
the subscript j represents the j-th component of respective
vectors; rand(0,1) (0, 1), drawn randomly for each j; CR (0,
1) is crossover probability that affects the convergence rate and
robustness of the search process.

Step 4: Selection phase.

The selection scheme of DE also differs from the other
evolutionary algorithms. In the selection phase, the function
value of the trial vector, f (1t

iY +), is compared to f (t
iX), to

determine which one of the target vector and the trial vector
will survive in the next generation. The process may be
outlined as:

1
() ()t t t

i i it
i t

i

Y if f Y f X
X

X else
+

<
= (4)

where f is the function to be minimized. So if the new trial
vector yields a better value of the fitness function, it replaces its
target in the next generation; otherwise the target vector is
retained in the population. Hence the population either gets
better or remains constant but never deteriorates.

Recombination (mutation and crossover) and selection
continues until a stopping criterion is satisfied, and then the
best individual of the population found so far is reported as the
final solution.

The scheme described above is only one variant of the basic
DE algorithm. There are some other DE variants, mainly
differing in the way they create the mutant vector (Equation
(2)). The creation of the i-th mutant vector in another well-
known variant called DE/best/1/bin [13] is given by the
following relation:

1 2
()t t t t

i best r rV X F X X= + × − (5)

where t
bestX is the best vector of the current population.

III. META-TASK SCHEDULING PROBLEM

A meta-task is defined as a collection of independent tasks
that is considered for mapping at the scheduling events, and
makespan the completion time for the entire meta-task [12]. A
typical example of meta-task scheduling is the mapping of an
arbitrary set of independent tasks from different users waiting
to execute on a heterogeneous suite of machines. Each task in a
meta-task may have associated properties, such as a deadline or
a priority. It is assumed that each machine executes a single
task at a time, in the order in which the tasks arrived, and the

5152

size of the meta-task (number of tasks to execute), N, and the
number of machines in the HCS, M, are static and known a
priori. Therefore, task scheduling problem can be defined as N
tasks are assigned on M heterogeneous resources with the
objective of minimizing the completion time and utilizing the
resources effectively.

To formulate the problem, define P = {p1, p2, …, pM}) as
the set of M heterogeneous machines and T = {t1, t2, …, tN} as
the set of N independent tasks to be assigned to the machines.
Because of the heterogeneous nature of the machines and
dissimilar nature of the tasks, the expected execution times of a
task on different machines are different. Every task has an
expected time to compute (ETC) on a specific machine. We
assume that the ETC of each task on each machine is known
based on user-supplied information, task profiling and
analytical benchmarking. The assumption of such ETC
information is a common practice in scheduling research (e.g.
[2-5]). So we can obtain an N×M ETC matrix. ETC (i, j) is the
estimated execution time for task i on machine j. The total
execution time used by machine pj is the sum of the expected
execution times of those tasks that are mapped to the machine.
The makespan of a schedule is the maximum of the total
execution times of those machines. To calculate the makespan
of a schedule, we first introduce a vector of machine
completion time which size is M [14]. Formally, for a machine
pm and a schedule S, the completion time of pm is defined as
follows:

[] ,

[] (,)
jS j m t T

completion m ETC j m
= ∀ ∈

= (6)

where S[j]=m denotes the task tj is assigned to machine m under
the schedule S.

We can use the completion time of machines to compute
the makespan as follows:

max{ [] | }mmakespan completion m p P= ∀ ∈ (7)
The objective of this work is to find a schedule scheme with

the minimum makespan.

IV. THE PROPOSED DDE ALGORITHM

A. Solution Representation and Initial Swarm Generation
One of the key issues in designing a successful DE

algorithm is the solution representation, i.e. finding a suitable
mapping between problem solution and DE individual. The
natural coding for task scheduling problems is the integer
vectors as used in GAs [12]. In this paper, each individual S
corresponding to a feasible solution of the underlying problem
is represented as a vector of size N in which its j↩th position
(an integer value) indicates the machine to which task j is
assigned: S[j] = m, m {1, 2, . . . , M}.

The DE is a population-based searching paradigm that
explores the solution space by recombining a number of
individuals, called a population. An initial population is
randomly generated for iterative improvement according to
equation (8), which is presented for the j-th dimension of the i-
th particle.

0
, (1 (0,1)) 1 ,1i jX INT rand M i PS j N= + × ≤ ≤ ≤ ≤ (8)

where INT is a function for converting a real-value to an
integer value by truncation and rand(0,1) is a uniform random
number in the range (0,1).

B. Fitness Value
In DE algorithm, all individuals at each iteration step are

evaluated according to a measure of solution quality, called
fitness. For the problem at hand, we use the makespan of an
individual as its fitness value. See section 2.

C. The Proposed DDE Algorithm
In its canonical form, the DE algorithm is only capable of

handling continuous variables. In order to apply the DE
algorithm to integer optimization problems, it is crucial to
design a suitable encoding scheme that maps the floating-point
vectors to integer vector solutions. Several approaches have
been used to deal with discrete variable optimization. Most of
them round off the variable to the nearest available value
before evaluating each trial vector, i.e., integer values are used
to evaluate the objective function, even though DE itself may
still works internally with continuous floating-point values
[15]. Another widely used representation technique that deals
with floating-point vectors for discrete optimization problems
is the random-keys encoding. According to this technique, each
solution is encoded as a vector of N floating-point numbers.
The components of the vector are sorted and their order in the
vector determines the final solution to the problem. However,
this encoding scheme has been demonstrated to be poor suited
within the DE algorithm to address discrete optimization
problems [16]. Moreover, the techniques used to deal with
sequencing optimization problem cannot be applied directly to
task scheduling in HCS generally.

It is important to note that DE is self-adaptive. At the
beginning of the evolution process, the mutation operator of
DE favors exploration since parent individuals are far away to
each other. As the evolutionary process proceeds to the final
stage, the mutation operator favors exploitation in that the
population converges to a small region. As a result, the
adaptive search step enables the evolution algorithm to perform
global search with a large search step at the beginning and
refine the population with a small search step at the end.
Therefore, extending DE to optimization of integer variables is
rather easy. Only the scaling parameter is set to 1. Based on
this idea, we propose a discrete variant of DE denoted as
DE/i/1/bin. In the proposed algorithm, a mutant vector t

iV is
obtained by

1 2

t t t t
i i r rV X X X= + − (9)

where r1, r2 {1, 2, …, PS}←are mutually distinct random
indices and are also different from the current target index i.
The trial vector t

iY is formed as:

,
,

,

(0,1)t
i jt

i j t
best j

V if rand CR
Y

X else

<
= (10)

Note that we use the i-th vector as base vector for the i-th
target individual, and then the mutant vector is combined with
the best individual of the current population for yielding the
trial vector at each iteration step.

5153

D. Boundary Constraints
It is important to notice that the recombination operation of

DE is able to extend the search outside of the initialized range
of the search space, which leads to illegal solutions. For the
problem under investigation, it is essential to ensure that
parameter values lie inside their allowed ranges after
recombination. A simple way to guarantee this is to replace
parameter values that violate boundary constraints with random
values generated within the feasible range:

,

,

,

(1 (0,1) / 2) 1

(/ 2 (0,1) (/ 2 1))

t
i j

t
i j

t
i j

INT rand M if V

V INT M rand M
if V M

+ × <

= + × +
>

 (11)

E. The DDE Algorithm
The details of the proposed DDE algorithm are presented in

Fig. 1. The algorithm starts with an initial population of PS
individuals. Each individual vector corresponds to a candidate
solution under investigation. Then, all of the individuals are
iteratively improved until one of stopping criteria is satisfied.
When the algorithm is terminated, the incumbent global best
individual and the corresponding fitness value are output as the
optimal task scheduling scheme and the minimum makespan.

Figure 1. Pseude Code of DDE Algorithm.

V. EXPERIMENT RESULTS

To evaluate the efficiency and effectiveness of the proposed
algorithm, intensive experiments have been conducted. A large
simulation dataset is created which features different mapping
situations. The proposed algorithm is compared with the
genetic algorithm (GA) proposed by Braun et al. [12] because
both of them are population-based evolutionary algorithms.
Both the algorithms for meta-task scheduling are coded in
MATLAB6.5 and experiments are executed on a Pentium Dual

1.6GHz processor with 1GB main memory running under
Windows XP environment.

 The GA is implemented with roulette wheel selection, one-
point crossover operator, a mutation operator and an elitism
mechanism for the comparison purpose. The parameters of GA
are set as follows: crossover probability = 0.8, mutation
probability = 0.1, population size = 100 and their GA finalizes
when either 1000 iterations have been executed, or, when the
chromosome elite have not varied during 150 iterations.

The crossover rate CR in DDE is determined
experimentally by incrementing from 0.1 to 0.9 in 0.1 steps. In
the simulation trials tested, the performance peak is detected
with CR equal to 0.4. The size of the initial population is set to
100 and we use the same stopping criteria as that used in GA
for the fair comparison purpose.

The simulation model presented in [12] is also employed
here for our comparison study. In this model, characteristics of
the ETC matrices are varied in an attempt to simulate various
possible heterogeneous computing environments. This kind of
variation is implemented by setting the value scope of random
numbers used to produce ETC matrices. Firstly, an N 1
baseline column vector B is generated, where each element
B(i), 1 N, is a uniform random number between 1 and

b. Then, the rows of the ETC matrix are constructed. Each
element ETC(i, j), 1 i N, 1 j M, of ETC matrix is
created by taking baseline value, B(i), and multiplying it by a
uniform random number x(i, j) , whose value is between 1 and

r. Therefore, any given value in the ETC matrix is within the
range [1, b r].

To denote various kinds of mapping situations, the matrices
are classified into 12 different types according to three metrics:
task heterogeneity, machine heterogeneity and consistency. The
task heterogeneity describes the amount of variance among the
execution times of the tasks in the meta-task for a given
machine, two possible values are defined: high and low.
Machine heterogeneity describes the possible variation of the
running time of a particular task across all the machines, and
again has two values: high and low. Each of the different task
and machine heterogeneities is modeled by using different b
and r values: high task heterogeneity is represented by setting

b = 3000 and low task heterogeneity is modeled using b =
100. High machine heterogeneity is represented by setting r =
1000, and low machine heterogeneity is modeled using r =
10.

An ETC matrix is considered consistent when, if a machine
mi executes task tk faster than machine mj, then mi executes all
the tasks faster than mj. Inconsistency means that a machine is
faster for some tasks and slower for some others. An ETC
matrix is considered semi-consistent if it contains a consistent
sub-matrix. All instances consist of 256 tasks and 16 machines
and are labeled u_x_yyzz whose meaning is the following:

u means uniform distribution (used in generating the
matrices).

x means the type of inconsistency (c–consistent, i–
inconsistent and s means semi-consistent).

DDE
{ Initialize parameters.

Generate PS individuals at random using equation (8).
 Evaluate the individuals and determine the best

individual.
Repeat
{ Mutation step:

Generate mutant individuals using equation (9);
Test boundary constraints for the mutant

individuals. If violation occurs, the value is
dragged to the feasible range using
equation (11).

Crossover step:
Generate trial individuals using equation (10).

Selection step:
Determine the individuals of the next

generation using equation (4);
Determine the best individual of the population.

} until one of the stopping criteria is satisfied;
Return the best individual and its fitness value.

}

5154

TABLE I. COMPARATIVE RESULTS FOR DDE AND GA

Instrance GA
Mavg(s) Mstd Tavg(s)

DDE
Mavg(s) Mstd Tavg(s)

Improvment
over GA

NRT

u_i_hihi
u_i_hilo
u_i_lohi
u_i_lolo

8.833*106 7.13 64.39
1.175*105 0.72 61.92
2.998*105 2.06 61.60
4.053*103 66.5 62.53

6.292*106 5.35 62.19
0.940*105 0.54 59.03
2.127*105 1.63 59.14
3.075*103 72.4 61.39

28.77%
20.00%
29.05%
24.13%

1.03
1.05
1.04
1.02

u_c_hihi
u_c_hilo
u_c_lohi
u_c_lolo

8.289*106 4.73 64.59
1.135*105 0.35 61.73
2.927*105 1.52 61.59
3.871*103 79.5 62.32

6.438*106 4.52 63.30
1.021*105 0.29 59.54
2.254*105 1.14 58.66
3.377*103 58.2 61.31

22.33%
10.04%
22.99%
12.76%

1.02
1.04
1.05
1.02

u_s_hihi
u_s_hilo
u_s_lohi
u_s_lolo

9.392*106 5.20 64.53
1.192*105 0.60 61.77
3.077*105 1.45 61.69
4.061*103 73.8 62.43

7.303*106 3.22 62.57
1.049*105 0.47 59.18
2.458*105 1.44 59.11
3.446*103 11.1 61.44

22.24%
11.99%
20.12%
15.14%

1.03
1.04
1.04
1.02

Average 19.96% 1.03

yy indicates the heterogeneity of the tasks (hi–high, and
lo–low).

zz indicates the heterogeneity of the resources (hi–high,
and lo–low).

This set of instances has been actually considered as the
most difficult one for the scheduling problem in heterogeneous
environments and it is the main reference in the literature.

The size of the initial population is set to 100 and we use
the same stopping criteria as that used in GA for the fair
comparison purpose. As performance metrics, we consider the
quality of the solution (makespan) and the amount of CPU time
used for the benchmarks. The percentage improvement is
computed as:

100%1 DDE

GA

makespan
makespan

×− (13)

and the normalized running time (NRT) is computed by
dividing the total GA algorithm running time with DDE
algorithm running time for the benchmark under consideration.
Moreover, both GA and DDE are stochastic-based algorithms
and each independent run of the same algorithm on a particular
testing instance may yield a different result, we thus calculate
the average makespan and the average computation time over
20 independent runs of each algorithm for every problem
instance. And the standard deviation of makespans is also
computed for each instance.

All experimental results are summarized in table 1, where
Mavg, Mstd and Tavg, respectively, denote the average
makespan, the standard deviation of makespans and the
average computation time. It can be observed that the proposed
DDE algorithm outperforms the GA in terms of both solution
quality and computational time for all the instances.
Improvement of DDE over GA is between 10.04% and 29.05%
with an average of 19.96%. Moreover, GA on the average runs
1.03 times slower than DDE technique. The DDE is also
superior in terms of standard deviation. These results indicate
that the proposed DDE algorithm is a viable alternative for
solving the task scheduling problem.

These results are not compared with the traditional methods
since earlier studies of Braun et al. [12] show that GA based

algorithm for meta-task assignment problems outperform other
traditional approaches such as SA and TS. Also, our
preliminary tests indicate that PSO based algorithm [11]
proposed for homogeneous systems is poorly suited for
medium to large-sized problems of meta-task scheduling
problems in HCS.

To analyze the convergence behavior of the proposed
algorithms, we have recorded the variation of the makespans of
the two algorithms at each iteration step. Fig. 2 displays a
typical run of two algorithms for solving a problem instance
with the number of tasks being equal to 256 and that of
machines 16. From the evolutional processes of the algorithms,
we find that DDE delivers better performance than GA in terms
of solution quality. The graph also indicates GA evolves slower
than DDE after approximately 300 iteration steps and the
decrement of makespan almost stagnates.

Figure 2. Convergence properties of GA and DDE.

VI. CONCLUSIONS

In distributed heterogeneous computing systems, qualified
task scheduling among processors is an important step for
efficient utilization of resources. In this paper, a new heuristic
algorithm called DDE algorithm is proposed for the task
scheduling problem in heterogeneous computing environments.
DE is one of the recent evolutionary optimization methods. It

5155

has been widely used in a wide range of applications. Unlike
the standard DE, the DDE algorithm employs an integer-valued
solution vector and work on the discrete domain. The
performance of DDE algorithm is evaluated in comparison with
a well-known GA algorithm for a number of randomly
generated mapping problem instances. The results showed that
the DDE algorithm solution quality is better than that of GA in
all cases. Moreover, the DDE algorithm runs faster as
compared with GA. These results indicate that the proposed
DDE algorithm is an attractive alternative for solving the task
scheduling problem. A natural extension to this work would be
hybridizing DDE with a local search heuristic and a widespread
search heuristic to promote a search for a global optimum.
Moreover, DDE application to other combinatorial
optimization problems needs further investigation.

REFERENCES

[1] H. J. Siegel and S. Ali, Techniques for mapping tasks to machines in
heterogeneous computing systems. J. Syst. Architect., vol. 46, pp. 627–
639, 2000.

[2] P. Luo, K. V. L and Zh. Zh. Shi, A revisit of fast greedy heuristics for
mapping a class of independent tasks onto heterogeneous computing
systems. J. Parallel Distrib. Comput., vol. 67, pp. 695-714, 2007.

[3] M. Maheswaran, S. Ali, et al. Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. In 8th IEEE
Heterogeneous Computing Workshop (HCW '99), San Juan, Puerto Rico,
vol. 30-44, 1999.

[4] X. S. He, X. H. Sun and G. Laszewski, QoS guided min-min heuristic
for grid task scheduling. J. Comput Sc. Technol., vol. 18, pp. 442-451,
2003.

[5] M. Y. Wu, W. Shu and H. Zhang, Segmented min-min: A static mapping
algorithm for meta-tasks on heterogeneous computing systems. In

Procceding of the 9th Heterogeneous Computing Workshop (HCW'00),
Cancun, Mexico, pp. 375-385, 2000.

[6] D. E. Goldberg, Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, January 1989.

[7] J. H. Holland, Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial
intelligence. The University of Michigan Press, Ann Arbor, 1975.

[8] R. Subrata, Y. A. Zomaya and B. Landfeldt, Artificial life techniques for
load balancing in computational grids. J. Compu. Syst. Sci., vol. 73, pp.
1176–1190, 2007.

[9] G. Attiya and Y. Hamam, Task allocation for maximizing reliability of
distributed systems: a simulated annealing approach. J. Parallel Distrib.
Comput., vol. 66, pp. 1259 – 1266, 2006.

[10] W. H. Chen and C. S. Lin, A hybrid heuristic to solve a task allocation
problem. Comput. Oper. Res., vol. 27, pp. 287-303, 2000.

[11] A. Salman, I. Ahmad and S. Al-Madani, Particle swarm optimization for
task assignment problem. Microprocess. Microsy., vol. 26, pp. 363-371,
2002.

[12] T. D. Braun, H. J. Siegel, et al. A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed
computing system. J. Parallel Distrib. Comput., vol. 6, pp. 810-837,
2001.

[13] R. Storn and K. Price, Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. J. Global
Optim., vol. 11, pp. 241–354, 1997.

[14] J. Carretero and F. Xhafa, Using genetic algorithms for scheduling jobs
in large scale grid applications. J. of Technological and Economic
Development–A Research Journal of Vilnius Gediminas Technical
University, vol. 12, pp.11–17, 2006.

[15] G. Onwubolu and Davendra D. Scheduling flow shops using differential
evolution algorithm. Eur. J. Oper. Res., vol. 171, pp. 674–692, 2006.

[16] C. N. Andreas and L. O. Sotiris, Differential evolution for sequencing
and scheduling optimization. J Heuristics, vol. 12, pp. 395–411, 2006.

5156

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

