
A Fast Region-based Image Segmentation 
Based on Least Square Method 

Gang Chen1,2, Tai Hu1, Xiaoyong Guo1, Xin Meng1

1 Lab of information simulation, Center for Space Science and Applied Research, 
Chinese Academy of Sciences 

2 Graduate University of Chinese Academy of Science 
Beijing, China 

chengangvip@tom.com, {hutai, xyguo, mengxin}@cssar.ac.cn 

Abstract—Image segmentation is always very 
important for computer vision and pattern recognition. 
Moreover, how to fast extract objects from a given 
image is still a problem for real time image processing. 
Most of the traditional region-based models depend on 
global information to converge to minimum error 
segmentation, but they are always time-consuming, and 
result in no effective segmentation. In this paper, we 
propose a region-based model with weight matrix to 
detect objects fast based on Least Square Method. The 
basic ideal of our model is to build up a minimum error 
functional by approximating objects and background of 
original image with two constants respectively. At the 
same time, we introduce a weight matrix into the 
region-based model, which can enhance the weight of 
objects while reducing the influence from background. 
Our method can fast converge through alternating 
iterations under Least Square Method. We also compare 
it with other region-based methods to show the 
improvements that can be achieved. Experimental 
results show the advantages of our method in terms of 
efficiency in image segmentation without losing 
accuracy. 

Keywords—Active contour model, region-based model, 
image segmentation, weight matrix, threshold detection 
method, least square method

I. INTRODUCTION 

Image segmentation is to partition a given image into a 
set of regions that are meaningful and easier to analyze and 
recognize. There have been many methods to deal with this 
problem. 

Active contour models have become one of the widely 
used models in image segmentation since M. Kass, A. 
Witkin, and D. Terzopoulos first put out snake model in 
1987. Then, S. Osher and J. A. Sethian put out the level set 
method [7], which could tackle with curve topological 
change in image processing. With the development of active 
contour models [1-4, 6-8] in image segmentation, they are 
gradually formed into two classes: edge-based [1,3-5,11,13] 

models and region-based [2,8,10,12,16,18] models. These 
two types of models both have their pros and cons, and the 
choice of them in applications depends on different 
characteristics of images. Edge-based models utilize image 
gradients to stop the evolving contours on the object 
boundaries, and therefore can detect image boundaries. This 
type of highly localized image information is adequate in 
some situations, but has been found to be very sensitive to 
image noise and highly dependent on initial curve 
placement. In addition, this type of method is likely to pass 
through weak object boundary. 

Compared with edge-based methods, the region-based 
model has the following advantages. First, region based 
methods are significantly less sensitive to the location of 
initial contours, such as the effects of noises. Another 
advantage is that the region-based methods do not utilize 
the gradient and have better performance for the image with 
weak boundary. Many works have been done in active 
contours since Mumford and Shah first put forward a 
region-based functional framework [8] in 1989. One of the 
most well-known and widely used region-based active 
contour models, such as Chan-Vese model [2] and A. Tai et 
al [18], assume the image is piece-wise constant or smooth 
to fit the original image to find an energy optimum. 
Recently, many models [12, 15-17] have been proposed for 
image segmentation. N. Paragios and R. Deriche[16] proposed a 
model based both region and edge information for supervised 
image segmentation. Li et al [15] put out a fitting functional 
to approximate original images to deal with intensity 
inhomogeneity. Shawn Lankton and Allen Tannenbaum in 2008 
introduced the local mask functional to improve the accuracy of 
image segmentation. However, all these methods cannot be 
used for real time image processing. In addition, although 
these active contour models based on level set methods can 
topologically change, the process of the curve converging to 
the minimum functional is time-consuming and need 
re-initialization if we want the curve to evolve stably.  

Another kind of methods that are widely used is the 
thresholding methods. Essentially there are two types of 
thresholding available to date: global thresholding and 
locally adaptive thresholding. Often, due to the variability 
in the gray level intensities and because of noise, the local 
thresholding method does not work satisfactorily. On the 
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contrary, the global method does not consider local 
information in a given image. The Otsu’s method [14] is 
based on histogram to find optimal threshold globally and 
adaptively that minimize the weighted within-cluster point 
scatter to segment image into a set of regions. This turns out 
to be the same as the maximizing the between-class scatter. 
However, the key weakness of the Otsu’s method is also 
time-consuming because it needs to construct histogram and 
search all gray-level to find an optimal solution. 

In this paper, we propose a region-based model with 
weight matrix to fast detect objects based on Least Square 
Method. The basic ideal of our model is to build up a 
minimum error functional by approximating objects and 
background of a given image with two constants 
respectively (Only gray-level image consider in this paper). 
At the same time, we introduce weight matrixes into our 
model by considering local image information to extract the 
objects of interests accurately and effectively. Unlike the 
Chan-Vese model under the level set methods, we 
implement the proposed model based on Least Square 
Method. Moreover, our model can converge faster than 
traditional methods by alternating iterations. Experimental 
results show our method advantages over traditional 
methods. 

The rest of the article is organized as follows. In section 2, 
previous work on region-based models is reviewed. Details 
of the proposed method are described in section 3. Section 4 
discusses implementation issues, and experimental results 
are given and analyzed. A summary is provided in section 
5.  

II. BACKGROUND 

A. Mumford-Shah energy functional 
Let us briefly describe the classical models based on 

Mumford-Shah model. Let Ω be the image domain, a 
bounded open subset of 2R , with Ω∂ its boundary, and 

R: >−ΩI be a given image in which we want to detect 
its objects boundaries. Mumford and Shah [8] proposed the 
following energy functional: 
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whereα , β  and γ control the competition between the 
various terms above and determine the “scale” of the 
segmentation and smoothing. u is the fidelity of the 
original image I in the first term, the second term means 
u does not varies too much in each sub-regions. The 

Mumford-Shah problem is to minimize ),( CuE over 

admissible u and C . However, ),( CuE contains the 
partial differential term of u , which makes the calculation is 
very complicated in the practical usage.  

B. Chan-Vese model 
For practical applications, much works have been down 

to modify or simplify the above Mumford-Shah functional. 

One of well known approaches is the piecewise constant 
model proposed by Chan and Vese (C-V model) [2], which 
can be written as: 
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where )(Cin and )(Cout represent the region inside and 

outside of the contour C respectively, and 1c and 2c are
two constants that approximate the image intensity in 

)(Cin and )(Cout . || C is the arc-length of the curve or 

object boundaries. 1λ , 2λ and ν  are positive constant 
coefficients. However, such method can only be effective 
for homogeneity image composed of many piece constant 
regions. The global energies find segmentations that are 
consistent with their underlying assumptions about image 
content but are ultimately incorrect. For example, the 
building image is displayed in the Fig.5 (a). The 
experimental result in the Fig. 5(b) makes using of C-V 
model, which can only detect brightest areas and lead to 
incorrect segmentation. Although, Chan and Vese later put 
out piece-smooth model [10], this method needs to solve 
second order derivates and always have complex 
calculations. 

C. Otsu's method
Image thresholding or histogram threshold detection 

algorithm is very useful for keeping the significant part of 
an image and getting rid of the unimportant part or noise. 
This holds true under the assumption that a reasonable 
threshold value is chosen. 

In computer vision and image processing, Otsu's method 
[14] is used to automatically perform histogram 
shape-based image thresholding, or, the reduction of a gray 
level image to a binary image. The algorithm assumes that 
the image to be thresholded contains two classes of pixels 
(e.g. foreground and background) then calculates the 
optimum threshold separating those two classes so that their 
combined spread (within-class variance) is minimal.  

By using the Otsu's method we exhaustively search for 
the threshold that minimizes the within-class variance, 
defined as a weighted sum of variances of the two classes: 

2 2 2
1 1 2 2( ) min{ ( ) ( ) ( ) ( )}  (3)w t

T t t t tσ ϖ σ ϖ σ= +

where weights iϖ ( 1,2i = ) are the probabilities of the two 

classes separated by a threshold t and 2
iσ  variances of 

these two classes.  

III. DESCRIPTION OF THE MODEL 

In this section, we propose a minimum error functional 
which introduces a weight matrix into region-based model. 
Moreover, our model can converge fast under the Least 
Square Method. The disadvantage of Chan-Vese is that it 
converges slowly and needs to reinitialize in order to keep 
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stable evolution. Although many thresholding methods can 
adaptively find the optimal threshold, it is time-consuming 
for them to converge to minimum or maximum. The 
proposed model is inspired by the Chan-Vese model and 
thresholding methods, and wants to overcome the 
limitations of these two methods. The following parts will 
give details description to our model. 

A. Region-based model with weights 

For a given image 0I  with size m n× in image 

domain Ω , assume that the image 0I is formed by two 
regions of approximately piecewise-constant intensities, of 
distinct values 1c and 2c . Assume further that the object to 

be detected is represented by the region with the value 1c ,
which will approximate the object by minimizing the error 
functional. Considering the region-based models, we define 
the following energy functional as: 

2
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where RI >−Ω:0 is a given image(only grey valued 

image considered in this paper), 1c and 2c  are the 
constants to approximate the object and background 
respectively. 1w and 2w are weight matrixes in the two 

terms respectively. The purpose of 1w is to enhance the 
weight of object and ignore the contribution from the 
background, while 2w will enhance the background and 
restrict the object’s weight. Note that we want to minimize 
the error functional in order to find the best 1c and 2c to 
fit the original image. 

From the definition of 1 2 1 2( , , , )E w w c c , we can see that 
the energy functional is the accumulated error which 
satisfies the principle of the least square method. The 
weight matrixes 1w and 2w  are crucial for the successful 
image segmentation, which will be defined in the next part. 
Keeping 1w and 2w fixed and minimizing the energy 

functional 1 2 1 2( , , , )E w w c c with respect to the constants 

1c and 2c , it is easy to express these constants by the 

weights 1w and 2w as 
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(i.e. if the all 2 ( , )w i j >0 in the image 

domain Ω ).
According to the Least Square Method, 1c and 2c are the 

best fitting values, given 1w and 2w respectively. If the 

matrixes 1w and 2w are fixed, we can find the optimal 

1c and 2c . However, if 1w and 2w are changing in the 

iterations, we should update 1c and 2c , then update in turn 

1w and 2w  in an alternating way.  
As a natural application of our model, the finial fitting 

matrixes 1w and 2w , as well as 1c and 2c can be used for 
image denosing, we define the following formula: 

1 1 2 2                        (7)u c w c w= +
The above computer image u can be used to 
approximate original image while reducing image 
noise. 

B. Weight matrix definition 
Different usages can have their own definition of weight 

matrix. In this part, we present a way to design a weight 
matrix. The purpose of our method is to extract the objects 
of interest. In order to achieve this goal, we can design a 
matrix that can enhance the weight of objects at the same 
time reduce the influence from the background.  

For a given gray level image with size m n× , we want to 
normalize the two weighted matrixes 1w and 2w . In this 
paper, we define the following weighted matrix: 

1 0 2

2 1 0 1

| | /255
         (8)

1   | | /255
w I c
w w or I c

= −
= − −

where 0I is a given image, 1c and 2c are the optimal 

intensities. 1w and 2w are the weights of the object and 
background respectively. Just as the Otsu's method, we 
introduce the weighted matrixes in our model. We can see 
that 1w approximates to zero in the background of image, 
while enhance the weight of the object which is represented 
by 1c . By the same analyzing, the 2w also satisfy our 
requirement.  

From the definition of Eq. (8), we can see the weighted 
matrixes are constructed based on the original image 0I , so 
that our model consider the every pixel’s contribution by 
introducing the weighted matrix in our global energy 
functional (4), while means our model consider both the 
local and global information in the image segmentation. 
Thus, our model can segment image more effectively and 
accurately. 
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C. Relationship with other region-based models 
The Chan-Vese model makes use of the Heaviside 

function H and level set function φ to represent the two 
weighted matrixes of the object and background 
with ( )H φ and1 ( )H φ− respectively, and then keep the 
contour evolving under the level set framework. Besides, 
the energy functional in the Chan-Vese model is also an 
accumulated error, which needs to be minimized to find the 
best fitting constants to approximate the original image. But 
the Chan-Vese model does not take local information into 
account. Our model constructs the weights 1w and 2w from 
a different perspective become we consider the every 
pixel’s contribution in the energy function. What’s more, 
we employ alternating iteration to update both the weights 
( 1w and 2w ) and constants ( 1c and 2c ) rather than utilize 
the level set function to evolve the curve. 

Just like the Otsu’s method, our model leverages two 
weighted matrixes, and also needs to find the optimal 
thresholds 1c and 2c by iterations. But our model can 
converge fast without operating on the gray level histogram 
like the Otsu’s method. Moreover, our method is based on 
least square method, which can help us find a best candidate 
in each iteration. 

In fact, the basic principle behind the region-based 
models, including both the Chan-Vese model and Otsu’s 
method is to minimize the accumulated error functional, 
which is the same with our model. The main advantage of 
our model can converge fast through alternating iteration 
under the least square method. Moreover, our model can 
segment image more accurately with weighted matrix. 

IV. IMPLEMENTATIONS AND EXPERIMENTAL 
RESULTS 

In this section, we address the algorithm steps in 
implementing the presented model. Moreover, our method 
has been applied to images of different modalities. 

A. Algorithm implementation 

step1: initialize the weights 1w and 2w respectively, the 
iterative times n.
step2: while i n<  do 
step3: update 1c and 2c  according to Eq. (5) and (6) 

respectively. If 1, 1 1,| |i ic c ε+ − < and 2, 1 2,| |i ic c ε+ − <
then break out. 
step4: calculate 1w and 2w according to Eq. (8) respectively. 

Update 1i i= + ;
step5: end while;
setp6: output the optimal segmentation results. 
where ε is a small positive constant. Note that weights 

iw and constants ic ( 1,2i = ) are updated in an alternating 

way. That means 1w and 2w will update the energy 

functional, which in turn will update 1c and 2c , then they 

will update weights 1w and 2w . When 1c and 2c do not 

change, it means we have find an optimal or approximate 
solution. Generally, our algorithm can converge from 10 to 
30 iterations, which is very fast compared with Otsu’s 
method and Chan-Vese model. 

B. Experimental results 
In this part, we present the experimental results using our 

model described in this work. Here, we demonstrate the 
improvements that are offered by introducing the weight 
matrix into region based model. The proposed method has 
been tested with real images of different modalities.  

We initialize ε =10-5, 1w = 0.5*ones(m, n), which 
indicates that every element equals to 1 in the m n×
matrix, 2 11w w= − . We realized our model with matlab 
code run on a Dell GX270 PC, with Pentium 4 processor, 
3.0 GHz, 512M RAM.  

Fig. 1(a) is the MR image of head. Fig.1 (b) is the result 
using level set method in [2]. Our result is shown in Fig.1 
(d). It is hard to say which method is better because their 
results are almost identical. But, our method is very fast 
because our model only uses 0.0938 second in the Tab. (1) 
to extract object.  

Fig. 1. (a) The original MRI brain image. (b) The result using 
level set. (c) The result of Otsu’s method. (d) The result of our 
model 

(b) (a)

     (b) (a)

(c)       (d)  
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Fig. 2(a) is the Lena image. The Fig. 2(b) is the result of 
level set method. The Fig. 2(c) is result using Otsu’s method, 
which is almost the same as the Chan-Vese model. The Fig. 
2(d) is the result of our model. Our method extracts more 
details. In a sense, the results of these methods are almost 
same.  

Fig. 3 is a cervical MR image. The results of Fig. 3(b) 
and Fig. 3(c) are almost the same. The level set methods can 
only extract the brightest area, while ignore weak intensity 
area as shown in Fig. 3(b). From the Fig. 3(c), we can 
understand Otsu’s method also cannot extract weak 
intensity region. Fig. 3(d) is our result, which extract weak 
boundary information, and successfully partition the 
cervical MR image.  

Fig. 4 and Fig. 5 show the results of both Chan-Vese 
model and our method. Sometimes, our model can extract 
the building boundary more accurately than Chan-Vese 
model in Fig. 5. Moreover, our model converge very fast 
even if the image size increase greatly. 

Table. 1 is the time consumed by both Chan-Vese model 

      Time 

Experiment 

Image size 
(m*n) 

C-V 
model 

Our 
model(s
ec)

Fig. 1( Brain) 157*122 2.4375 0.0938 

Fig. 2(Lena) 131*131 3.0313 0.0469 

Fig. 3(Cervical) 182*182 17.2031 0.1250 

Fig. 4(Building) 481*321 244.8125 1.0313 

Fig. 5(Building) 481*321 102.7500 1.0625 

TABLE 1. The time consumed for both the Chan-Vese model and our 
method. Our method is very faster compared with Chan-Vese model. 

 (d)  (c)

      (b)  (a) 

Fig. 3. (a) The original MRI Cervical image. (b) The result using level 
set. (c) The result of Otsu’s method. (d) The result of our model 

Fig. 2. (a) The original Lena image. (b) The result using level set. (c) 
The result of Otsu’s method. (d) The result of our model 

Fig. 4. (a) The original image of monkey. (b) The result using level set. 
(c) The thresholding result of Chan-Vese model of (b). (d) The result of 
our model 

Fig. 5. The building detection with Chan-Vese model and our method. (a) 
The original image. (b) The result of Chan-Vese model with contour. (c) 
The thresholding result of Chan-Vese model of (b). (d) The result of our 
method.  

(b)(a)

       (b)         (a)  

(c)  (d)  

       (d)         (c)  

(d)(c)
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and our method. It shows that our method is very fast for 
image segmentation by alternating iterations. Moreover, 
when the intensity difference of background and foreground 
is small, the Chan-Vese model converges slowly, which 
could be found the in Fig. 4 and Table. 1. In our experiment, 
it cost the Chan-Vese model almost about 244 seconds to 
segment the building image in the Fig. 4. In addition, when 
image size increase, the time for the curve evolving to 
object boundaries also increase faster. 

Thus, we can get that Otsu’s method and Chan-Vese 
model are not suitable for real time image processing.  
Moreover, the global energy using level set methods or 
Otsu’s method finds only the brightest parts of the image, 
which might lead to incorrect segmentation, while our 
model consider local information by introducing the 
weighted matrix. Although both Otsu’s method and 
Chan-Vese model rely on minimum segmentation error 
requirements, it ignores the local image information in the 
image segmentation. As a result, our model can segment 
images more effectively and accurately. Besides, our model 
can converge fast in less than 30 iterations, which is 
efficient in practical application.  

C. Discussion about our model 
The weight matrix in our model is very important for the 

successful image segmentation because it takes the local 
image information into consideration. We also test our 
model with different initialization of matrix 1w and 2w ,
and we get the same results. So our model is insensitive to 
the initialization of 1w and 2w .

Although all the methods above, including our method, 
Chan-Vese and Otsu’s method are based on the minimum 
segmentation error requirement, they might work differently 
because they have different energy functional. From the 
experiments above, our method can segment image faster 
than Chan-Vese model or Otsu’s method through alternating 
iteration under least square methods. Moreover, our model 
can always segment image accurately by introducing a 
weight matrix into region-based models.  

As for the weight matrix, we only consider a very simple 
method to construct it. Thus, it may result unsatisfied image 
segmentation. For example, both our model and Chan-Vese 
model cannot extract the correct building boundaries in the 
Fig. 4. In practice, different kind of images can design their 
specific weight matrix according to different requirement in 
order to improve the accuracy of image segmentation. 

V. CONCLUSIONS 

In this paper, we have presented a region-based model 
utilizing both global and local information for real time 
image segmentation. Considering many region-based 
methods always result in image details losing, we introduce 
a weight matrix into region-based model, which takes the 
local information into consideration. Moreover, our model 
can be used for real time image processing because our 
model find optimal solution fast through alternating 
iteration under least square method. Compared with other 
region-based models, this proposed model can detect the 
objects of interests more accurately and effectively. Thus, 
our model has practical application in image segmentation.  

In the further work, we will design more sophisticated 
weight matrix in our model to improve the segmentation 
accuracy for more complex images. 
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