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Abstract—We propose a novel parallel mixed-signal compres-
sive spectrum sensing architecture for Cognitive Radios (CRs)
with a detailed study of the signal modeling. The mixed-signal
compressive sensing is realized with a parallel segmented com-
pressive sensing (PSCS) architecture, which not only can filter out
all the harmonic spurs that leak from the local random generator,
but also provides a tradeoff between the sampling rate and the
system complexity such that a practical hardware implementation
is possible. We consider application of the architecture to do
spectrum estimation, which is the first step for spectrum sensing
in CRs. The benefit of prior knowledge about the input signal’s
structure is explored and it is shown that this can be exploited
in the PSCS architecture to greatly reduce the sampling rate.

Index Terms—Compressive sensing, mixed-signal, spectrum
sensing, cognitive radio, compact signal modeling

I. INTRODUCTION

Cognitive Radios (CRs), first proposed in [1], provides
a revolutionary paradigm to improve the frequency usage
efficiency by allowing Dynamic Spectrum Access (DSA). In
CRs, spectrum holes that are unoccupied by primary users
can be assigned to appropriate secondary users as long as the
interference introduced by secondary users is not harmful to
primary users [2]–[4]. The design of cognitive radio networks
is a complicated cross-layer procedure [5]. In this paper, we
focus on the spectrum sensing problem in CRs, that is, to sense
(detect) the existence of primary users, since this is the first
task for CRs in order to realize the DSA.

Spectrum sensing can be a very challenging task for CRs
due to many factors. First, for the sake of improving the
frequency usage efficiency, the sensing bandwith for CRs can
expand from hundreds of MHz to several GHz. Second, the
sensing radio should be able to detect very weak primary
users, known as hidden terminals [5]. With the traditional
time-domain Nyquist sampling, it is usually power-hungry to
digitize signals with both wide bandwidth and high dynamic
range. For example, suppose the sensing radio should detect
a weak signal of 1μV from a 100mV interferer. These
observed signal levels are not uncommon in a typical fading
wireless environment, and result in the need for 16-bit ADC
resolution. Achieving this over a large bandwidth of 5GHz
say, the required power consumption of this ADC would be
1kW [6] under a rather optimistic assumption on the energy
consumption at 1 pJ per conversion [7]. Obviously, trying to

achieve the wideband spectrum sensing for CRs by brute-
forcely implementing the high-speed and high-resolution ADC
is not realistic with current technologies. An alternative for the
RF front-end is to use a bank of filters each of which senses
a certain range of narrow bandwidth. However, this imposes
strict constraints on the filter design.

Fortunately, today’s spectrum usage presents some sparsity

in the sense that only a small portion of frequency bands are
heavily loaded while others are partially or rarely occupied at
certain time and certain place. This frequency usage sparsity
can be utilized under the framework of Compressed Sensing
(CS) [8], [9] to reduce the sensing rate at the sensing radio
of CRs. According to CS theories, the characteristics of a
signal that is sparse over some signal basis can be completely
captured by a number of projections over another basis which
is incoherent with the signal basis and then reconstructed
perfectly from these random projections at a high probability.
The number of random projections is on the order of the
signal’s information rate rather than the Nyquist rate.

This idea of applying CS to do wideband spectrum sensing
was first introduced in [10]. However, this approach assumes
perfect analog-to-digital conversion and the issue is to reduce
the complexity of the spectrum estimate. As a result, a full-rate
sampling is still required, which is just the most challenging
task. A mixed-signal parallel segmented compressive sensing
(PSCS) architecture to do wideband spectrum sensing in CRs
was proposed in [11], where the high-speed ADCs were avoid
by applying the CS to the analog signal directly.

In this paper we further develop and study the PSCS
architecture [11] and its application on wideband spectrum
sensing for CRs. The remainder of this paper is organized as
follows. A brief background on CS is provided in section II
and the spectral occupancy signal modeling is given in section
III. Section IV introduces the proposed mixed-signal parallel
compressive spectrum sensing scheme. Section V discusses
how prior knowledge can be utilized via the compact signal
modeling to reduce the sampling rate. Conclusions are made
in section VI.

II. COMPRESSIVE SENSING BACKGROUND

Given a vector of discrete-time signal samples rP×1 that
is K- sparse or compressible in some basis matrix ΨP×S ,
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i.e. r = Ψa, where aS×1 has only K non-zero elements, we
can reconstruct the signal successfully with high probability
from L measurements, where L depends on the reconstruction
algorithm and is usually much less than P .

In CS, the measurement is done by projecting r over another
random basis Φ that is incoherent with Ψ, i.e. y = ΦΨa. The
reconstruction is performed by solving the following l1- norm
optimization problem.

â = arg min‖a‖1 s.t. y = ΦΨa = V a, (1)

for which linear programming (LP) techniques or iterative
greedy algorithms such as orthogonal matching pursuit (OMP)
can be used. When LP is used to do the reconstruction,
M is approximately O(Klog(S/K)) to achieve a reasonable
reconstruction quality.

In practice the measurements are inevitably polluted by
noise. Assuming the noise is additive, i.e., r = Ψa + n, then
the reconstruction can be formulated as the following SOCP
(second order cone programming) problem,

â = arg min‖a‖1 s.t. ||y − ΦΨa||2 ≤ ε, (2)

where ε = ||Φn||2.

III. SIGNAL MODELING

The input signal to the sensing radio r(t) is a multi-
band analog signal whose spectrum is illustrated in Fig.1.
Specifically, we assume that r(t), with a frequency span from
fl to fh, is the superposition of primary users, perhaps using
W different wireless standards [5]. Each wireless standard
occupies a certain frequency band which consists of multiple
channels. According to the measurements done by FCC in the
US [12], the current frequency usage exhibits sparsity because
only a part of the allocated channels for one standard are
utilized at a given time.

Fig. 1. Illustration of the multi-band analog signal to the sensing radio.

Without loss of generality, we assume that r(t) is bandlim-
ited to [0, fh], so r(t) can be written as

r(t) =
∫ ∞

−∞
R(f)ej2πftdf =

∫ fh

0

R(f)ej2πftdf, (3)

where, R(f) is the Fourier transform of r(t). The spectrum
hole detection such as energy detection and feature detection
is usually based on the observation of R(f). In practice, we are
interested in regimes where it is not realistic to have continuous
observation of R(f), therefore, r(t) is approximated as

r(t) ≈
S−1∑
s=0

R(sΔf)ej2πsΔftΔf, (4)

where Δf is the resolution on the frequency axis and (S −
1)Δf = fh. In other words, r(t) is approximated as a
multi-carrier signal bandlimited to [0, fh] and with a carrier
spacing of Δf . The sparsity on frequency usages means that
statistically speaking, only K out of the S carriers are active
at any time, where K � S. This model is convenient for
representing user occupancy with spectral sparsity.

Assuming the channel state information is known at the
receiver and the noise is additive Gaussian bandlimited to
[0, fh], we can then employ a direct modeling of the input
signal as:

r(t) =
S−1∑
s=0

asΨs(t) + n(t), (5)

where n(t) is AWGN noise, Ψ =
[Ψ0(t),Ψ1(t), . . . ,ΨS−1(t)], Ψs(t) = ej2πsΔft,
a = [a0(t), a1(t), . . . , aS−1(t)] ∈ C

S , as = ΔfR(sΔf)
and a has only K � S non-zero elements. Since Δf is a
scalar, for simplicity, we discard it in the following and model
the input signal as a multi-carrier signal with as = R(sΔf).

Note that these W frequency bands are not necessarily
consecutive. Between two neighboring frequency bands, there
may exist some frequency gaps which are not allowed for use
or the information over which is not useful to the receiver
and therefore can be filtered out. If we know the location of
the frequency gaps, we can have a compact modeling of r(t)
as:

r(t) =
S′−1∑
s′=0

as′Ψs′(t) + n(t), (6)

where, s′ is a non-consecutive enumeration of those carriers
within the W frequency bands. For example, it we index the S
carriers from fl to fh by 1, 2, . . . , i− 1, i, . . . , j, j + 1, . . . , S,
and the carriers indexed from i to j are within the frequency
gap, then the compact signal model only includes the carriers
indexed by 1, 2, . . . , i−1, j+1, . . . , S and S′ = S−(j−i+1).
This compact modeling is crucial for reducing the sampling
rate via the a priori knowledge of the frequency gap locations.

Based on Fig. 1, we define the following parameters.
� NBW The nominal bandwidth of the input signal to the

receiver.

NBW = fh − fl =
W∑
i=1

Bi +
W−1∑
i=1

Gi.

� EBW The effective accessible bandwidth of the receiver.

EBW =
W∑
i=1

Bi.

� OBW The actual occupied bandwidth of the input signal
to the receiver.

� NSP The nominal sparsity of the input signal, which is
the occupied bandwith over the NBW

NSP =
OBW

NBW
.
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� ESP The effective sparsity of the input signal, which is
the occupied bandwith over the EBW,

ESP =
OBW

EBW
.

� FNq The required Nyquist sampling rate.

FNq = 2 ∗ NBW.

Note that in this paper, when we talk about the
Nyquist sampling rate, we always assume that the
signal is downconverted to baseband before the sam-
pling and therefore FNq = 2∗NBW = 2∗(fh−fl) 	=
2 ∗ fh.

� FCS The overall required sampling rate for the
PSCS architecture, which varies with different post-
processing and reconstruction algorithms. The sam-
pling rate at each path is approximately 1/N of FCS .

� NSR The PSCS sampling rate normalized by the
Nyquist sampling rate.

NSR =
FCS

FNq
.

Using the multi-carrier signal model with a carrier spacing
of Δf , we have

K =
OBW

Δf
, S =

NBW

Δf
, S′ =

EBW

Δf
(7)

and

NSP =
K

S
, ESP =

K

S′ . (8)

IV. WIDEBAND PARALLEL COMPRESSIVE SPECTRUM
SENSING

Wideband spectrum sensing is composed of several crucial
steps: first, spectrum estimation; second, calculate the sufficient
statistics, during which digital signal processing is needed to
improve the front-end sensing sensitivity by processing gain
and identification of the primary users based on knowledge
of the signal characteristics [5]; last, to decide whether there
exist primary users based on the sufficient statistics. Here we
focus on the wideband spectrum estimation step, that is, to
estimate the unknown coefficients a in the equation (5) or (6).
Specifically, the signal will be sampled at sub-Nqyuist rate by
the mixed-signal architecture given in section IV-A and the
spectrum estimation will be done as shown in section IV-B.

A. Mixed-signal Compressive Sensing Architecture

The proposed parallel segmented compressive sensing

(PSCS) structure is shown in Fig. 2. The received signal
r(t) for t ∈ [0, T ] is segmented into M pieces rm(t) =
r(t)wm(t)|M−1

m=0 with a duration time Tc, where, T = 1/Δf =
2S
fNq

, and wm(t) is the windowing function. Two adjacent
segments can have an overlapping time Tc−Tm which defines
an overlapping percentage OV R = Tc−Tm

Tc , as shown in Fig. 3.
Random projection is applied to each segment independently
through N parallel branches. There are a total of L = MN

samples generated every T seconds and the mth measurement
of the nth branch is given by

ymN+n = 〈rm(t),ΦmN+n(t)〉 =
∫ mTm+Tc

mTm
r(t)Φ∗

mN+n(t)dt,
(9)

where, ΦmN+n(t) is chosen randomly for all m and n. At the
end of each integration time Tc, the outputs of the integrators
are fed to a set of ADCs and the quantized digital words are
sent to the DSP blocks for further processing.

m c

m

iT mT T

iT mT

+ +

+∫

( )0 tΦ

( )0 , 1, N M Ny y y −⋅⋅ ⋅

m c

m

iT mT T

iT mT

+ +

+∫

( )1 tΦ

( )1 1, 1 1, N M Ny y y− − +⋅⋅ ⋅

m c

m

iT mT T

iT mT

+ +

+∫

( )1N t−Φ

( )1 1, 1 1,N N N M N Ny y y− + − − + −⋅⋅⋅

( )r t

Fig. 2. Block diagram of the parallel segmented compressive sensing (PSCS)
architecture.
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Fig. 3. Illustration of overlapping windows

The windowed integrator with overlapping acts as a spuri-
ous frequency rejection mechanism in the PSCS architecture.
The integrator, with a reset every Tc seconds, provides a
simple realization of a sinc type low-pass filter with nulls
at frequencies of 1/Tc × k. By setting the random generator
clock frequency equal to a harmonic of the reset frequency,
the sinc nulls coincide with spur frequencies from the random
generator clock and so filters them. Note also that the overlap
in the integration windows provides wider filter nulls which
improves the harmonic rejection. Fig. 4 compares the mean
square error (MSE) of a reconstructed signal under a noiseless
channel using windowed integrators parameterized by several
overlapping ratios. We used a multi-carrier signal as defined in
equation (5) with S = 128, and K = 10. M is fixed to be 16,
which means that the sampling rate for each path is 1

32FNq.
An interference of -10dB relative to the single carrier’s power
is added after the mixer at 0.75FNq , that is, 24 times the single
path’s sampling rate. As shown in the figure, by increasing the
overlapping ratio we get better reconstruction quality which is
attributed to the larger attenuation on the interference.

For the random basis Φl(t) there are several choices,
such as Gaussian, Bernoulli and so on. Here, the Bernoulli
random basis has particular merit because the desired binary
waveforms can be generated with digital sequential circuits.
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Fig. 4. The MSE of the reconstructed signal parameterized by several
windowed integrators overlapping ratios.

In the PSCS architecture, the Nyquist rate ADC is avoided
with the mixed-signal approach, and the sub-Nyquist sampling
is achieved with the aid of CS and parallelization. First, the
signal sparsity is utilized by CS to reduce the sampling rate.
Depending on the application and reconstruction algorithm, the
achievable sampling rate reduction varies. The parallelization
reduces the sampling rate needed per path, and provides a
trade-off between the sampling rate at each path and the system
complexity. When N = 1, the architecture is equivalent to
a single path architecture [13]. At the other extreme, when
M = 1, each parallel branch generates only 1 sample per T
sec, that is, the sampling rate at each branch is fNq/2S. The
parallel architecture enables a balance to be set, avoiding too
many branches and the associated hardware complexity, while
tuning the associated sampling rates per branch. In addition,
the output digital data is well matched to further high speed
parallel digital processing. Interested readers are referred to
[11] for detailed discussion.

B. Subsequent DSP

After obtaining the L = MN compressed samples, these
samples are concatenated to form a measurement vector given
by

y = [ỹT
0 , ỹT

1 , . . . , ỹT
M−1]

T , (10)

where, ỹm = [ymN , ymN+1, . . . , ymN+N−1]T is the vector of
measurements from the mth segment from all N branches.
Define the reconstruction matrix V = {vi,j}L×S with

VmN+n,s = 〈Ψs,m(t),ΦmN+n(t)〉 =
∫ T

0
Ψs,m(t)Φ∗

mN+n(t)dt,
(11)

where, Ψs,m(t) = Ψs(t)wm(t).
Using y and V , we can estimate â by solving the optimiza-

tion problem given in (2), for which there are many algorithms
to choose such as SOCP, OMP, or BP (belief propagation).
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Fig. 5. Time-domain signals of a simulated multi-band signal. From top to
bottom, the four plots represent the transmitted signal by primary users, the
received primary users’ signal at the sensing radio, the reconstructed signal
from the time-domain samples via the Nyquist rate ADC and the reconstructed
signal from the transform-domain samples via mixed-CS at a NSR of 0.32.

C. A Wideband Spectrum Sensing Example

In this part, we carried our a simulation to show the
effectiveness of the proposed wideband PSCS architecture,
where the input signal is modeled as a frequency-domain
sparse multi-carrier signal as given in Equation (5). The mixed-
signal compressive sensing based on the PSCS architecture
given in Fig. 2 is used to do the spectrum estimation.

In the simulation, S = 128, K = 17 and SNRoverall =
−10dB, where SNRoverall is the total signal power over the
whole NBW divided by the total noise power over the NBW .
Note how noisy the received signal is in this example, Fig.
5). There are 5 primary bands with NBW=528MHz. Using
Δf = 4.125MHz, the primary user’s frequencies are [17,
18, 43, 44, 45, 63, 64, 65, 66, 67, 76, 77, 118, 119, 120,
121, 122]×4.125 MHz. The input power dynamic range of the
primary users is 15dB, and no a prior knowledge is assumed
available at the sensing radio. In Figs. 5 and 6, from top
to bottom, the four plots represent the transmitted signal by
the primary users, the received primary users’ signal at the
sensing radio, the reconstructed signal from the time-domain
samples via the Nyquist rate ADC, and the reconstructed
signal from the transform-domain samples via mixed-CS at a
NSR of 0.32. The measured MSE for the two reconstructed
signals is -5 dB and -14dB, respectively. Note that even with a
lower sampling rate, the sensing radio based on mixed-signal
PSCS is more robust against noise than the traditional digital
approach based on the DFT, because CS takes advantage of
the knowledge of the signal structure and its sparsity.

V. SAMPLING RATE REDUCTION FROM SIGNAL MODELING

While the mixed-signal PSCS architecture can achieve
wideband spectrum sensing at sub-Nyquist rate, the sampling
rate reduction is limited because the number of samples needed
for successful reconstruction is about four times the number
of non-zero signal samples [14], which implies that signals

1971



0 1 2 3 4 5 6

x 10
8

0

100

200

300

P
S

D

0 1 2 3 4 5 6

x 10
8

0

100

200

300

P
S

D

0 1 2 3 4 5 6

x 10
8

0

100

200

300

P
S

D

0 1 2 3 4 5 6

x 10
8

0

100

200

300

Frequency (Hz)

P
S

D

estimated via sub−Nyquist CS

estimated via Nyquist FFT

received

transmitted

Fig. 6. Frequency-domain signals of a simulated multi-band signal. From top
to bottom, the four plots represent the transmitted signal by primary users, the
received primary users’ signal at the sensing radio, the reconstructed signal
from the time-domain samples via the Nyquist rate ADC and the reconstructed
signal from the transform-domain samples via mixed-CS at a NSR of 0.32.

with sparsity larger than 25% would provide no sampling
reduction in comparison with Nyquist sampling. In this section,
we will investigate the potentials for sampling rate reduction
from signal modeling.

Recall that we define two signal modeling schemes, direct

modeling and compact modeling in section III. In the following
context, we do a comparison between these two schemes in
terms of the sampling rate reduction to see the benefit of a
priori knowledge about the spectral gaps. Not considering the
noise and using LP for reconstruction, we can estimate the
required sampling rate of both schemes as follows [15].

Direct Modeling: The number of samples needed during
T = 1/Δf is given by c ∗ K ∗ log(1 + S/K), where c1 is a
constant, therefore,

FCS,1 = c1K log(1 + S/K)Δf. (12)

Compact Modeling: The number of samples needed during
T = 1/Δf is given by c ∗ K ∗ log(1 + S/K), where c2 is a
constant, therefore,

FCS,2 = c2K log(1 + S′/K)Δf. (13)

Because FNq = 2BW = 2SΔf , the corresponding NSR for
both schemes are given by:

Direct Modeling:

NSR1 =
FCS,1

FNq
=

c1

2
NSP log(1 + 1/NSP ), (14)

Compact Modeling:

NSR2 =
FCS,2

FNq
=

c2

2
NSP log(1 + 1/ESP ). (15)

Because ESP ≥ NSP , then NSR2 ≤ NSR1. In other
words, the prior knowledge about the existence of the gaps
can further reduce the sampling rate when PSCS is used. This
sampling rate reduction can be related with the work in [16],

[17], [18]. In [16], the authors demonstrated that the number of
measurements needed in compressive sensing for robust signal
recovery can be reduced by including the signal’s additional
structural constraints in addition to the signal sparsity, which
is called model-based compressive sensing and the signal
is called K-model sparse. By endowing the additional con-
straints, the searching range for the K- sparse signal will be
narrowed down from a union of

(
S
K

)
K-dimensional subspaces

to a union of lK K-dimensional subspaces, where lK ≤ (
S
k

)
.

For completeness, and to connect to our approach, we state
this important observation as a theorem.

Theorem 1: [17] Let LK be the union of lk subspaces of
K-dimensions in RN . Then, for any t > 0 and any

L ≥ 2
cδ2

Lk

(
ln(2mK) + K ln

12
δLK

+ t

)
, (16)

an L × S i.i.d. sub-Gaussian random matrix has the LK-RIP
with constant δLK

with probability at least 1 − e−t. The LK-
RIP property is sufficient for robust recovery of the K-model

sparse signal [16].
For the frequency-domain sparse signal as defined in this

paper, knowing the location of frequency gaps means that the
search region for the signal is narrowed down to a union
of

(
S′

K

)
K-dimensional subspaces. Since

(
S
K

) ≈ (Se/K)K ,
with the direct modeling, lK =

(
S
K

)
and the number of

measurements needed is O(K log(S/K)); and with compact
modeling, lK =

(
S′

K

)
and the number of measurements needed

is O(K log(S′/K)).
The compact modeling can be very beneficial when the

signal’s ESP is not small while NSP is small. Fig. 7 shows
how NSR varies with ESP for a given NSP , and Fig. 8
shows how NSR varies with NSP for a given ESP , where
the solid lines are simulation results and the dashed lines
are the predicted NSR according to Equation (15). When
EBW = NBW , i.e., there is no gap or no prior knowledge of
such gaps, the dotted lines give a prediction of NSR which is
close to the simulation results. The constant c2 in the equation
(15) is calculated by curve matching over the simulated points.
As shown, the simulation results match the prediction equation
very well, where NSR is linearly proportional to NSP and
logarithmically proportional to 1/ESP . The reasoning behind
this relationship can be understood from two aspects. (i) Given
ESP , NSP is determined by the gaps. The traditional Nyquist
sampling is the same regardless of any gaps, whereas CS can
take advantage of this prior knowledge, reflected in the linear
gain in NSP . (ii) Given NSP , NSR is determined by the
reconstruction algorithms, which usually have a logarithmic
relation.

The spectrum sensing for cognitive radio provides a very
suitable scenario where we can utilize the compact modeling
to reduce the compressive sampling rate, because it is possible
for the sensing radio to know the locations of frequency gaps in
advance. For example, if we know that the 2 GHz frequency
band are heavily loaded with high probability and therefore
there is a little chance that there exist spectrum holes within
this band, the preselect filter of the cognitive radio receiver
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can null out the signal within this particular band before
sending the signal to the sensing radio, which results in some
frequency gaps and makes the signal’s NSP < ESP . By
using the compact modeling, the sampling rate reduction will
be significant when NSP is small, even if the usage of each
frequency band may be high.

VI. CONCLUSIONS

Because of the difficulty in designing high-speed, high-
resolution ADCs, it is very challenging to do spectrum sensing
for wideband CRs, especially when the bandwidth expands
from hundreds of MHz to several GHz. Fortunately, the
sparsity on the current frequency usage makes it possible to
use the proposed parallel compressive sensing architecture to
reduce the sampling rate at the sensing radio. The mixed-
signal CS avoids the necessity of a high-speed, high-resolution
Nqyuist rate ADC. The parallel structure brings flexibility and
scalability in design, and practical wideband spectrum sensing

can be realized by carefully balancing the complexity and the
sampling rate. If a priori knowledge about the signal structure
is available, compact modeling can bring extra reduction in
the required sampling rate. Analysis and simulation show that
the proposed architecture can process the analog signal with
only 10%-40% of the Nyquist sampling rate depending on the
sparsity of the input analog signal.
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