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Abstract—This paper uses the canonical correlation decompo-
sition (CCD) framework to investigate the spatial correlation of
sources captured using two spatially separated sensor arrays. The
relationship between the canonical correlations of the observed
signals and the spatial correlation coefficients of the source signals
are first derived, including an analysis of the changes seen in
this relationship under certain noise level and array geometry
assumptions. Additionally, simulation results are presented that
demonstrate the effects of different noise levels and array geome-
tries on the canonical correlations for the case of two uniform
linear sparse arrays.

Index Terms—Canonical correlation decomposition, spatial
correlation coefficient, covariance matrix

I. INTRODUCTION

As a method for determining the linear relationships be-
tween two sets of multi-dimensional random variables, Canon-
ical Correlation Decomposition (CCD) [1] plays an important
role in signal processing. The purpose in array signal pro-
cessing is to extract the useful information such as directions
of arrival (DOA) of the sources and their numbers from
the received signals [2]. In many sonar applications, certain
information about the sources, such as their locations, spectral
properties, and statistical characteristics, is often desired. Since
CCD performs multivariate statistical analysis and reveals
the underlying coherence of the observed signals, it can be
employed to extract this type of information based on a
spatially separated array configuration.

CCD has been exploited in many studies [3]-[6] involving
spatially separated array applications. In [3], CCD was used
to determine the number of sources in an unknown noise
environment for a bi-array system. In another study [4], various
methods for determining the DOA of multiple source sig-
nals including MUSIC (MUltiple SIgnal Classification), UN-
MUSIC (Unknown Noise-MUSIC), MLE (Maximum Likeli-
hood Estimation), and UN-CLE (Unknown Noise-Correlation,
and Location Estimation) were extended using a generalized
correlation decomposition framework. These methods were
subsequently used to estimate the DOA of sources in unknown
correlated noise. The study in [5] demonstrated that using CCD
with these methods resulted in optimum performance. In [6], it
was proposed that CCD can be used to estimate the time-delay

of the signals between two arrays, which can then be used to
obtain a higher DOA estimation precision.

Apart from array processing applications, many implicit
connections between canonical coordinate systems and two-
channel signal systems have been explored. In [7], it is shown
that the canonical correlations between a message signal and a
measurement signal can be used to determine information rate
and capacity. In another study that focused on two-channel
constrained least squares (CLS) problems [8], canonical coor-
dinate mapping matrices were derived by posing the problem
as a coupled generalized eigenvalue problem. This eigenvalue
problem establishes a connection between two-channel CLS
filtering and transform methods for resolving channel mea-
surements into canonical or half-canonical coordinates.

For sparse sonar array processing that is the focus of this
study, each of the separated subarrays receives the signals from
the same sources in the field. However, due to the motion
of the sonar platform and signal fading effects in medium,
the received signals at two spatially separated arrays will be
different even for the same source. In [9], canonical correlation
analysis was used to measure the signal coherence between
pairs of sparse sensor arrays. CCD provides a powerful tool for
analyzing the coherence between pairs of sparse sensor arrays.
In this work, the spatial correlation of the sources are analyzed
using the CCD of the collected data, and the connections
between canonical correlations and source correlations are
derived. This demonstrates that canonical correlations can be
used to analyze the spatial correlations of the source signals. In
particular, it is shown that the canonical correlations are equal
to the spatial correlation coefficients for independent source
signals when noise is not considered.

This paper is organized as follows. Section II describes the
array signal model that is used in the subsequent derivations.
Section III presents an analysis of the spatial correlation of
the sources described by the given model using CCD. In
Section IV, a special case where the signal correlations are
only dependent on the sensor element spacing is investigated.
The developments in this paper are then verified via simulation
results provided in Section V, which includes results on the
effects of different noise levels and the geometry between
the sources and sonar arrays on the canonical correlations
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Fig. 1. Sparse Array Geometry.

produced by CCD. Finally, in Section VI, conclusions are
drawn.

II. ARRAY SIGNAL MODEL

Consider two uniform linear arrays, each of which has
M sensors, as shown in Fig. 1. Assume there are d sources
present, where d ≤ M . At the nth snapshot, the data model
can be written as

x(n) = Axsx(n) + nx(n)
y(n) = Aysy(n) + ny(n).

(1)

In this model, x(n) ∈ C
M and y(n) ∈ C

M are the output
vectors of the two arrays, Ax and Ay are C

M×d unambiguous
directional matrices of the signals with respect to the geometry
of the two arrays, both of which are full column rank, nx(n) ∈
C

M and ny(n) ∈ C
M are the zero-mean noise vectors of the

two arrays, and sx(t) and sy(t) are the source signals arriving
at the two arrays where sx(t) = [sx1(n), sx2(n), · · · , sxd(n)]T

and sy(t) = [sy1(n), sy2(n), · · · , syd(n)]T .
The composite data vector z(n) = [x(n)T y(n)T ]T has a

covariance matrix

Rzz = E[z(n) z(n)T ] =

E

[ (
x(n)
y(n)

) (
x(n)T y(n)T

) ]
=

[
Rxx Rxy

Ryx Ryy

]
(2)

where Rxx and Ryy are the covariance matrices of x(n)
and y(n), and Rxy = RT

yx is the cross-covariance matrix
between x(n) and y(n). Defining the coherence matrix C =
R− 1

2
xx RxyR−H

2
yy , and using the singular value decomposition

(SVD), we obtain
C = FΣGH (3)

where F and G are the unitary matrices obtained from the
SVD of C, and H represents the Hermitian operator. Σ is the
canonical correlation matrix with

Σ =
[

Σ0 0
0 0

]

where Σ0 ∈ R
d×d is a diagonal matrix, d0(≤ d) is the rank

of C, and λ1, λ2, · · · , λd0 are the first d0 non-zero singular
values of C.

For the following discussion, we define [4]

L1 = R−H
2

xx F, L2 = R−H
2

yy G, R1 = R
1
2
xxF, R2 = R

1
2
yyG (4)

with LH
1 R1 = LH

2 R2 = I . Let Fs be the first d columns of
F with respect to the first d singular values of C including
d0 non-zero singular values, and Gs is similarly defined with
respect to G. We then define

R1s = R
1
2
xxFs , R2s = R

1
2
yyGs.

It follows that the composite covariance matrix Rzz can be
written as,

Rzz =

[
R

1
2
xxF 0

0 R
1
2
yyG

] [
I Σ

ΣH I

] [
FHR

H
2

xx 0

0 GHR
H
2

yy

]

=
[
R1 0
0 R2

] [
I Σ

ΣH I

] [
RH

1 0
0 RH

2

]
.

(5)

III. APPLICATION OF CCD

In this section, the covariance matrix of the source signals
will be analyzed using the CCD framework. Then the relation-
ship between the spatial correlation properties of the source
signals and the canonical correlations of the observed signals
will be derived. Additionally, it is demonstrated that the spatial
correlations of the source signals can be captured perfectly by
the canonical correlations of the observed signals if the SNR
is sufficiently high.

Define the composite covariance matrix for the source
signals sx(t) and sy(t) as

Rss =
[

Rsxsx
Rsxsy

Rsysx
Rsysy

]
.

The spatial correlation coefficient ρii between the two random
signals sxi(n) and syi(n) with respect to the ith source signal
si arriving at the x-array and y-array, respectively, can be
written as

ρii =
E{sxi(n)s∗yi(n)}

σsxi
σsyi

, i = 1, 2, · · · , d,

where σ2
sxi

and σ2
syi

are the variances of sxi(n) and syi(n),
respectively. If all the source signals are zero-mean and the
different sources are uncorrelated with each other, then Rss is
composed of four diagonal sub-matrices, i.e.

Rss =
[

Rsxsx
Rsxsy

Rsysx
Rsysy

]
=

[
Λsxx

Λsxy

Λsyx
Λsyy

,

]
, (6)

where

Λsxx
= diag[σ2

sx1
, σ2

sx2
, · · · , σ2

sxd
],

Λsyy
= diag[σ2

sy1
, σ2

sy2
, · · · , σ2

syd
],

Λsxy
= diag[ρ11σsx1σsy1 , ρ22σsx2σsy2 , · · · , ρddσsxd

σsyd
],

Λsyx
= ΛH

sxy
.

If the different sources are dependent on each other, then the
composite source covariance matrix Rss will not have the
structure in (6). In this case, Rss can be decomposed as

Rss =
[

R̃1 0
0 R̃2

] [
I P

PH I

] [
R̃H

1 0
0 R̃H

2

]
(7)
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where R̃1 and R̃2 are defined similar to R1 and R2 in
(5), respectively, and P is the canonical correlation matrix
of the sources. Here P is also called the spatial correlation
matrix since it describes the spatial correlation properties
of the arriving signals. Observing this CCD of Rss for the
special case of independent sources in (6), we have P =
diag[ρ11, ρ22, · · · , ρdd].

Combining the data model (1), the covariance matrix Rzz

can be rewritten as

Rzz =
[
Ax 0
0 Ay

] [
R̃1 0
0 R̃2

] [
I P

PH I

] [
R̃H

1 0
0 R̃H

2

]

×
[
AH

x 0
0 AH

y

]
+

[
Rnxnx

0
0 Rnyny

]
.

(8)

Now, the middle term in (5) can also be written as,[
I Σ

ΣH I

]
=

[
LH

1 0
0 LH

2

]
Rzz

[
L1 0
0 L2

]
. (9)

Substituting (8) into (9) yields

Σ = LH
1 AxR̃1PR̃H

2 AH
y L2, (10)

and

LH
1 AxR̃1R̃H

1 AH
x L1 = I − LH

1 Rnxnx
L1, (11a)

LH
2 AyR̃2R̃H

2 AH
y L2 = I − LH

2 Rnyny
L2. (11b)

Define Mx = I − LH
1 Rnxnx

L1, My = I − LH
2 Rnyny

L2.
Alternatively, Mx can be expressed as

Mx = FH(I − R− 1
2

xx Rnxnx
R−H

2
xx )F. (12)

If we perform an eigenvalue decomposition on the term (I −
R− 1

2
xx Rnxnx

R−H
2

xx ) in (12), Mx can be written as

Mx = FHExΓxEH
x F,

where Γx is the eigenvalue matrix of (I − R− 1
2

xx Rnxnx
R−H

2
xx )

and Ex is its unitary eigenvector matrix. It can be seen from
(11a) that, since LH

1 and R̃1 are both full-rank and Ax has
full-column rank, rank{Mx} = d. Since F is full-rank, the

matrix (I−R− 1
2

xx Rnxnx
R−H

2
xx ) has d non-zero eigenvalues, i.e.

Γx = diag[γx1, γx2, ..., γxd, 0, 0, ..0].
Define Γxs = diag[γx1, γx2, ..., γxd] as the diagonal matrix

containing the d non-zero eigenvalues of Γx, and Exs as the
matrix consisting of the first d eigenvectors corresponding to
these eigenvalues. The matrix Mx can then be rewritten as

Mx = FHExsΓxsEH
xsF. (13)

According to (11a) and (13), the matrix R̃H
1 AH

x L1 has full row
rank and it has a right inverse [R̃H

1 AH
x L1]† with full column

rank, where [·]† denotes the right pseudo-inverse operation. It
follows that

LH
1 AxR̃1 = FHExsΓxsEH

xsF[R̃H
1 AH

x L1]†.

Therefore, the columns of the matrix LH
1 AxR̃1 span the same

subspace as that spanned by the columns of FHExsΓ
1
2
xs, where

Γ
1
2
xs = diag[γ

1
2
x1, γ

1
2
x2, ..., γ

1
2
xd]. There exists an unique d × d

non-singular matrix Ux satisfying

LH
1 AxR̃1 = FHExsΓ

1
2
xsUx. (14)

From (11a), we also have

LH
1 AxR̃1(LH

1 AxR̃1)H = FHExsΓ
1
2
xs(FHExsΓ

1
2
xs)H .

Thus, the matrix Ux is also unitary. Similarly, we have

LH
2 AyR̃2 = GHEysΓ

1
2
ysUy, (15)

where Uy is also an unitary matrix. Substituting (14) and (15)
into (10), we get

Σ = FHExsΓ
1
2
xsUxPUH

y Γ
1
2
ysEH

ysG, (16)

which can also be written as

Σ = FHEx

[
Γ

1
2
xs 0
0 0

] [
UxPUH

y 0
0 0

] [
Γ

1
2
ys 0
0 0

]
EH

y G.

Let F1 = EH
x F, and G1 = EH

y G. Since Ex,Ey,F and G are
unitary matrices, it follows that F1 and G1 are both unitary
and we have

F1

[
Σ0 0
0 0

]
GH

1 =

[
Γ

1
2
xsUxPUH

y Γ
1
2
ys 0

0 0

]
, (17)

where the left side is the SVD of the right side. This shows
that the diagonal elements of Σ0 are the singular values of
the matrix Γ

1
2
xsUxPUH

y Γ
1
2
ys, where P represents the spatial

correlation matrix of the sources, and Γ
1
2
xs and Γ

1
2
ys represent

the noise-to-signal ratio information in the two arrays. Unitary
matrices Ux and Uy are related to the matrices Ax and Ay

by (14) and (15), which contain the geometry information
between the sonar arrays and sources. Therefore, the canonical
correlations of the observed data can be used to analyze the
spatial correlation of the sources. However, this is dependent
on the noise-to-signal ratio and array geometry. Since the rank
of Γ

1
2
xsUxPUH

y Γ
1
2
ys is equal to rank{P}, the number of non-

zero diagonal elements of P is equal to d0, i.e. the number of
non-zero diagonal elements of Σ0. Therefore, for independent
sources, the number of non-zero diagonal elements of Σ0 can
be used to estimate the number of sources.

If the SNR is sufficiently high, the effects of noise can be
ignored in comparison to the signal. However, in this case the
covariance matrices Rxx and Ryy both have rank d, i.e. they
are not full-rank. Using this assumption, the CCD of Rzz in
(5) can be rewritten as

Rzz =
[

R1 0
0 R2

] [
Iu Σ
ΣH Iv

] [
RH

1 0
0 RH

2

]
, (18)

where

Iu =
[
Id×d 0
0 0

]
, Iv =

[
Id×d 0
0 0

]
.

In this case, (11a) and (11b) become

LH
1 AxR̃1R̃H

1 AH
x L1 = Iu,

LH
2 AyR̃2R̃H

2 AH
y L2 = Iv.
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It follows that

AxR̃1R̃H
1 AH

x = R1IuRH
1 = R1sRH

1s,

AyR̃2R̃H
2 AH

y = R2IvRH
2 = R2sRH

2s.

From the above, we note that there exists two unique unitary
matrices, Ux and Uy , satisfying

AxR̃1 = R1sUx, AyR̃2 = R2sUy. (19)

Substituting (19) into (10), we obtain

Σ = LH
1 R1sUxPUH

y RH
2sL2.

Using LH
1sR1s = RH

2sL2s = I in (4), we get

Σ0 = UxPUH
y .

Since Σ0 and P are diagonal, it follows that

Σ0 = P. (20)

This result shows that, if the SNR is sufficiently high, the
canonical correlations of the observed data will be equal to
those of the sources. This result demonstrates that canonical
correlations are invariant to the linear transformation of the
two-channel data if the transformation matrices Ax and Ay are
full-column rank. Furthermore, if the sources are zero-mean
and independent, their spatial correlation coefficients will be
equal to the canonical correlations.

IV. CIRCULANT COVARIANCE MATRICES

This section analyzes the relationship between the canonical
correlations of the observed data and those of the sources when
the correlations between spatially stationary signals at different
sensors in the array are only dependent on the sensor element
spacing. In this case, the covariance matrices Rxx,Rnxnx

become circulant, and can be written as [7]

Rxx =

⎡
⎢⎢⎣

rx(0) rx(M − 1) · · · rx(1)
rx(1) rx(0) · · · rx(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
rx(M − 1) rx(M − 2) · · · rx(0)

⎤
⎥⎥⎦

Rnxnx
=

⎡
⎢⎢⎣

rnx
(0) rnx

(M − 1) · · · rnx
(1)

rnx
(1) rnx

(0) · · · rnx
(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
rnx

(M − 1) rnx
(M − 2) · · · rnx

(0)

⎤
⎥⎥⎦ .

Therefore, both Rxx and Rnxnx
have orthogonal representa-

tions

Rxx = WMΩxWH
M ,

Rnxnx
= WMΩnx

WH
M ,

where [WM ]m,n = ej2πmn/M is the M × M DFT matrix,
m,n ∈ [0,M − 1]. The diagonal elements of the matrices Ωx

and Ωnx
contain the DFT coefficients of the first column of

Rxx and Rnxnx
, respectively, i.e.,

Ωx = diag[ωx(0), ωx(1), · · · , ωx(M − 1)],
Ωnx

= diag[ωnx
(0), ωnx

(1), · · · , ωnx
(M − 1)],

where

ωx(l) =
M−1∑
m=0

rx(m)e−j2πml/M , l ∈ [0,M − 1]

ωnx
(l) =

M−1∑
m=0

rnx
(m)e−j2πml/M , l ∈ [0,M − 1].

Here, ωx(l) and ωnx
(l) are the power spectra of x(t) and

nx(t), respectively at frequencies l ∈ [0,M − 1]. Define

Qx = R− 1
2

xx Rnxnx
R−H

2
xx , then

Qx = WMΩ− 1
2

x Ωnx
Ω− 1

2
x WH

M , (21)

and
Mx = FH(I − Qx)F. (22)

The eigenvalues of (I − Qx) can thus be written as

γxl = 1 − ωnx
(l − 1)

ωx(l − 1)
, l ∈ [1, d]

with γxl = 0, l > d.
If nx(t) is white, i.e. ωnx

(l) = σ2
nx = pnx, and the power

spectrum of x(t) can be approximated by

ωx(l) =
{

px , l ∈ [0, d − 1]
pnx , l ∈ [d,M − 1]

then it follows that

Γ
1
2
xs =

√
1 − pnx

px
Id×d, (23)

and similarly,

Γ
1
2
ys =

√
1 − pny

py
Id×d. (24)

From (17),(23), and (24), the relationship between Σ0 and P
becomes

Σ0 =
√

(1 − pnx

px
)(1 − pny

py
) P. (25)

This special case demonstrates how the noise level affects the
spatial correlation analysis of the source signals using CCD.
The effective factor in (25) is proportional to the square roots
of the eigenvalues of the matrices (I − Qx) and (I − Qy),
which in this special case are related to the SNR of the signals
received by both arrays.

V. SIMULATIONS AND DISCUSSIONS

In this section, simulation results are presented in order
to show the relationship between the canonical correlations
of the observed signals and the source spatial correlation
characteristic for two uniform linear arrays for a near-field
source case. Specifically, we analyze how different levels of
noise impact the canonical correlations. In addition, we analyze
the impacts of changes in the geometry between the sources
and the array, since this affects the directional matrices Ax and
Ay in the near-field case.

Fig. 2 shows the position of the sources with respect to the
two arrays with M elements each. The inter-element spacing is
λ/4 and the displacement of the two arrays is D = 10λ, where
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Fig. 2. Positions of the sources and two arrays.

λ = 0.1m. There are d = 3 sources that are located at different
points along a line as shown in Fig. 2. The angles between
the sources and the center of the two arrays are θ1 = 34.3o,
θ2 = 85.9o, and θ3 = 105.5o. The elevation of the sonar arrays
(platform) from the plane of the sources is kept constant at
r0 = 3m. The following assumptions are made:

1) The sources are zero-mean and independent random
signals. For this simulation, they are modeled by a first-
order auto-regressive (AR) model with coefficients φi,
i.e. at the nth snapshot,

si(n) = φisi(n − 1) + εi(n), i ∈ [1, d] (26)

where εi(n)′s are the driving processes that are assumed
to be independent zero-mean white Gaussian. In this

case, the variance of each source is σ2
si

=
σ2

εi

1−φ2
i

.
2) The arriving random signals at the two arrays emanated

from the same source satisfy coherence models given by

sxi(n) = ηxisi(n) + ξxi(n),
syi(n) = ηyisi(n) + ξyi(n), ∀n, i ∈ [1, d]

(27)

where ξxi(n)′s and ξyi(n)′s are independent zero-mean
additive white Gaussian noise processes, and ηxi and ηyi

represent the fading and phasing effects on the signals.
These effects are modeled as ηxi = e−αrxi+jβxi and
ηyi = e−αryi+jβyi , where α = 0.025 is the absorption
coefficient, rxi and ryi are the ranges of the ith source
with respect to the center of each array, and βxi and βyi

are uniformly distributed random variables over [−Δ,Δ]
representing the phasing effects. Then, the spatial corre-
lation coefficients are

ρii =
sin2Δ

Δ2√
(1 +

σ2
ξxi

σ2
ηxi

σ2
si

)(1 +
σ2

ξyi

σ2
ηyi

σ2
si

)
, i = 1, 2, · · · , d,

(28)
and ρij = 0, i �= j.

Using the above assumptions, the covariance matrix of the
sources will have the form given in (6). The parameters of
the AR models were selected as follows. The coefficients of
the AR model in (26) for the three sources were chosen to be
φ1 = 0.6371, φ2 = 0.2881, and φ3 = 0.3128, and the sources
have identical variances σ2

s1 = σ2
s2 = σ2

s3 = 1. The parameters

Fig. 3. Impact of SNR on the canonical correlations.

of the coherence model were selected as σ2
ξx1

= σ2
ξy1

= 0.2,
σ2

ξx2
= σ2

ξy2
= 0.4 , and σ2

ξx3
= σ2

ξy3
= 0.8 . The coherent

loss effects ηxi and ηyi, i = 1, 2, 3, can be calculated from
the given geometry parameters of the sources and arrays, and
a random draw of βxi and βyi with Δ = π

6 .
According to (28), the spatial correlation coefficients of

these sources between the two arrays were found to be
ρ11 = 0.7231, ρ22 = 0.6217 and ρ33 = 0.4705 for the
locations of sources and arrays as shown in Fig. 2. The
relationship between the canonical correlations and the spa-
tial correlation coefficients are validated for different SNRs
in Fig. 3. These results were calculated using 50 Monte-
Carlo simulations. When the SNR is sufficiently high (i.e.
> 15dB), the canonical correlations are very close to the
spatial correlation coefficients (horizontal lines), hence proving
the result in (20). Additionally, Figs. 3(a) and (b) show that
as the number of sensor elements increases, the impact of the
noise on the canonical correlations reduces significantly even
for lower values of SNR. CCD transforms the observed data
into its canonical coordinates where the noise is also projected
onto the same basis. For the M = 15 case, the source signals
are still projected onto the first three canonical coordinates
while the noise is projected onto all of the 15 coordinates as
opposed to only 6, hence reducing the overall impact of noise.

The range between the sources and the arrays will affect the
spatial correlation coefficients according to the model in (27).
To study this effect we consider a case where the sources and
the x-array are kept stationary, while the y-array is moved on
the same line of the two arrays such that the displacement of
the two arrays and the ranges of the sources to the y-array are
changed. Figs. 4(a) and (b) illustrate these results, where the
dotted curves show the effect of increasing D on the spatial
correlation coefficients of the sources ρ11, ρ22, ρ33 calculated
using (28), while the solid curves are the plots of the canonical
correlations obtained using (5). Fig. 4(a) shows the case when
SNR = 20dB and M = 6 and Fig. 4(b) shows the case
when SNR = 20dB and M = 15. As can be seen the spatial
correlation coefficients will become smaller for the larger array
separation due to the increased coherence loss. We also notice
that there is no significant difference between the dotted curves
in these two figures. When the number of elements is increased
to M = 15, the change in the size of array affects the

2822



Fig. 4. Impact of displacement of the two arrays on the canonical correlations.

ranges of the sources to the center of each array, but this
change in ranges is still not large enough to impact σ2

ηxi

and σ2
ηyi

in (28) significantly due to the inter-element spacing
being only λ/4. Fig. 4(a) shows that canonical correlations
can closely measure the spatial correlation coefficients of the
sources under sufficiently high SNR when D ≤ 3m. However,
as D increases, the solid curves differ from the dotted curves
very rapidly. As mentioned before, the locations of the sources
with respect to the arrays impact the structures of the matrices
Ax and Ay , which are required to be full-column rank in the
derivations in Section III. For large displacement D, i.e. when
the y-array is moved farther, the rank of Ay is reduced due
to the change in the geometry of the sources with respect
to the y-array. Figs. 4(c) and (d) show the singular values
of the matrices Ax and Ay under different displacements D
for the cases in Figs. 4(a) and (b). From Fig. 4(c), we can
see that the singular values of Ax are kept constant, and
those of Ay change significantly as D increases. Especially,
for D > 3m, one singular value of Ay falls to zero very
rapidly, which correlates well with the result in Figs. 4(a).
Therefore, the canonical correlations will be affected by the
locations of the sources and the arrays. For the arrays with
M = 15, we observe from Figs. 4(b) and (d) that the impact
of geometry on canonical correlations is substantially reduced.
This is particularly evident in Fig. 4(d), which shows that, as
opposed to the results in Fig. 4(c), one of the singular values
becomes close to zero only when D > 5.5m. Thus, the arrays
with more elements remain more robust to coherence loss in
sparse sonar arrays.

VI. CONCLUSIONS

In this paper we showed that the canonical correlations
of the signals observed by two sensor arrays can be used
to analyze the spatial correlation properties of the sources

assuming that the array directional matrices Ax and Ay are
both full column rank. CCD was then used to transform the
observed data of the two arrays into its canonical coordinates.
It was observed that the canonical correlations are nearly equal
to the spatial correlation coefficients of the independent sources
when the SNR is sufficiently high. The noise and array geom-
etry can also affect the canonical correlations. It was shown
through simulations that the canonical correlations differ from
the spatial correlation coefficients as the SNR decreases or
the array displacement increases. Simulations also showed that
these impacts can be partially reduced if more array elements
are used. With more elements, the canonical correlations can
more accurately measure the spatial correlation coefficients
under lower SNR or larger array displacement compared to
the case of less elements.
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