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Abstract—Asset assignment and scheduling algorithms were 
developed and implemented to support a team-in-the-loop 
planning experiment conducted at the Naval Postgraduate School 
(NPS) in March 2009. The experiment examined planning and 
information flows among three cells in an abstracted and 
simplified Maritime Operations Center (MOC). This paper 
describes two optimization-based modules that focused on the 
Future Operations (FOPS) cell’s planning activities.  Module 1, a 
FOPS Planning Module, was a decision aid that presented the 
planners with N-best asset packages that would meet individual 
task requirements, while maximizing task execution accuracy. 
Module 2, a Scheduling Module, was an optimization-based 
scheduling algorithm that was used by experiment designers to 
set the conditions for the mission planning activity (e.g., asset 
types and numbers, task requirements and asset capabilities), 
and to assure that the tasks presented to the human planners 
would be achievable to a specified level of accuracy.  A third 
module, termed Current Operations (COPS) Risk Analysis 
module, not discussed in detail here, was also implemented to 
assist COPS players on the consequences of redirecting assets 
from an ongoing task. 

Keywords— mission planning, scheduling, decision aids, N-
best assignments, mixed integer programming, asset packages

I. INTRODUCTION

A. Motivation 
For over 15 years, the University of Connecticut (UConn) 

and the Naval Postgraduate School (NPS) have collaborated in 
an Office of Naval Research (ONR) supported program that 
has integrated analytical modeling and empirical research with 
human teams to design and evaluate alternative organizational 
structures and processes for Naval Command and Control 
(C2).  The ways in which the integration is instantiated within 
this Adaptive Architectures for C2 (A2C2) program are three-
fold: (1) Models are used prior to conducting an experiment to 
formulate hypotheses and guide selection of (independent and 
dependent) variables for the subsequent empirical study, (2) 
Models are used within information and decision aids that are 
presented to human players in the actual experiments, and (3) 
Models are used post-experiment to compare actual data with 
model predictions, and also provide a structure with which to 
interpret the empirical results.

Previous A2C2 research has had a strong tactical focus, 
that is “who does what”, “who owns what (assets)”, “who sees 
what”, “who coordinates with whom”, etc. In these 
experiments, human decision-makers (DMs) were involved in 
mission execution – moving assets, gathering information, 
attacking targets, etc. – using a real-time team-in-the-loop 
networked, distributed, software system called the Distributed 
Dynamic Decision-making (DDD) simulator [10]. Current 
A2C2 research has begun to shift its focus to the Maritime 
Headquarters with Maritime Operations Center (MHQ/MOC), 
as the Navy attempts to standardize operational processes and 
structures across Fleets and operation centers, and to be 
consistent with Joint operations. A MOC consists of 100’s of 
people organized across a number of boards, centers and cells. 
At the operational (vs. tactical) level, MOC emphasizes 
standardized processes and methods, centralized assessment 
and guidance, networked distributed planning capabilities, and 
decentralized execution for assessing, planning and executing 
missions across a range of military operations. The assessment 
is a continuous process, combining the monitored outcomes of 
mission execution and the analyzed effects of operations 
(diplomatic, information, military or economic), with the 
situational awareness to inform future development of plans, 
to prioritize intelligence, surveillance and reconnaissance 
(ISR) activities and to allocate forces.  The planning process is 
informed by guidance from higher headquarters and the 
assessment process, and is highly collaborative vertically with 
higher headquarters at the strategic level and with subordinates 
at the tactical level, and horizontally with other MOCs and 
Joint components.  The maritime planning processes focus on 
the desired objectives and operational effects required by 
higher headquarters’ guidance.  Time scales, for planning, are 
generally 24 hours and beyond. A MOC does not “own” any 
forces, but rather gives directives to subordinate commands 
and forces. Important to effective execution is operational 
environment awareness, horizontal and vertical integration 
with other commands, and continuous assessment.  A major 
challenge now facing the A2C2 research team is how to distill 
relevant MOC – oriented issues in such a manner that they can 
be studied empirically within a controlled research laboratory 
environment.   
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This paper describes the model-based components of the 
first MOC–oriented human team experiment (MOC-1) that 
was conducted at NPS in March 2009. The experiment was 
designed to examine alternative structures and processes for 
the coordination among three key cells: Future Operations 
(FOPS), Current Operations (COPS), and Intelligence 
Surveillance and Reconnaissance (ISR) necessary to 
operationalize a plan generated by a Future Plans Cell.  The 
FOPS cell drove this experiment – its goal was to develop the 
“plan” for allocating assets across a number of interdependent 
future tasks. The ISR and COPS cells supported this activity 
by obtaining and providing relevant task information needed 
by FOPS to construct the plan. For details of the experiment, 
see [11]. 

B. Related Research 
The problem of allocating assets to tasks, in its simplified 

form, is a well-known assignment problem introduced in 1955 
by Kuhn [8].  When there are a large number of assets 
available, it is related to the Cutting Stock problem [3].  There 
exist many optimization tools that provide a solution to such 
allocation problems (e.g. Lpsolver, ILOG CPLEX, LINGO, 
etc.).  However, in some cases involving mixed initiative 
decision support systems, it may be useful to present the 
second, third and fourth best assignments (i.e., the Nth-best 
assignment after excluding the first (N-1) minimal cost 
assignments) to human decision makers.  This concept has been 
popularized by Murty [1] for determining a ranked set of 
solutions to the assignment problem, and was enhanced by Cox 
et al [2] and Popp et al. [6] in the context of multi-target 
tracking.  It is also applied to inference problems arising in 
multiple fault diagnosis with unreliable tests [4].      

Scheduling problems are generally NP-hard.  These 
problems can be approached via a set of well-known 
algorithms: branch-and-bound, dynamic programming (DP), 
dynamic list scheduling (DLS), and pair-wise exchange (PWE) 
[5], [7]. The benefit of using DLS and PWE is that their 
computational complexity is polynomial in the number of 
assets, tasks and related constraints (such as the number of 
precedence arcs in the task precedence graph and dimension of 
resource requirement/capability vector). The DLS method 
obtains fast near-optimal schedules, which can be further 
improved by the PWE algorithm.  Another advantage of DLS is 
that it provides a dynamic scheduling procedure and accounts 
for on-line changes in the mission and/or asset capabilities. 
There are two main steps in the DLS algorithm: (1) Select the 
task to be processed, and (2) Select the group of assets to be 
allocated to the selected task.  The process of task selection is 
based on task priority coefficients, which can be determined 
with one of the following three algorithms: critical path, level 
assignment, and weighted length. Based on the simulation 
results in [7], DLS provides a fast near-optimal schedule. If 
assets are shared among multiple geographic areas, schedules 
for combined areas can be constructed by using Benders’ 
decomposition [3], [9] and Dantzig-Wolfe [3] decomposition.  

C. Organization of the Paper 
The paper is organized as follows. Section II describes the 

overall mission scenario that was used for the study, and 

defines the basic mission parameters (i.e., tasks, assets, task-
resource requirement and asset-resource capability vectors, 
etc.). The FOPS Planning Module, and its embedded algorithm 
that generates N-best options for task accomplishment from a 
selected subset of available assets, are discussed in section III. 
Section IV discusses the Scheduling Module and algorithm that 
was developed for the pre-experiment activity to help select 
task and asset parameter values, to adjust numbers and type of 
assets, and to assure that the planning task could be 
accomplished such that no task would have accuracy less than a 
specified threshold (e.g., 75%). Algorithm performance and 
simulation results are given in section V. The paper concludes 
with a summary in section VI. 

II. OVERALL MISSION SCENARIO

In the MOC-1 Experiment at NPS, there were two FOPS 
planners, one for geographical area A and one for area B.  
Their goal was to build an effective plan by allocating a given 
set of 43 assets to a given set of 23 tasks distributed over those 
two areas.  For each area, the planner was given a mission task 
graph, a worksheet with Gantt chart, and two tables similar to 
Tables 1 and 2 (below). Table 1 shows names of asset types, 
how many available assets of each type (e.g. 1 CVN, 2 CCG, 4 
P3, etc.), and their resource capability vectors.  Table 2 
contains task information, such as task names and their 
resource requirement vectors. A task is deemed successfully 
accomplished if all its resource requirements are satisfied by 
the resource capabilities of allocated assets. For example, to 
successfully attack MSL bases with 100% accuracy requires 2 
units of C2, 7 units of STRK, 3 units of ISR(G), and 7 units of 
BDA. All tasks must be completed in 30 hours. In addition, 
commander’s guidance was provided to FOPS players to help 
them prioritize in their overall mission planning activity. 

Similar to real-world situations, there may not be adequate 
assets to complete all tasks with 100% accuracy. One useful 
objective is to maximize the mission’s average accuracy. Most 
assets were preallocated to either area A or B; but some assets 
were shareable between the two areas. The following are some 
asset constraints. An asset can only be assigned to one task at 
any given time. Furthermore, assets once committed to a task 
remain with that task until the task is finished.  Since the 
number of asset combinations and task sequences is very large, 
FOPS players were provided a decision aid to rapidly provide 
N-best asset package options for each task and evaluate the 
achievable accuracy.  The parameter N was set to 4.   

Figure 1: Mission task graph for area A 

COPS (on going) FOPS (future) 

    TAMD GREEN 

    AEW Area A 

    TAMD BLUE in A 

    Attack Air Bases (incl. BDA) 

    Attack C2 Nodes (incl. BDA) 

    Attack IADS (incl. BDA) 

    Attack MSL Bases (incl. BDA) 

    SURF SURV Area A 

DEF vs. CDCM Attack 

MIW in Strait A Negate Red SUBS   CVN Penetrate into A 
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Table I. Gantt chart for Area A 
Area A FOPS Area A Plan for 30 hours 

Task Description 

Time 
Req’d 

for 
Task 

(hours) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Sample Task 14 H CG_1, DDG_1, UAV_2         
AEW Area A 30 H 
TAMD GREEN 30 H 
TAMD BLUE in A 30 H 
SURF SURV Area A 30 H 
MIW in Strait A 10 H            
CSG Penetrate into A 4 H              
DEF vs. CDCM Attack 24 H     
Attack Air Bases 24 H     
Attack  C2 Nodes 30 H 
Attack IADS 18 H        
Attack MSL Bases 30 H 

Table II. An example of asset resource capabilities (Area A)

Table III. An example of task resource requirements (Area A) 
ASSET C2 STRK AW BMD CMD SUW USW MIW ISR(A) ISR(S) ISR(G) BDA

AEW Area A 5  5      5    

TAMD 
GREEN 5  12 14 10    12  4  

TAMD BLUE 
in A 3  8 8 7    6  4  

SURF SURV 
Area A 2         7   

MIW in Strait 
A 2       5  4   

CSG Penetrate 
into A 5  10  8 10 6  5 5   

DEF vs. 
CDCM Attack 2    8     5   

Attack Air 
Bases 2 5 5        2 3 

Attack  C2 
Nodes 2 6         3 5 

Attack IADS 2 8 5        2 5 

Attack MSL 
Bases 2 7         5 7 

Table IV. An example of risks associated with releasing ISR assets 
Tasks Primary Task 

Asset(s) 
ISR Support 

Asset(s) Risk of Losing Borrowed ISR Asset 

AEW Area A CAP AWACS and 
Rivet Joint  AWACS:  Lose wide area search 

TAMD GREEN CG U-2 and UAV U2:  I&W of potential launch 
TAMD BLUE in A CG and DDG   
SURF SURV Area 
A P3 and JSTAR P3 and JSTAR P3:  Lose periscope detection and ESM capability

JSTARS:  Lose wide area search 

Negate Red Subs 2 SSN and 3 P3 P3 and 
AWACS 

P3:  Lose fast revisit and response time AWACS; 
Lose potential periscope detection and ESM 

In order to determine the best allocation of assets to tasks, 
the FOPS players send Requests for Information (RFIs) to the 
ISR cell for an Intelligence Preparation of the Environment 
(IPE).  These provide FOPS with accurate and up-to-date data 
on resource requirements on a task-by-task basis.  In response 

to the FOPS requests, ISR players recommend to COPS the 
ISR assets that would yield the best data as per the RFI.  The 
COPS players direct the ISR platforms (i.e., Rivet Joint, U-2, 
UAVs, AWACS, etc.) that are “owned” by subordinate forces. 
Thus, ISR acts as a bridge between FOPS and COPS. But, 
there is a trade-off here. Releasing ISR assets from COPS 
would negatively impact the performance of current task 
execution; however, the useful data obtained via this action 
would positively impact FOPS in building its future plan.  

A. Tasks 
A task, which is derived from a mission decomposition, is 

an activity that requires relevant resources (provided by 
organization’s assets) so that it could be carried out by a DM or 
a group of DMs under certain mission objectives, i.e. 
maximizing the overall mission accuracy, minimizing the 
mission’s completion time, or balancing the workload.  In our 
model, we characterize a task i (i = 1, …, H, where H is the 
number of tasks) by specifying the following attributes: (i) ts,i = 
required start time of task i , (ii) tp,i = processing time of task i,
(iii) [Ri,1, …, Ri,L] = resource requirement vector, where Ri,l is 
the number of units of resource type l (l = 1, …, L) required for 
successful processing of task i

B. Assets 
An asset is a physical entity with given resource capabilities 

and is used to process tasks. For each asset type  j (j = 1, ..., K), 
we define their attributes as follows: (i) a resource capability 
vector [ri,1, …, ri,L], where ri,l is the number of units of resource 
l possessed by asset type j, and (ii) number of available assets 
for asset type j, Dj,   

III. THE FOPS PLANNING MODULE 

A. Problem description 
For each area, there is a list of available assets and their 

resource capabilities, as well as a list of tasks and their resource 
requirements. The objective is to provide FOPS players with a 
list of N-best asset packages suitable for executing a user-
selected task to maximize the task’s execution accuracy. 
Moreover, there should be no more than M assets assigned to 
any task. Each package shows: a) the % accuracy attainable, 
and b) the resource categories in which more capability is being 
planned than what is needed, expressed as a % of “overkill”. 
Values of M (≤ 4) and N (= 4) are determined by experiment 
designers, not the planners. 

Figure 2: FOPS Planning Module 

ASSET num C2 STRK AW BMD CMD SUW USW MIW ISR(A) ISR(S) ISR(G) BDA
CVN 1 5 6 5   2 5 2 1 5 5 2 5
CG 2 3 5 8 7 6 4 3 3 7 5     
DDG 3 2 5 8 7 6 4 3 3 6 4     
SSN 3   3       5 4 2 1 3 1   
P3 4 1         6 2     6   3
MH53 1               4         
AWACS 2 5   5           8 3 1   
JSTAR 1 3                 1 6 3
U2 1                 3 2 4 3
RJ 1 2               4 3 3 2
UAV 3                   1 5 5
CAP 1     7                   
AEF 2 5 7 5     1     4 1 3 3

Option 3 + 4   + 10 + 4 

Mismatch C2 STRK AW

Option 1 + 1 + 10 + 4 

Option 2 + 2   + 10 + 4 

BMD

TAMD GREEN 5 12

C2 STRK AWAREA A Planning 

14

BMD 

2 CG + 1 UAV 

                   100  

2 DDG + 1 JSTAR 2 CG + 1 JSTAR

                    100                     100

Option 1 Option 2 Option 3 

Accuracy (%)

Asset Package

ISR is current

Resource Capabilities
vs. 

Task Requirements 

2 CG, 1 UAV, 
2 DDG, 1 JSTAR, 

AEW, TAMD, 
SURF SURV, …

Assets 

Tasks 

Matching problem via Mixed Integer Linear Program 

Each bold box indicates the duration of each task. Write the 
asset ID numbers assigned to each task within the bold box.
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B. Mathematical formulation 
Variables 

,

1,  if asset  is assigned to task 
0,  otherwise

( ) = execution accuracy of task 
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From a computational viewpoint, we found it convenient to 
use as an objective the minimization of the sum of resource 
accuracies of relevant resource requirements of a user-selected 
task. The model used for FOPS decision aid is as follows.  
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Once the asset packages are computed, the task accuracy for 
each asset package option is computed using (1) and displayed 
to the FOPS players. 

C. Methods 
1) Mixed Integer Linear Programming (MILP): The 

problem in (2) was formulated as a MILP problem. Lpsolver 
(http://lpsolve.sourceforge.net/5.5/) is one of many 
optimzation tools, which have been developed to solve MILP 
problems. Lpsolver was used to generate the best asset 
allocation for a user-slected task via the revised simplex and a 
branch-and-bound method. The usage of the combined 
algorithm guarantees an optimal solution, if it is feasible.

2) Extension of   Murty’s ranked assignment algorithm to 
MILP Problems: Murty’s N-best assignment algorithm 
provides a general framework to generate N-best solutions to 
MILP  problems. The key ideas of Murty’s algorithm are: 

• Partition the original problem into sub-problems 
according to the best current solution generated by 
Lpsolver; 

• Compute optimal solution for each sub-problem; 
• Select the next best solution among all generated 

solutions by sorting their corresponding costs. 
The N-best assignment process works as follows (we omit 

task index i below): 

• The assignment variable is comprised of positive 
integer variables [y1,y2,…,yK] and real-valued 
accuracy variables [z1,z2,…,zL]. Since the accuracy 
vector depends on the assignment vector, only 
[y1,y2,…,yK] is considered in Murty’s problem 
decomposition. 

• Since each component in [y1,y2,…yK] can be any 
positive integer (≤ M), the following symbols are 
used to denote the solution set for each sub-
problem: “1” means the component’s value 
remains the same as in the last best solution, “0” 
means the component’s value can be any positive 
integer number different from the one in the  last 
best solution, “*” means  the component can take 
any value without any constraints. For example, to 
search for the first best solution, the solution set 
can be denoted as [*,*,…,*]. Suppose the first 
best solution is [2, 1, 0,…, 0].  One possible sub-
problem solution set is [2, 0, *,…, *], which 
means that the first element is 2, the second 
element can be any value but 1. 

• To avoid redundant assets among solutions, a 
pruning strategy was developed. Here is an 
example of a redundant asset problem: suppose 
two asset packages are requested. The algorithm 
may return the second best solution, which is 
nothing but the first best solution plus some 
redundant assets (both solutions providing 100% 
accuracy). Therefore, a pruning strategy is 
required to remove such solutions. In addition, our 
approach can reduce the computation time by 
moving the nonzero elements to the beginning of 
the assignment vector, thereby solving fewer sub-
problems. For example, suppose the first best 
solution is [1, 0, 0, 2]. Then, three sub-problems 
with solution sets [0, *, *, *], [1, 0, *, *], [1, 1, 0, 
*] need to be solved. However, if we reorder the 
assignment vector as [1, 2, 0, 0], the two sub-
problems [0, *, *, *] and [1, 0, *, *] cover the 
solution space for the second best solution. 

The N-best assignment algorithm and pruning strategy are 
described in the APPENDIX. 

IV. THE SCHEDULING MODULE 

A. Problem description 
For each geographic area (A or B), mission decomposition 

specifies: (1) the set of tasks with their resource requirements, 
and (2) the area-specific assets and shared assets with their 
resource capabilities. The objective is to determine a near-
optimal schedule for pre-experiment analysis and for later 
model-data comparison. An asset can only be assigned to one 
task at any given time. There should be no more than M assets 
assigned to any task. Experiment designers provided the 
following information for each task: required start time, 
processing time, and prerequisites.  All tasks must be 
completed within a specified time horizon (e.g. 30 hrs).   The 
minimum task execution accuracy must be greater than a 
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specified threshold (e.g. 75%). The module provides 
experiment designers with the best asset package for each task 
in the mission, task execution accuracy, and a list of 
unallocated assets (if any) prior to experimentation.  This 
analysis also provides insights into assets that are critical to 
accomplishing the mission with maximum accuracy.     

B. Scheduling Algorithm  
1) Task Grouping: In this experiment, all tasks are 

specified with their desired start time (release time). So, we 
first group tasks which have the same start time into a cluster.  
Once all tasks are grouped together according to the start time, 
the groups of tasks can be ranked in the ascending order of 
task start time. Next, the groups are scanned from the 
beginning of the sequence. Two neighboring groups can be 
combined if the latest finish times of tasks in the previous 
group are greater than the start times of tasks  in the next 
group.   This is because asset(s) released from tasks whose 
processing overlaps cannot be used by the next task group 
because of time conflict.   

2) Pair-wise exchange (PWE): The near-optimal schedule 
generated by applying the Lpsolver and task grouping 
technique can be improved by employing the PWE method.  
Since a task’s execution accuracy is defined as a square root of 
product of its resource accuracies, it is possible that there 
exists a task with zero accuracy. The PWE method is used to 
to improve task accuracy by transferring assets among tasks or 
by adding unassigned assets to the task.  For each task, PWE 
checks if adding assets, which come from other tasks or the 
list of unused assets, improves its execution accuracy.  

Table V. Addition assets increases the balance between task 1 and 2 
 Accuracy Before (%) Accuracy After (%) 
Task 1 20 40 
Task 2 100 60 

C. COPS Risk Analysis Module 
This module was implemented to assist COPS players on 

the consequences of redirecting assets from an ongoing task to 
gather information associated with either: 1) a RFI for a FOPS 
task, 2) a CCIR, commander critical information request, or 3) 
an urgent RFI from a subordinate task force. For each task for 
which assets are considered for removal, the COPS module 
shows the adjusted/reduced accuracy that would be attained 
and risk incurred (during the period of removal). 

                                                                           

Figure 3: COPS Risk Analysis Module 

V. SIMULATION RESULTS 
There were 11 tasks and 25 assets in area A. The FOPS 

player selects a task and a list of assets from which four best 
asset packages need to be selected.  For a given task, the 
interactive FOPS Planning Module provided four best asset 
packages in terms of task execution accuracy (typically in less 
than 3 seconds). No more than four assets were allocated to any 
task. It may happen that, for a given task, the selected assets 
may not yield a feasible solution or provide a full list of N-best 
asset packages. If less than N best options are computed, the 
reduced set is displayed to the FOPS player.   

The experiment designers examined several changes to the 
mission planning scenario (e.g., asset types and numbers, task 
requirements and asset capabilities) to see if the resultant 
schedule, as generated via the Scheduling Module, could be 
improved and by how much. In particular, two adjustments 
were found to be quite useful in designing the mission planning 
scenario: (1) Manipulating the number of assets, and (2) 
Reducing selected resource requirements on some tasks.  For 
example, interchanging an AWACS from area A and an AEF 
from area B gave a 3% improvement and a 5 % reduction in 
average mission accuracy in area A and B, respectively. 
Reducing the resource requirement MIW from 5 to 4 caused a 
1 % improvement in the mission accuracy in area A.  In 
summary, changing the mission planning parameters gave a 
minimal accuracy improvement.  It was found that the division 
of SSNs and DDGs between the two areas had a significant 
impact on mission accuracy. This phenomenon is reminiscent 
of bin packing problems: optimal bin packing solutions depend 
on not only on the objects’ volumes and bins’ capacities, but 
also on the objects’ shapes. 

Table VI. Outputs from the FOPS Planning Module 
Name of Selected Task Attack Air Bases 
ISR is current Option 1 Option 2 Option 3 Option 4
Asset Package 1 CVN 2 DDG + 1 UAV 1 AEF 1CG + 1U2
Accuracy (%) 100 100 100 100

Mismatch C2 STRK AW BMD CMD SUW USW MIW ISR(A) ISR(S) ISR(G) BDA
Option1 3 1 2 5 2 1 5 5 2
Option 2 3 7 6 4 3 3 6 5 3 2
Option 3 3 2 1   4 1 1
Option 4 1 3 7 6 4 3 3 10 7 2

Table VII. An example of an optimal schedule (Area A) 
Task Description Accuracy 

(%) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sample Task 87 CG_1, DDG_1, UAV_2         
AEW Area A 100 AWACS_3 
TAMD GREEN 100 CG_1, DDG_1, UAV_1 
TAMD BLUE in A 87 JSTAR_1, DDG_2 
SURF SURV Area A 100 P3_1, AWACS_4 
MIW in Strait A 89    MH53_2, P3_2, P3_5        

CSG Penetrate into A 100              
CVN_2, 
CG_2, 

DDG_5
DEF vs. CDCM Attack 87 CG_2    
Attack Air Bases 100 DDG_5, UAV_5    
Attack  C2 Nodes 100 SSN_3, SSN_4, U2_1, RJ_1 
Attack IADS 87 CVN_2       
Attack MSL Bases 100 UAV_2, AEF_2 

VI. SUMMARY 
In this paper, asset-to-task allocation and scheduling 

problems were introduced and formulated as MILP problems. 

Update Asset Capabilities/  
Task Requirements 

Contingencies 

Evaluate accuracy and 
mission penalty 

Redirect 

Redirect 3 7

Accuracy 50% 

SSN 

02:00

4

C2 STRK USW (O) USW (CP) 

2 10 REQD 5

NEGATE RED SUBS 

2 5 4 3 CG

New tasks,  
Asset breakdown … 
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A novel aspect of this work is the decomposition of the search 
space to obtain N-best optimal solutions to MILP problems. 
The paper also presented a strategy to prune redundant assets 
among asset packages. In the scheduling module, a task 
grouping technique was applied to reduce the size of the 
scheduling problem. Near-optimal schedules are generated by 
applying the Lpsolver and a task grouping technique. The 
results for scheduling problem were better than we expected 
with 87% as the minimum accuracy, and 94% as the average 
accuracy. The algorithms were implemented to support a 
team-in-the-loop planning experiment conducted at the Naval 
Postgraduate School (NPS) in March 2009. The experiment 
examined coordination in planning activities among three cells 
in an abstracted and simplified Maritime Operations Center 
(MOC).  Our future research will explore post-experiment 
model-data comparisons, embedding the assignment and 
scheduling algorithms in an agent-based framework, and 
multi-level coordination issues in MHQ/MOCs. 

APPENDIX

N-Best Assignment Algorithm 

Step 1: Set the initial solution set as [*,*, …,*]. Solve the 
original problem and obtain the best solution S1. Set m=2 and 
the initial solution candidate set as empty. 

Step2: Re-rank the last best solution Sm-1, and move the P non-
zero elements to the beginning of the assignment vector. 

Step 3: Partition the problem into K sub-problems with solution 
sets constrained as: 

1

[0,*,...,*],[1,0,*,...,*],...,[1,..,1,0,*,...,*]
P−

Step 4: Solve the sub-problems and invoke pruning strategy to 
refine the solutions. Put them into the candidate solution set. 

Step 5: Select the current best solution from the candidate 
solution set. Remove it from the set and set the last solution set 
as the current best solution’s solution set. 

Step 6: If m = N or the candidate solution set is empty, stop; 
otherwise, set m = m+1 and go to step2. 

Pruning Strategy 

Step 1: Given a solution S0 and its solution space, check 
whether the solution contains redundant assets. If not, stop. 
Otherwise, go to step 2. 

Step 2: Remove all the redundant assets and generate a new 
solution S1. Check whether the new solution S1is in the solution 
space, if yes, stop and return S1.  Otherwise, go to step 3. 

Step 3: Check whether there is a solution other than S0 in the 
solution space. If none, stop and return with no feasible 
solution. Otherwise, go to step 4. 

Step 4: Treat S0 as the first best solution. Invoke N-best 
assignment algorithm to solve within the current solution space 
for the second best solution. 

Table VIII. List of resource categories defined in the experiment 
Abbreviation Description 
C2 Command and Control 
STRK Strike 
AW Air Warfare 
BMD Ballistic Missile Defense 
CMD Cruise Missile Defense 
SUW Surface Warfare 
USW Undersea Warfare 
MIW Mine Warfare 
ISR (A) Intelligence Surveillance and Reconnaissance (Air) 
ISR (S) Intelligence Surveillance and Reconnaissance (Surface) 
ISR (G) Intelligence Surveillance and Reconnaissance (Ground) 
BDA Battle Damage Assessment 
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