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Abstract—Impulsive control of a chaotic system has a great po-
tential for applications in various fields. Therefore, the robustness
and stability of impulsive synchronization is very important. In
this paper, we introduce a new method for analyzing the robust-
ness and stability of impulsive synchronization with parametric
uncertainties and mismatch. By analyzing the oscillation process
of the error between two chaotic systems, we establish a quantitive
relationship between the prescribed synchronization threshold,
the length of impulse interval, the bounds of uncertainties and
mismatch and the impulse intensity. Numerical simulation results
based on Chen system and Chua system are provided.

Index Terms—Impulsive synchronization of chaotic systems;
Uncertainty; Robustness

I. INTRODUCTION

Since the pioneering work of Pecora and Carroll in 1990[1],
synchronization of chaotic systems is an active research area
due to great potential for applications in engineering (such as
design of oscillators, vibrating wave generation, mechanical
resonance, spatiotemporal pattern formation, and communica-
tions), as well as in biological systems. Numerous methods
have been developed for chaos synchronization, including
drive-response control [1][2], coupling control [3][4], adaptive
control [5][6], fuzzy control [7], observer-based control [8][9],
feedback control [10][11], and impulsive control [12][13], etc.

Impulsive control scheme is first proposed by L. Kocarev
et al. in 1996 [12]. Impulsive control is attractive because it
allows the stabilization of a chaotic system using only small
control impulses, and it offers a direct method for modulating
digital information onto a chaotic carrier signal for spread
spectrum applications. In [13], T. Yang et al. present a theory
of impulsive control of chaotic dynamical systems and provide
an estimation of upper bound of the impulse interval. In
Yang’s theory, the parameters of the chaotic systems are known
exactly and time invariant. Furthermore, the parameters should
be identical for both chaotic systems. These conditions are
impractical in real-world application. Since the chaotic system
is sensitive to parameters, the robust synchronization theory
has become quite attractive.

While analyzing the stability of impulse synchronization,
the Lyapunov stability theory is the most using theory [14]-

[17]. However, in this paper, what we use is different. Due
to the parametrical mismatch and uncertain, the error between
two chaotic systems will not approach to zero, but oscillate
between certain bound. If the error can be ensured in the pre-
specified synchronization threshold, we consider that the two
chaotic systems are synchronized. Based on this definition of
synchronization, we analyze the oscillation process of the error
between the driving and driven systems, and derive a quantita-
tive condition. The condition revealed the relation between the
prescribed bound, the length of impulse interval, the bounds
of uncertainties and mismatch and the impulse intensity which
is also called impulse synchronization coefficient in this paper.
It is shown that to achieve synchronization, the impulsive
interval is not only determined by the pre-specified bound of
the error and the bound of the parametric uncertainties and
the mismatch, but also the impulse synchronization coefficient.
The bigger the impulse synchronization coefficient is, the
longer the impulsive interval can be allowed. Furthermore,
by using this method, the robustness and stability of the
impulsive synchronization scheme with both internal noise
(noise-affected parameters) and external noise (noise-affected
driving signal) can be analyzed. The further results will be
published soon.

This remaining of the paper is organized as follows. In
section II, the modeling of pure chaotic impulsive synchroniza-
tion with parametric uncertainties and mismatch, illustrated by
Chen system, is given. The condition which provides quantita-
tive relation between the prescribed synchronization threshold,
the length of impulse interval, the bounds of uncertainties and
mismatch and impulse synchronization coefficient, is derived
in section III. In section IV, some examples are illustrated to
support the results deduced in section III. Finally, the paper is
concluded in Section V.

II. SYNCHRONIZATION MODEL

In this section, we present the class of 3-dimension chaotic
system to be considered with the Chen system as an illustrative
example.
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The driving system is in the presence of parametric uncer-
tainty is described by:

Ẋ1 = (A + ΔA1(t))X1 + ϕ(X1) (1)

where X1 ∈ R
3 is the state vector and A ∈ R

3 is the nominal
constant matrix, and ϕ(·) is the nonlinear part of Chen system,
where

X1 = (x1, y1, z1)T , ϕ(X1) =

⎛
⎝ 0

−x1z1

x1y1

⎞
⎠ ,

A =

⎛
⎝ −a a 0

c − a c 0
0 0 −b

⎞
⎠

ΔA1(t) denotes time-varying parametric uncertainties in the
driving system where:

ΔA1 =

⎛
⎝ −Δa1(t) Δa1(t) 0

Δc1(t) − Δa1(t) Δc1(t) 0
0 0 −Δb1(t)

⎞
⎠

Similarly, the driven system is described by:{
Ẋ2 = (A + ΔA2(t))X2 + ϕ(X2)
ΔX|t=τi = −Be , i = 1, 2, . . .

(2)

where ΔA2(t) denotes time-varying parametric uncertainties
in the driven system and the impulse synchronization coeffi-
cient B, which denotes the pulse intensity, is a 3× 3 diagonal
matrix and e is the synchronization error, where:

ΔA2 =

⎛
⎝ −Δa2(t) Δa2(t) 0

Δc2(t) − Δa2(t) Δc2(t) 0
0 0 −Δb2(t)

⎞
⎠ ,

B =

⎛
⎝ b1

b2

b3

⎞
⎠ ,

e =

⎛
⎝ ex(t)

ey(t)
ez(t)

⎞
⎠ =

⎛
⎝ x1(t) − x2(t)

y1(t) − y2(t)
z1(t) − z2(t)

⎞
⎠

b1 ∈ (0, 1), b2 ∈ (0, 1), b3 ∈ (0, 1). τi, i = 1, 2, . . . denotes the
time instants as which impulses are sent to the driven system
from the driving system. And we define the impulsive interval
as:

τi+1 − τi ≡ Δ1, i = 1, 2, . . .

From (1) and (2), we can derive the error system⎧⎨
⎩

ė = ((A + ΔA1(t))X1 − (A + ΔA2(t))X2)
+(ϕ(X1) − ϕ(X2))

ΔX|t=τi
= −Be, i = 1, 2, . . .

(3)

In order to facilitate the analysis of stability of the error
system (3), we re-write (3) as{

ė = A(t)e + ΔA(t)X2 + Ψ(X1, X2)
ΔX|t=τi = −Be, i = 1, 2, . . .

(4)

where a(t) = a+Δa1(t), b(t) = a+Δb1(t), c(t) = c+Δc1(t)
and Δa(t) = Δa1(t) − Δa2(t), Δb(t) = Δb1(t) − Δb2(t),
Δc(t) = Δc1(t) − Δc2(t) and

A(t) =

⎛
⎝ −a(t) a(t) 0

c(t) − a(t) c(t) 0
0 0 −b(t)

⎞
⎠ ,

Ψ(X1 − X2) =

⎛
⎝ 0

x1z1 − x2z2

x1y1 − x2y2

⎞
⎠ ,

ΔA(t) =

⎛
⎝ −Δa(t) Δa(t) 0

Δc(t) − Δa(t) Δc(t) 0
0 0 Δb(t)

⎞
⎠

While the parameters are identically for both chaotic sys-
tems, driven by the impulse signals, the error between two
systems is asymptotically stable, which indicates that

lim
t→∞ e′x(t) = 0, lim

t→∞ e′y(t) = 0, lim
t→∞ e′z(t) = 0

However, due to the parametric uncertainty of the chaotic
systems, for any tk, ∃t > tk, such that

ex(t) �= 0, ey(t) �= 0, ez(t) �= 0

Thus we have some priori knowledge as given below.
Definition 1: The driving system and the driven system are

synchronized if ∃t0, such that ∀t > t0

| ex(t) |< ε, | ey(t) |< ε, | ez(t) |< ε

where ε is the synchronization threshold.
Assumption 1: The parametric uncertainties and mismatch

ΔA1(t) and ΔA2(t) are bounded as follows:

|Δa1(t)| ≤ ξa · a, |Δa2(t)| ≤ ξa · a
|Δb1(t)| ≤ ξb · b, |Δb2(t)| ≤ ξb · b
|Δc1(t)| ≤ ξc · c, |Δc2(t)| ≤ ξc · c

where ξ is the error coefficient.
Thus, we have

|a(t)| ≤ (1 + ξa) · a, |Δa(t)| ≤ 2ξa · a
|b(t)| ≤ (1 + ξb) · b, |Δb(t)| ≤ 2ξb · b
|c(t)| ≤ (1 + ξc) · c, |Δc(t)| ≤ 2ξc · c

III. IMPULSIVE SYNCHRONIZATION SCHEME

While analyzing the stability of impulse synchronization,
the Lyapunov stability theory is the most using theory. How-
ever, in this paper, what we used is different. In this section, we
analyze the oscillation process of the error between the driving
system and the driven system. Furthermore a quantitative
relationship between the length of the impulse interval and the
impulse synchronization coefficient b1, b2, b3, synchronization
threshold ε, the error coefficient ξ is established.

Lemma 1: If ∃n0 ∈ Z
+, such that ∀n > n0

‖e(tn)‖ � |ex(tn)| + |ey(tn)| + |ez(tn)| < ε (5)
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where tn = n×Δ1 and ex(tn), ey(tn), ex(tn) denote the error
at the time instants directly before the impulse signal sent to
the driven system, then ∃t0, such that for ∀t > t0

|ex(t)| < ε, |ey(t)| < ε, |ez(t)| < ε

Proof
The process of impulsive synchronization can be divided

into many periods which contain the impulse and the period
between two neighboring impulses as shown in Fig.1.

Fig.1 The error two chaotic systems which are controlled by impulsive
synchronization scheme

Since the chaotic systems are sensitive to initial condition and
parameters, the tiny error between two chaotic systems will
increase with time. This phenomenon can be demonstrated by
the results shown in Fig.1. During the period between two
neighboring impulses, the error between two chaotic systems
is increased with time. Thus the error is largest at the time
instants n · Δ1. If ∃n0 ∈ Z

+, such that ∀n > n0

‖e(tn)‖ < ε

Therefore ∀t > tn0 , |ex(t)| < ε, |ey(t)| < ε, |ez(t)| < ε.
Lemma 2: If the following two conditions are satisfied,
1) If ‖e(tn)‖ ≥ ε

‖e(tn+1)‖ < ‖e(tn)‖ (6)

2) If ‖e(tn)‖ < ε

‖e(tn+1)‖ < ε (7)

Then ∃n0 ∈ Z
+, such that ∀t > tn0 , |ex(t)| < ε, |ey(t)| < ε,

|ez(t)| < ε.
Proof

∀|ex(t1)|, |ex(t1)|, |ez(t1)|, to show the result, we consider
two cases: ‖e(t1)‖ ≥ ε and ‖e(t1)‖ < ε.

Case 1 ‖e(t1)‖ ≥ ε
Based on (6), the error between two chaotic systems de-

creases gradually till ∃n0 ∈ Z
+, such that

‖e(tn0)‖ < ε

Once ‖e(tn0)‖ < ε, from (6), ∀n > n0, we have

‖e(tn)‖ < ε

According to Lemma 1, ∀t > tn0 , |ex(t)| < ε, |ey(t)| < ε,
|ez(t)| < ε.

Case 2 ‖e(t1)‖ < ε

Since ‖e(t1)‖ < ε, from (7), ∀n > 1, we have

‖e(tn)‖ < ε

According to Lemma 1, ∀t > t1, |ex(t)| < ε, |ey(t)| < ε,
|ez(t)| < ε.

Since the driven system is Chen system, it is obviously
that sup(x2(t)) > 0, sup(y2(t)) > 0, sup(z2(t)) > 0,
sup(ex(t)) > 0, sup(ey(t)) > 0, sup(ez(t)) > 0, and

sup(x2(t) − y2(t)) > 0, sup((c − a)x2(t) − cy2(t)) > 0

Theorem 1: While the driving and driven systems are both
Chen system, if the length of the impulsive interval satisfied:

Δ1 <
min(b1, b2, b3)

max(m(ξc), n(ξa, ξc), o(ξb)) + C(ξa, ξb, ξc)/ε
(8)

where:

m(ξc) = c · ξc + (c + sup(y2(t)) + sup(z2(t)))
n(ξa, ξc) = a · ξa + c · ξc + a + c + sup(x2(t)) +

sup(ex(t))
o(ξb) = b · ξb + b + sup(z2(t)) + sup(ex(t))

C(ξa, ξb, ξc) = 2(a · ξa + c · ξc) · sup(x2(t) − y2(t)) +
2a · ξa · sup(x2(t)) + 2b · ξb · sup(z2(t))

then ∃t0, such that ∀t > t0

|ex(t)| < ε, |ey(t)| < ε, |ez(t)| < ε

Proof :
Case 1: ‖e(t1)‖ ≥ ε

According to the result proposed in [16], we already know
that the impulsive interval Δ1 must be very short so that two
chaotic systems can be synchronized with parametric uncertain
and mismatch. Thus, we have

|ex(tn+1)| ≈ (1 − b1)|ex(tn)| + Δ1|ėx(tn)|
|ey(tn+1)| ≈ (1 − b2)|ey(tn)| + Δ1|ėy(tn)| (9)
|ez(tn+1)| ≈ (1 − b3)|ez(tn)| + Δ1|ėz(tn)|

From (9), we have

|ex(tn+1)| − |ex(tn)| ≈ Δ1|ėx(tn)| − b1|ex(tn)|
|ey(tn+1)| − |ey(tn)| ≈ Δ1|ėy(tn)| − b1|ey(tn)| (10)
|ez(tn+1)| − |ez(tn)| ≈ Δ1|ėz(tn)| − b1|ez(tn)|

Therefore

(|ex(tn+1)| − |ex(tn)|) + (|ey(tn+1)| − |ey(tn)|)+
(|ez(tn+1)| − |ez(tn)|)

≈(Δ1|ėx(tn)| − k|ex(tn)|) + (Δ1|ėy(tn)|−
k|ey(tn)|) + (Δ1|ėz(tn)| − k|ez(tn)|)

=Δ1(|ėx(tn)| + |ėy(tn)| + |ėz(tn)|)−
b1|ex(tn)| − b2|ey(tn)| − b3|ez(tn)| (11)
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From (4), we have

|ėx(tn)|
=|(−a(tn)ex(tn) + a(tn)ey(tn)) − (−Δa(tn)x2(tn)+

Δa(tn)y2(tn))|
<|a(tn)|(|ey(tn)| + ex(tn)) + |Δa(tn)| · |x2(tn) − y2(tn)|

(12)

|ėy(tn)|
=|(c(tn) − a(tn)) · ex(tn) + c(tn)ey(tn) + x1(tn)z1(tn)−

(((Δc(tn) − Δa(tn))x2(tn) − Δc(tn)y2(tn))+
x2(tn)z2(tn))|

=|(c(tn) − a(tn))ex(tn) + c(tn)ey(tn) + Δc(tn)(x2(tn)−
y2(tn)) + Δa(tn)x2(tn) + ex(tn)ez(tn) + x2(tn)ex(tn)+
z2(tn)ex(tn)|

<|(c(tn) − a(tn))ex(tn)| + |c(tn)ey(tn)| + |Δc(tn)×
(x2(tn) − y2(tn))| + |Δa(tn)x2(tn)| + |ex(tn)ez(tn)|+
|x2(tn)ex(tn)| + |z2(tn)ez(tn)| (13)

|ėz(tn)|
=|b(tn)ez(tn) + x1(tn)y1(tn) − (Δb(tn)z2(tn)

+ x2(tn)y2(tn))|
=|b(tn)ez(tn) − Δb(tn)z2(tn) + (x2(tn) + ex(tn))×

(y2(tn) + ey(tn)) − x2(tn)y2(tn)|
<|b(tn)ez(tn)| + |Δb(tn)z2(tn)| + |x2(tn)ey(tn)|+
|y2(tn)ex(tn)| + |ex(tn)ey(tn)| (14)

From (12), (13) and (14), we can derive the following
inequation

Δ1 · (|ėx(tn)| + |ėy(tn)| + |ėz(tn)|) − b1|ex(tn)|−
b2|ey(tn)| − b3|ez(tn)|

<|ex(tn)|(Δ1((1 + ξc)c + sup(x2(tn)) + sup(y2(tn))) − b1)
+ |ey(tn)|(Δ1((1 + ξa)a + (1 + ξc)c + sup(x2(tn))+
sup(ex(tn))) − b2) + |ez(tn)|(Δ1((1 + ξb)b + sup(ex(tn))
+ sup(x2(tn))) − b3) + Δ1((2a · ξa + 2c · ξc) sup(x2(tn)
− y2(tn)) + 2a · ξa sup(x2(tn)) + 2b · ξb · sup(z2(tn)))

<(|ex(tn)| + |ey(tn)| + |ez(tn)|)×
(Δ1 · max(m(ξc), n(ξa, ξc), o(ξb)) − min(b1, b2, b3))+
Δ · C(ξa, ξb, ξc) (15)

Thus we have

(|ex(tn)| + |ex(tn)| + |ex(tn)|) ×
(Δ1 · max(m(ξc), n(ξa, ξc), o(ξb)) − min(b1, b2, b3)) +
Δ · C(ξa, ξb, ξc) < 0

only if

Δ1 · max(m(ξc), n(ξa, ξc), o(ξb)) − min(b1, b2, b3) < 0

Hence

(|ex(tn)| + |ex(tn)| + |ex(tn)|)×
(Δ1 · max(m(ξc), n(ξa, ξc), o(ξb)) − min(b1, b2, b3))+
Δ1 · C(ξa, ξb, ξc)

<ε · (Δ1 · max(m(ξc), n(ξa, ξc)) − min(b1, b2, b3))+
Δ1 · C(ξa, ξb, ξc) (16)

If the length of the impulse interval satisfied

Δ1 <
min(b1, b2, b3)

max(m(ξc), n(ξa, ξc)) + C(ξa, ξb, ξc)/ε

Based on the inequation (16), we have

(|ex(tn+1)| − |ex(tn)|) + (|ey(tn+1)| − |ey(tn)|)+
(|ey(tn+1)| − |ey(tn)|) < 0

Thus condition 1 of Lemma 2 is satisfied.
Case 1: ‖e(t1)‖ < ε
Based on (10) and (12), (13), (14), we have

|ex(tn+1)| + |ey(tn+1)| + |ez(tn+1)|
=(1 − b1)|ex(tn)| + (1 − b2)|ey(tn)| + (1 − b3)|ez(tn)|+

Δ1(|ėx(tn)| + |ėy(tn)| + |ėz(tn)|)
<(1 − min(b1, b2, b3) + Δ1 · max(m(ξc), n(ξa, ξc))) · ε+

Δ1 · C(ξa, ξb, ξc) (17)

Hence, if the length of the impulse interval satisfied

Δ1 <
min(b1, b2, b3)

max(m(ξc), n(ξa, ξc)) + C(ξa, ξb, ξc)/ε

Based on the inequation (17), we have

|ex(tn+1)| + |ey(tn+1)| + |ez(tn+1)| < ε

Thus condition 2 of Lemma 2 is satisfied.
In summary, if the length of the impulsive interval satisfied:

Δ1 <
min(b1, b2, b3)

max(m(ξc), n(ξa, ξc)) + C(ξa, ξb, ξc)/ε

then ∃t0, such that ∀t > t0, |ex(t)| < ε, |ey(t)| < ε, |ez(t)| <
ε.

Remark 1: Theorem 1 provides a guideline to choose the
length of the impulsive interval while the two chaotic system
are parametric uncertain and mismatch. According to Theorem
1, it is obvious that the more uncertain the system parameters
and/or the more the mismatch is, the shorter the impulsive
intervals should be designed and the larger the chosen bound,
the longer the impulsive intervals can be allowed. Furthermore,
we note that the upper bound of the length of the impulsive
intervals is also affected by the impulse synchronization coef-
ficient. The bigger min(b1, b2, b3) is the longer the impulsive
intervals can be allowed.

Remark 2: Theorem 1 only corresponds to Chen system.
However, the method can also be used while the driving and
driven systems are other chaotic systems. Theorem 2 provides
a guideline to choose the length of the impulsive interval while
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the driving and driven systems are both Chua system as shown
below: ⎧⎨

⎩
ẋ = α · (y − x − h(x))
ẏ = x − y + z
ż = −β · y − γ · z

h(x) = bx +
1
2
(a − b)(|x + 1| − |x − 1|)

Theorem 2: While the driving and driven systems are both
Chua system, if the length of the impulsive interval satisfied:

Δ1 <min(b1, b2, b3)/(max(m′(ξα, ξb), n′(ξα, ξβ), o′(ξγ))+
C ′(ξα, ξβ , ξγ , ξa, ξb)/ε) (18)

where

m′(ξα, ξb) = 1 + |(1 + ξα) · α| + |(1 + ξα)(1 + ξb) · a · b|
n′(ξα, ξβ) = 1 + |(1 + ξα) · α| + |(1 + ξβ) · β|
o′(ξγ) = 1 + |(1 + ξγ) · γ|
C ′(ξα, ξβ , ξγ , ξa, ξb) = |2a · ξα · sup(y2(t) − x2(t))|+
|2(ξα + ξb + ξα · ξb) · α · b · sup(x2(t))|+
|2α(1 + ξα)((1 + ξa) · a − (1 − ξb) · b)|+
|2ξβ · β · sup(y2(t))| + |2ξγ · γ · sup(z2(t))| (19)

then ∃t0, such that ∀t > t0

|ex(t)| < ε, |ey(t)| < ε, |ez(t)| < ε

IV. ILLUSTRATIVE EXAMPLES

In this section, we conduct simulation studies on both Chen
model and Chua model to illustrate the effectiveness of the
scheme proposed.

Example 1: Suppose that the Chen model at the driving
system and the driven system are perturbed with parametric
uncertainties. The parameters are set as follows.

Δa1(t) = ξa · a · sin(t),Δa2(t) = ξa · a · cos(t)
Δb1(t) = ξb · b · sin(t),Δb2(t) = ξb · b · cos(t)
Δc1(t) = ξc · c · sin(t),Δc2(t) = ξc · c · cos(t)

A =

⎛
⎝ −35 35 0

−7 28 0
0 0 −8/3

⎞
⎠ , B =

⎛
⎝ 0.9

0.8
0.7

⎞
⎠

The synchronization threshold ε = 0.01 and the the error
coefficient ξa = ξb = ξc = 0.05.

According to the result shown in [18], Chen system is
bounded. There exist 0 < η < 1 such that

η4 +
2(b + c)

c
η3 +

2(b − c)
c

η − 1 = 0

and we have
x2 + y2 + (z − c)2 ≤ R2 (20)

where x, y, z are the state of Chen system and

R2 =
(a + c)(a − c)2(1 + η)2

16aη2
(
b

c
(1 − η)2 + (1 + η)2)+

4(a2 − c2)(a2 + c2 − bc) + c2(2a − b)2

4a(b + c)

Thus

min(b1, b2, b3) = 0.7
max(m(ξc), n(ξa, ξc), o(ξb)) = 190.2426
C(ξa, ξb, ξc) = 531.8080 (21)

According to Theorem 1,

Δ1 < 1.3116 × 10−5

We choose Δ1 = 1.2 × 10−5 as the impulse interval
in the simulation. The simulation results are illustrated in
Fig.2. As it shown in Fig.2, the error between two systems is
decreasing visibly while the error is bigger than the prescribed
synchronization threshold. When the error is smaller than the
synchronization threshold, the error keeps oscillating within
the prescribed bound.

0 0.05 0.1 0.15 0.2 0.25 0.3
−20

0

20

40

60

80

100

Time (ms)

||e
(t

)||

(a)

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

Time (ms)

||e
(t

)||

(b)
Fig.2 Simulation results for Chen system (a) The decreasing process of
‖e(t)‖ when the systems are synchronized. (b) The oscillation process of

‖e(t)‖ when the systems are synchronized.

Example 2: Similarly, we use Chua model at the driving system
and the driving system, which are perturbed with parametric
uncertainties, to demonstrate Theorem 2. The systems are set
as below.

α = 15,Δα1(t) = ξα · α · R1(t),Δα2(t) = ξα · α · R2(t)
β = 20,Δβ1(t) = ξβ · β · R3(t),Δβ2(t) = ξβ · β · R4(t)
γ = 0.5,Δγ1(t) = ξγ · γ · R5(t),Δγ2(t) = ξγ · γ · R6(t)

a = −8/7,Δa1(t) = ξa · a · R7(t),Δa2(t) = ξa · a · R8(t)
b = −5/7,Δb1(t) = ξb · b · R9(t),Δb2(t) = ξb · b · R10(t)
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B =

⎛
⎝ 0.9

0.8
0.7

⎞
⎠

Where Ri(t), i = 1, 2, . . . , 10 are different uniform random
functions within the same bound of [−1, 1]. The synchro-
nization threshold ε = 0.01 and the the error coefficient
ξα = ξβ = ξγ = ξa = ξb = 0.05.

Thus we have

min(b1, b2, b3) = 0.7
max(m′(ξα, ξb), n′(ξα, ξβ), o′(ξγ)) = 37.75
C ′(ξα, ξβ , ξγ , ξa, ξb) = 26.6411

Based on Theorem 2, the impulsive interval should satisfy

Δ1 < 2.5908 × 10−4

We choose Δ1 = 2.5× 10−4 as the impulse interval in the
simulation. The simulation results are illustrated in Fig.3.
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(b)
Fig.3 Simulation results for Chua system (a) The decreasing process of
‖e(t)‖ when the systems are synchronized. (b)The oscillation process of

‖e(t)‖ when the systems are synchronized.

V. CONCLUSION

In this paper, we present a method to analyze the stability
and robustness of pure impulsive control of two chaotic dy-
namical systems with parametric uncertainties and mismatch.
By analyzing the oscillation process of the error between the
driving system and the driven system, we derive a quantitative
condition, which provides guideline in designing a chaotic
impulsive synchronization scheme. The condition revealed the
relation between the prescribed bound, the length of impulse
interval, the bounds of uncertainties and mismatch and the

pulse intensity. The more uncertain the system parameters
and/or the more the mismatch, the shorter the impulsive
intervals should be designed and the larger the chosen bound,
the longer the impulsive intervals can be allowed. The up-
per bound of the length of the impulsive intervals is also
determined by the pulse intensity. The more intensity of the
impulse is, the longer the impulsive intervals can be allowed.
Simulation results on Chen system and Chua system verify the
effectiveness of this method.
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