
A Hybrid DVS Scheduling Approach for Hard
Real-Time Systems

Eduardo Tavares. Pedro Dallegrave, Bruno Silva. Gustavo Callou. Bruno Nogueira. Paulo Maciel
Center for Informatics

Federal University of Pernambuco
{eagt,pdf2,bs,grac,bcsn,prmm}@cin.ufpe.br

Abstract—Dynamic Voltage Scaling (DVS) has been largely
adopted as an effective technology for reducing energy consump-
tion in embedded systems. Since the usage of DVS may affect the
timing constraints of a hard real-time system, over the last decade,
several pre-runtime as well as runtime scheduling approaches
have been developed to tackle such an issue. Nevertheless, both
have drawbacks that can be mitigated using a joint approach.
This paper proposes a hybrid DVS scheduling approach for
energy-constrained hard real-time systems, taking into account
overheads, precedence and exclusion relations. The proposed
method adopts a formal model based on time Petri nets in
order to provide feasible schedules that satisfy timing and energy
constraints.

Index Terms—Hard Real-Time Systems; Dynamic Voltage
Scaling; Petri Nets; Formal Models

I. INTRODUCTION

Energy consumption in embedded systems has received
considerable attention over the last years due to the great pro-
liferation of portable devices. In this context, DVS (Dynamic
Voltage Scaling) has been one of the most studied technologies
for providing energy saving in these systems. Adjusting CPU
supply voltage has great impact on energy consumption, since
the consumption is proportional to the square of supply voltage
in CMOS microprocessors [10]. However, lowering the supply
voltage linearly affects the maximum operating frequency.

Regarding hard real-time systems, several pre-runtime and
runtime scheduling approaches have been developed to simul-
taneously cope with DVS and stringent timing constraints.
However, those approaches have advantages as well as lim-
itations. In the context of runtime scheduling, the advantages
include flexibility and adaptability to changes in the environ-
ment. Nevertheless, runtime methods may provide infeasible
results when considering arbitrary intertask relations [20] and
may generate a significant overhead (time and energy) during
system execution, for instance, due to calculations for manag-
ing task executions.

On the other hand, for a given specification, pre-runtime
approaches can find a feasible schedule, if one exists, satisfying
the specified constraints (e.g., intertask relations). Moreover,
since schedules are generated at design-time, pre-runtime
approaches also provide predictable executions with lower
overheads than runtime counterparts. Despite the previous
advantages, these methods are inflexible, in the sense that they
cannot benefit from slack times that may occur due to earlier
completion of tasks (at system runtime). The reader may refer

to [20] for a comprehensive comparison between runtime as
well as pre-runtime scheduling approaches.

To take advantage of both methods, this paper proposes
a hybrid scheduling for hard real-time systems, considering
DVS, intertask relations and overheads (such as preemption
and voltage/frequency switching). As a broader view, the
method begins applying the pre-runtime scheduling to generate
a feasible schedule satisfying the specified constraints. At
system runtime, a lightweight scheduler checks for earlier
tasks’ completions. If a task finishes its execution in lesser
time than its respective worst-case execution time, and the
constraints allow (e.g., release time), the scheduler adjusts the
voltage/frequency level for executing the next task, such that
energy consumption is improved. Additionally, the proposed
method adopts time Petri nets for pre-runtime schedule gener-
ation as well as for qualitative analysis and verification.

This work is an extension of the software synthesis method
described in [17], which aims to generate predictable code for
hard real-time systems with energy constraints. New results
regarding the pre-runtime scheduling algorithm are presented
as well as results concerning the runtime scheduler.

II. RELATED WORKS

Many scheduling methods, for instance, [1], [4], [8], [15],
[9], have been developed to cope with voltage scaling in
time-critical systems. Works, such as [1], [15], are based
on runtime scheduling policies, which can greatly improve
energy consumption as shown by their experimental results. A
subset of those runtime techniques applies a preprocessing for
defining an initial voltage for each task before runtime. Indeed,
this can be viewed as a hybrid approach, which mixes runtime
and pre-runtime methods. However, some of these works do
not properly tackle overheads related to voltage/frequency
switching, preemption, and runtime calculations, as well as
neglect precedence and exclusion relations.

Few works, for instance [2], [3], [5], have been developed
to deal with intertask relations. Nevertheless, those scheduling
methods either do not consider both precedence and exclusion
relations or do not properly tackle runtime overheads.

As an alternative, this paper proposes a hybrid DVS
scheduling method for hard real-time systems, taking into
account runtime overheads (preemptions and voltage/frequency
switching), intertask relations (precedence and exclusion), and,
also, utilizes a formal model based on time Petri nets. The pre-
runtime scheduling algorithm is a depth-first search method,

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2927

which seeks for a feasible schedule that satisfies stringent
timing constraints and does not surpass an upper bound in
terms of energy consumption. Different from other approaches
(e.g., [21]), the algorithm does not necessarily generate an
optimal solution due to the size of the state space (see
Section V), but it looks for a solution that meets all non-
functional requirements provided in the system specification.
Besides, the adopted non-functional requirements allow the
practical utilization of feasible schedules in the implementation
of real systems. To take advantage of slack times that may
occur at system runtime, a lightweight runtime scheduler is
adopted to improve energy consumption without violating the
constraints previously met by the pre-runtime schedule.

III. PRELIMINARIES

This section presents fundamental concepts for a better
understanding of the proposed method.

Specification Model. The specification model is composed
of: (i) a set of periodic tasks with bounded discrete time
constraints; (ii) intertask relations, such as precedence and
exclusion relations; (iii) a discrete set of supply voltages and
their respective CPU’s maximum frequencies; and (iv) the
system energy constraint.

Let T be the set of tasks in a system, A periodic task is
defined by τ = (ph, r, c, d, p), where ph is the initial phase; r
is its release time; c is the worst-case execution cycles (WCEC)
required for the execution of task τ ; d is its deadline; and p
is its period. In this work, sporadic tasks are also considered
by translating them into equivalent periodic tasks [20].

Tasks may have precedence and exclusion relations between
them. A task τi precedes task τj , if τj can only start executing
after τi has finished. A task τi excludes task τj , if no execution
of τj can start while task τi is executing.

Let call V and F be two sets of discrete CPU supply
voltage levels and frequencies, respectively, in which |V|
= |F|. vff : V → F (voltage-frequency function) is a
bijective function that maps each voltage level to one, and only
one, processor execution frequency, which is the maximum
operating frequency at that supply voltage. In this work,
voltage/frequency levels that do not provide energy saving due
to the leakage current are not considered in the scheduling
process.

In addition, the system energy constraint (emax) needs to
be defined, which sets an upper bound in terms of energy
consumption that a schedule must not surpass. In other words,
emax is adopted by the scheduling algorithm to search for
a feasible schedule, in which the energy consumption of all
tasks executions does not violate such upper bound. Moreover,
since the designer previously knows the schedule period (Sec-
tion IV) and, for instance, may have some insights about the
battery limitation in the final system, he can enforce a desired
maximum energy consumption related to the execution of all
tasks in a feasible schedule.

Computational Model. Computational model syntax is
given by a time Petri net [11] , and its semantics by a timed

labeled transition system. A time Petri net (TPN) is a bipartite
directed graph represented by a tuple N= (P, T, F, W, m0, I),
where P (set of places) and T (set of transitions) are non-
empty disjoint sets of nodes. The edges are represented by
F , where F ⊆ A = (P × T) ∪ (T × P). W : A → N

represents the weight of the edges, such that W (f) = {(i)
x ∈ N, if (f ∈ F), or (ii) 0, if (f /∈ F)}. A TPN marking
mi is a vector (mi ∈ N

|P|), and m0 is the initial marking.
I : T → N × N represents the timing constraints, where
I(t) = (EFT (t), LFT (t)) ∀t ∈ T , EFT (t) ≤ LFT (t).
EFT (t) is the Earliest Firing Time, and LFT (t) is the Latest
Firing Time. Due the lack of space, the reader is referred
to [16], [17] for further information.

IV. MODELING REAL-TIME SYSTEMS

The proposed modeling method adopts a bottom-up ap-
proach, in which a set of composition rules are considered for
combining basic building block models. The set of basic mod-
els have been conceived for automatic pre-runtime schedule
generation, where the schedule period (PS) corresponds to the
least common multiple (LCM) of all tasks’ periods. Within
this period, several task instances (of the same task) might
be carried out, such that N (τi) =PS/pi gives the number
of instances for each task τi. Once a feasible schedule is
generated, the same schedule will be infinitely often executed
during system execution,

In order to present each building block, consider the model
depicted in Fig. 1, which represents the following specification
: T1 = (0, 0, 240× 106, 20, 20) and T2 = (0, 5, 60× 106, 15,
20). For this specification, the preemptive scheduling method
is assumed, and the following voltage/frequency levels are
considered: vff = {(1V,10MHZ),(2V,20MHZ)}. Moreover, an
unavailable voltage/frequency level of 1.5V/15MHZ is also
taken into account. In this case, the unavailable voltage can
be “simulated” using the 2 immediately neighboring CPU
voltages [4]. The building blocks are explained as follows:

a) Fork Block. Supposing that the system has n tasks, the
fork block is responsible for starting all tasks in the system.
This block models the creation of n concurrent tasks.

b) Periodic Task Arrival Block. This block models the
periodic invocation for all task instances in the schedule period
(PS). A transition tphi

models the initial phase of the task
first instance. Similarly, transition tai

models the periodic
arrival (after the initial phase) for the remaining instances and
transition tri

represents a task instance release. The reader
should note the weight (αi = N (τi)−1) of the arc (tphi

, pwai
),

in which this weight models the invocation of all remaining
instances after the first task instance. The timing intervals of
transitions tphi

, tai
and tri

are the timing constraints depicted
in the specification, in this case, phi (phase), pi (period), and
ri (release) of task τi.

c) Voltage Selection Block. For each available voltage, this
block represents every possible voltage selection for executing
a task instance.

d) Non-preemptive Task Structure Block. Considering
a non-preemptive scheduling method, the processor is just

2928

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pwpci pdm2

td2

tpc21

[15, 15]

[0, 0]

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf1

pf2

tend
[0, 0]

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pstart
[0, 0]

tf1
[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc24
[0, 0]

tpc22
[0, 0]

tpc23
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

pwpc1

td1

tpc11

[20, 20]

[0, 0]

tpc14

tpc12
[0, 0]

tpc13
[0, 0]

[0, 0]

pproc

pdm1

pfv1

pfv2

0

tv23

pwf23

pwf13

Arrival

Arrival

DeadLine

DeadLine

Join

Processor

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Voltage
Selection

Voltage
Selection

Fork

tstart

pend

Fig. 1. Example Model

released after the entire computation is finished. This block
(Fig. 2(a)) models a non-preemptive task computation adopting
a specific voltage. Assuming a voltage v ∈ V and the respective
maximum frequency f = vff(v), task computation time (C)
can be obtained by C = �ci/f	, where ci is the task (τi)
WCEC. Fig. 2(a) shows that time interval of computation
transition tcin

has bounds equal to the task computation time
at a specific voltage ([C.C]).

[C, C]

pwcin
pwfin pfvi

tgin tcin tfvin

pprock pprock

[0, 0] [0, 0]

[C1, C1]

pwc1in

tg1in tc1in

pprock
pprock

[0, 0] [C2, C2]

pwgin pwcin
pwfin pfvi

tfv1in tcin tfvin
[0, 0] [0, 0]

(b)

pvin pwgin

tvsin
[0, 0]

pvin pwg1in

tvsin
[0, 0]

(a)

Fig. 2. Non-Preemptive Task Structure Blocks

e) Preemptive Task Structure Block. In this particular
scheduling method, tasks are implicitly split into subtasks, in
which the computation time of each subtask is exactly equal
to one task time unit (TTU). This method allows running
other conflicting tasks, in this case, meaning that one task may
preempt another task,

f) Non-Preemptive Task Structure with 2 Voltages Block
and g) Preemptive Task Structure with 2 Voltages Block.
If the CPU provides a small number of discrete voltage levels
and an ideal voltage is not available (videal /∈ V), the two
immediate neighbor voltages (videalL ,videalH ∈ V) to the ideal
one can be adopted for reducing energy consumption [4], For

a better understanding, a task may be divided in two parts. The
first part is executed at the immediate higher voltage in relation
to the ideal one (videalH), and the second part is executed at
the immediate lower voltage (videalL). These blocks model a
task instance executing at two different voltages considering
non-preemptive (Fig. 2(b)) and preemptive executions. C1

represents the computation time of the first part of the task
executing at videalH , and C2 represents the computation time
of the second part of the task executing at videalL . Without
loss of generality, these blocks resemble the task structure
blocks presented previously. For further information related
to the time instants at which the voltage changes, the reader
is referred to [4].

h) Deadline Checking Block. Deadline missing is an
undesirable situation when considering hard real-time systems.
Therefore, the scheduling algorithm should not reach deadline
missing states, since those states do not allow finding out
feasible schedules.

i) Join Block. Usually, concurrent activities need to syn-
chronize with each other. The join block states that all tasks
in the system have concluded their execution in the schedule
period.

Due to lack of space, the reader is referred to [16] for
information about the building blocks for modeling overheads
(e.g., voltage/frequency switching and preemption) and inter-
task relations (precedence and mutual exclusion).

V. PRE-RUNTIME SCHEDULING

The proposed scheduling activity adopts a pre-runtime
scheduling approach, in which a feasible schedule is gener-
ated at design-time. As stated in [20], a prime advantage of

2929

pre-runtime scheduling methods over runtime approaches is
predictability. This work conducts the pre-runtime scheduling
through a depth-first search algorithm [16] that generates a
subset of the state space related to the time Petri net. A partial
state space is generated since the scheduling algorithm does
not produce the subsequent states of a path whenever either
timing or energy constraints are violated.

This section provides new results of the pre-runtime
scheduling algorithm [16] regarding its complexity.

Complexity. In order to provide an estimation of the state
space size generated when considering the proposed method,
it is assumed n non-interacting tasks, each one with k local
states. Hence, the respective state space size is O(kn) [18].
In general, the number of local states (k) of each task is
somewhat affected by the following attributes: (i) the number
of task instances; (ii) the number of available voltages for
the task; (iii) the respective release interval; and (iv) when
regarding preemptive tasks, the arc weights that represent the
computation time at a specific voltage (which is affected by
the adopted task time unit).

The complexity of the state space is not only related to
the adopted formalism, but, primarily, due to the scheduling
problem in question. For instance, other formal methods, such
as process algebras and automata, face similar complexity to
tackle this scheduling problem.

Regarding time complexity, the execution time of a depth-
first search method is generally bounded by O(e) = O(v2), in
which is e and v are the number of edges and nodes of a graph,
respectively. Since the state space of Petri nets is usually rep-
resented by a reachability graph [12] and the estimated size of
the proposed model’s state space is O(kn), the execution time
related to the pre-runtime scheduling algorithm is bounded by
O((kn)2) = O(k2n).

Section VII provides the execution time as well as the
number of states actually reached by the adopted scheduling
algorithm.

VI. HANDLING DYNAMIC SLACK TIMES

During system runtime, slack times (CPU idle times) may
appear due to tasks’ early completion. In order to take
advantage of such slacks for reducing even more energy
consumption, a lightweight runtime scheduler is proposed for
adjusting the starting times as well as the voltage/frequency
levels associated to each task instance.

Before presenting the runtime scheduler algorithm, some
concepts are required firstly. The pre-runtime schedule is par-
titioned in several time slices of the same size, in which each
slice corresponds to one task time unit, and the total amount is
equal to the LCM. These slices can be grouped into segments
in such a way that represent task executions. Such segments are
denominated task segments, and each one is represented by an
interval ([start,end]). When a task is not completely executed
within a segment, the task is preempted, in other words, it is
carried out through more segments. Moreover, a global clock
(clock) is adopted for tracking the current time (e.g., the
accumulated number of time slices). Taking into account the

1 scheduler() {
2 nextSegment = retriveNextSegment();
3 taskInstance = nextSegment.taskInstance;
4
5 if(nextSegment not exists

|| taskInstance.release == nextSegment.start)

6 {return; //keep the pre-runtime schedule}
7
8 if(taskInstance.release > clock)
9 {nextSegment.start = taskInstance.release}
10 else {nextSegment.start = clock + schedulerWCET }
11
12 if (energy saving compensates the overhead)
13 {adjust voltage according to Ishihara’s theorem [4]

and the new execution window (nextSegment.end -
nextSegment.start);

14 Prepare dispatcher to execute at
nextSegment.start;}

15 else {return; //keep the pre-runtime schedule}

16 }

Fig. 3. Runtime Scheduler Algorithm

previous concepts, the runtime schedule algorithm is depicted
in Fig. 3 using a C syntax notation,

In order to check the early completion of a task instance,
the runtime scheduler is executed at the end of each segment,
in such a way that its execution does not conflict with the
dispatcher execution. Firstly, the scheduler verifies which is
the next segment (line 2) in the pre-runtime schedule, since it
is the candidate for adjusting the respective voltage/frequency
level as well as the start time. If there is no segment to be
executed - the remaining segments are returns from preemption
of finished instances or the last segment was already executed
- the original pre-runtime schedule is kept (line 6). Also, the
pre-runtime schedule is not changed whether the start time of
the next segment is equal to the release time assigned to the
respective task instance. Considering that there is an available
segment, the respective start time is set so that the release
time is not violated (line 8 and 10). If the next segment can be
promptly started, the start time is tuned to take into account
the scheduler WCET (worst-case execution time). It is worth
noting that the adjustment is only performed whenever the
improvements compensate the scheduling overhead (line 12).

Return

0 1 2 3 4 5 6 7 8 9 10

Time Slices

Segments

(a)

τ1
τ2

τ3
τ2

τ4

1.38V

1.26V

1.07V

1.04v

(b)

Ret.

0 1 2 3 4 5 6 7 8 9 10

τ1
τ2

τ3 τ2
τ4

1.38V

1.26V

1.07V

1.04v

Fig. 4. Runtime Scheduler Example

For a better understanding, consider the schedule depicted
in Fig.4(a), which is composed of the following segments:
(i) τ1 = [1, 2]; (ii) τ1

2
= [2, 4]; (iii) τ3 = [4, 6]; (iv) τ2

2
=

[6, 9]; and (v) τ4 = [9, 10]. A DVS platform based on [13]
is adopted, considering the following voltage/frequency lev-
els: vff = {(1.04V,20MHz), (1.07V,30MHz), (1.26V,50MHz),
(1.38V,60MHz)}. Moreover, assume that the energy con-
sumption is 0.54nJ/cycle at 60MHz, 0.45nJ/cycle at 50MHz,
0.34nJ/cycle at 30Mhz, and 0.31nJ/cycle at 20MHz. In this
example, if task τ2 completes its execution earlier at 7, the
proposed scheduler attempts to adjust the voltage/frequency
level as well as the start time of the next segment (τ4).

2930

Considering that τ4 release time is equal to 6, τ4 can start
its execution earlier and, also, it can utilize a lower volt-
age/frequency level (Fig.4(b)). Assuming that WCEC of each
task are c1 = 50 × 106, c2 = 150 × 106, c3 = 100 × 106,
c4 = 60×106, the energy consumption is reduced from 0.1305J
(early completion of task τ2) to 0.1167J (Fig.4(b)).

VII. EXPERIMENTAL RESULTS

This work has conducted some experiments to evaluate
the proposed pre-runtime and runtime scheduling algorithms.
Firstly, experiments related to the pre-runtime scheduling are
presented, and, next, results concerning the runtime scheduler
are described.

Pre-Runtime Scheduling. Table I summarizes the exper-
iments adopted to evaluate the pre-runtime scheduling algo-
rithm. In this table, real-world applications as well as custom-
built examples (that simulates real-world situations) are taken
into account. The column task represents the number of tasks;
inst. represents the number of tasks’ instances; sch. is the
number of states of the feasible schedule; found counts the
number of states actually verified for finding a feasible sched-
ule; w/DVS is the energy consumed (in joules) by the found
feasible schedule using DVS; o/DVS is the energy consumed
in joules by an alternative schedule that disregards DVS; lpedf
is the energy consumed (in joules) by a schedule generated
using the optimal scheduling mechanism proposed by Yao et
al., considering discrete voltage/frequency levels [9]; and time
expresses the algorithm execution time (in seconds) for finding
the feasible schedule. All experiments were performed on a
Pentium D 3GHz, 4Gb RAM. Linux, and compiler GCC 3.3.2.
For a better comprehension, the following paragraph give an
overview of each case study,

TABLE I
EXPERIMENTAL RESULTS SUMMARY

Case Study task inst. sch. found w/DVS o/DVS lpedf time(s)

1.Motiv. Ex. 4 4 48 141 0.2474 0.3132 0.17090. 0.001
2.Example 2 6 6 4377 518406 0.00069 0.00105 0.00048 35.200
3.Example 3 12 12 551 9906 267.84000 360.00000 254.11840 0.282
4.Kwon’s Ex. 4 4 246 246 279.00000 371.00000 279.0000 0.003
5.CNC Control 8 289 235852 1884381 0.11900 0.34500 0.09440 291.221
6.Pulse Oximeter 3 10 83 4268 0.00021 0.00023 0.00014 0.234
7.MP3 & GSM 8 3604 381313 381313 3.86200 4.76600 3.85410 9.606

Experiments 1 and 2 are based on example 2 of [20],
which demonstrates a situation where pre-runtime approaches
can find feasible schedules. For those experiments, runtime
methods may not provide feasible solutions due to exclusion
relation between tasks. In the same way, experiment 3 is based
on figure 2 of [19], which shows another situation where
runtime approaches may not deal properly with. Experiment
4 is depicted on Table 1 in [9] and does not consider any
intertask relation. In this case, the proposed approach finds a
feasible schedule that consumes the same amount of energy
as [9], which is the Yao’s algorithm extended with discrete
set of voltages. Experiments 5 [7], 6 [6], and 7 [14] are real-
world applications, which have been utilized with the purpose
of assisting the evaluation of the proposed approach. In their
respective specifications, exclusion relations are considered in
experiment 5, non-preemptable tasks and precedence relations

are take into account in experiment 6, precedence relations are
regarded in case study 7.

The adopted case studies demonstrate that the pre-runtime
scheduling algorithm has provided meaningful results (Table I),
since it has significantly reduced the number of visited states,
found feasible schedules in which runtime counterparts may
not, and, also, allowed energy saving by the adoption of DVS.

For a better visualization, Fig.5(a) depicts the estimated
lower and upper bounds for each case study, regarding the
state space size. Due to the large difference of sizes, this
figure depicts all values as a power of ten (i.e., the exponents
are presented). As the reader should note, the number of
states visited by the scheduling algorithm is several orders
of magnitude smaller than the whole state space in most
experiments. Besides, the algorithm tends to visit a minimal
number of states, mainly, due to the techniques adopted to
reduce the state space (e.g., preprocessing). Taking account
execution time, assume that 50μs is the average time to reach
a single state, Such time has been obtained considering the
execution time of each experiment as well as the number of
visited states. In this context. Fig. 5(b) depicts the estimated
lower and upper bounds in seconds for the algorithm execution
in each case study. At first sight, the reader should observe
that Fig. 5(b) resembles Fig. 5(a). Indeed, the execution time
is associated with the number of visit states, and the time is
also benefited by the techniques adopted to control the state
space.

Regarding energy consumption, Fig. 5(c) depicts a com-
parison between feasible schedules generated by the proposed
approach (with DVS), alternative schedules without DVS, and
optimal solutions provided by Yao’s Algorithm (LPEDF). In
this figure, the energy consumption is normalized considering
the highest value in each case study. Analyzing the results, the
proposed approach generated feasible schedules that consume
only 24% more energy (in average) than Yao’s optimal solution
and, in some experiments, provided the same consumption.
Besides, it is important to emphasize that Yao’s method does
not consider precedence and exclusion relations. In other
words, the values provided in column lpedf (Table I) assume a
set of independent tasks, thus, the respective schedules are not
feasible for most case studies. Nevertheless, those values still
serve as an interesting parameter for comparison purposes,

Runtime Scheduler. An experiment based on case study
2 has been adopted to highlight some features related to the
proposed runtime scheduler. In this experiment, 7 concurrent
tasks with precedence and exclusion relations were analyzed
executing on a real hardware platform based on [13]. In order
to evaluate the runtime scheduler, 4 tasks varied their execution
cycles at the same time from 100% to 10% in relation to each
task WCEC. Fig. 5(d) depicts quantitative data, in which the
energy consumption values are normalized,

Comparing the runtime scheduler (scheduler) with an ap-
proach based only on the dispatcher (only dispatcher), the
results show a significant reduction in the energy consump-
tion with the former (more than 40% in one scenario). The
dispatcher only follows the schedule table and performs no

2931

a) b)

c) d)

Fig. 5. Results Regarding the Pre-runtime and Runtime Scheduling Approaches

action to improve the consumption due to changes in the task
executions. Additional savings can be obtained adjusting the
dispatcher to reduce the voltage/frequency level to the mini-
mum level during the idle periods (idle 10MHz). Nevertheless,
the runtime scheduler still provides better results. Instead of
switching to the minimum voltage/frequency level, consider
the dispatcher turns off the microcontroller in the idle periods
(idle DPM). Reducing to the minimum level seems more
efficient, but the runtime scheduler provides greater savings.
Besides, mixing DPM and the minimum voltage/frequency
level (idle DPM/10MHz) slightly improves the consumption
in some situations, regarding the idle periods. Nevertheless,
the runtime scheduler can save 10% more energy in relation
to such an approach,

VIII. CONCLUSION

This work presented a hybrid scheduling approach for
energy-constrained hard real-time systems, considering DVS,
overheads and intertask relations. The main idea is to mix
the predictability of a pre-runtime scheduling method with the
flexibility of a runtime counterpart, in such a way that energy
consumption is minimized without affecting the specified con-
straints. Results demonstrated the feasibility of the proposed
hybrid approach, in the sense that a significant amount of
energy can be saved if tasks execute less than the respective
WCET.

As future work, we are planning to extend the proposed
scheduling mechanism in order to consider multiple proces-
sors.

REFERENCES
[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-

aware scheduling for periodic real-time tasks. IEEE Trans. on Comp.,
53(5):584–600, 2004.

[2] Y. Cai et al. Workload-ahead-driven online energy minimization tech-
niques for battery-powered embedded systems with time-constraints.
ACM Trans. Des. Autom. Electron. Syst., 12(1):5, 2007.

[3] L. Cortés, P. Eles, and Z. Peng. Quasi-static assignment of voltages and
optional cycles for maximizing rewards in real-time systems with energy
constraints. In DAC’05, pages 889–894, 2005.

[4] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically
variable voltage processors. In ISLPED’98, pages 197–202, 1998.

[5] R. Jejurikar and R. Gupta. Energy-aware task scheduling with task
synchronization for embedded real-time systems. IEEE Trans. on
Computer-Aided Des. of Integ. Circ. and Sys., 25:1024–1037,, 2006.

[6] M. O. Jr. Desenvolvimento de Um Protótipo para a Medida Não Invasiva
da Saturação Arterial de Oxigênio em Humanos - Oxı́metro de Pulso (in
portuguese). MSc Thesis, Departamento de Biofı́sica e Radiobiologia,
Universidade Federal de Pernambuco, August 1998.

[7] N. Kim and et al. Visual assessment of a real-time systems design: A
case study on a CNC controller. RTSS’96, pages 300–310, 1996.

[8] W. Kim and et al. Preemption-aware dynamic voltage scaling in hard
real-time systems. ISLPED’04, pages 393–398, 2004.

[9] W. Kwon and T. Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. ACM TECS, 4(1):211–230,
2005.

[10] M. Liebelt et al. An energy efficient rate selection algorithm for voltage
quantized dynamic voltage scaling. ISSS ’01.

[11] P. Merlin and D. J. Faber. Recoverability of communication protocols:
Implicatons of a theoretical study. IEEE Trans. on Comm., 24(9):1036–
1043, 1976.

[12] T. Murata. Petri nets: Properties, analysis and applications. Proc. IEEE,
77(4):541–580, April 1989.

[13] T. Phatrapornnant and M. Pont. Reducing jitter in embedded systems
employing a time-triggered software architecture and dynamic voltage
scaling. IEEE Trans. on Comp., 55(2):113–124, 2006.

[14] R. Prathipati. Energy Efficient Scheduling Techniques for Real-Time
Embedded Systems. MSc Thesis, Texas A&M University, USA, 2004.

[15] G. Quan and X. Hu. Energy efficient dvs schedule for fixed-priority
real-time systems. ACM TECS, 6, 2007.

[16] E. Tavares and et al. Modeling hard real-time systems considering inter-
task relations, dynamic voltage scaling and overheads. Microprocessor
and Microsystems, 32(8), 2008.

[17] E. Tavares and et al. Software synthesis for hard real-time embedded
systems with energy constraints. In SBAC-PAD ’08, 2008.

[18] A. Valmari. The state explosion problem. LNCS: Lectures on Petri Nets
I: Basic Models, 1491:429–528, June 1998.

[19] J. Xu. On inspection and verification of software with timing require-
ments. IEEE Trans. on Soft. Eng., 29(8):705–720, 2003.

[20] J. Xu and D. Parnas. Priority scheduling versus pre-run-time scheduling.
In Real-Time Systems, volume 18, pages 7–23. January 2000.

[21] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. 36th Annual Symposium on Foundations of Computer Science,
00:374, 1995.

2932

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

