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Abstract—Cerebellar model articulation controller (CMAC) 
has been already validated that it can approximate a nonlinear 
function over a domain of interest to any desired accuracy. This 
paper proposes an adaptive CMAC (PIACMAC) system with a 
PI-type learning algorithm. The PIACMAC system is composed 
of a CMAC and a compensation controller. CMAC is used to 
mimic an ideal controller and the compensation controller is 
designed to dispel the approximation error between CMAC and 
ideal controller. The Lyapunov stability theorems is utilized to 
derive the parameter learning algorithm, so that the uniformly 
ultimately bounded of PIACMAC system can be guaranteed. 
Then, the PIACMAC system is applied to a Duffing-Holmes 
chaotic system. Simulation results verify that the proposed 
PIACMAC system with a PI-type learning algorithm can achieve 
better control performance than other control methods. 

Keywords—CMAC, Lyapunov stability theorems, Uniformly 
ultimately bounded, Chaotic system. 

I. INTRODUCTION

The cerebellar model articulation controller (CMAC) is 
classified as a non-fully connected perceptron-like associative 
memory network with overlapping receptive-fields, and it has 
been already validated that it can approximate a nonlinear 
function over a domain of interest to any desired accuracy [1]. 
Since CMAC has the advantages such as fast learning 
property, good generalization capability and information 
storing ability, it has been shown that the CMAC-based 
adaptive control systems can achieve better control 
performance than neural-network-based adaptive control 
systems in some applications [2-6]. 

Since the neuron’s number of neural network including 
CMAC is finite, the approximation error is inevitable when it 
is used to approximate an ideal controller. In order to ensure 
the control system stability, a compensation controller is 
needed to be designed to dispel the approximation error. The 
most frequently used compensation controller is a sliding-
mode type control, which requires the bound of the 
approximation error [7, 8]. A large bound of approximation 
error will result in weary chattering of the control effort. 
Besides, some researchers have proposed neural-network-
based adaptive control designs based on the H  control 
scheme. Combing the H  control [9, 10], the neural-network-
based robust adaptive control approaches have been proposed 

to attenuate the effects of approximation error to a prescribed 
level. However, it is a trade-off between the amplitude of 
control effort and the performance of tracking error by 
choosing the specified attenuation level. 

Though the CMAC-based adaptive control system can 
guarantee the system’s stability, they used a conventional I-
type learning algorithm [2-6]. By using I-type learning 
algorithm, the convergence of the controller parameters and 
tracking errors may be slow. This paper proposes an adaptive 
CMAC (PIACMAC) system with a PI-type learning algorithm 
to speed up the convergence of tracking error and controller 
parameters. The proposed PIACMAC system is composed of 
a CMAC and a compensation controller. CMAC is used to 
mimic an ideal controller, and the compensation controller is 
designed to guarantee the uniformly ultimately bound stability 
of the closed-loop system in the Lyapunov sense. Finally, the 
proposed PIACMAC system is applied to control a Duffing-
Holmes chaotic system. Simulation results validate the good 
tracking performance of the proposed control system. 
Moreover, the proposed control system can speed up the 
convergence of the tracking error by using the developed PI-
type learning algorithm. 

II. PROBLEM STATEMENT

Consider a class of n-th order nonlinear systems described 
by the following form 

ufx n )()( x  (1)

where Tnxxx ],,,[ )1(x  is the state vector of the system, 
which is assumed to be available for measurement, )(xf  is 
the nonlinear system dynamics which can be unknown, and u
is the input of the system. The tracking control problem of the 
system is to find a control law so that the state trajectory x
can track a reference command dx  closely. Define the 
tracking error vector as 

xxe d . (2) 

Assume that all the parameters in (1) are well known, there 
exists an ideal controller [11] 

ekekekxfu nn
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where niki ,...,2,1,  are positive constant. Applying the ideal 
controller (3) into (1), yields 

01
)1(

1
)( ekekeke nn

nn . (4) 

Suppose the feedback gain ,n,,iki 21,  are chosen to 
correspond with the coefficients of a Hurwitz polynomial, it 
implies that 0lim e

t
 for any starting initial conditions. 

However, since the system dynamics )(xf  may be unknown 
or perturbed in practical applications, the ideal controller in (3) 
can not be precisely obtained. 

Input Space 

Receptive-Field Space 

Weight Memory Space

Association Memory Space

k1

nk

Output Space 

kow

Receptive-Field Space 

Weight Memory Space

Association Memory Space

k1

nk

Output Space 

kow
z

1z k1

qw y

Lk

q

L

Input Space 

Receptive-Field Space 

Weight Memory Space

Association Memory Space

k1

nk

Output Space 

kow

Input Space 

Receptive-Field Space 

Weight Memory Space

Association Memory Space

k1

nk

Output Space 

kow

Receptive-Field Space 

Weight Memory Space

Association Memory Space

k1

nk

Output Space 

kow

Receptive-Field Space 

Weight Memory Space

Association Memory Space

k1

nk

Output Space 

kow
z

1z k1

qw y

Lk

qq

L

Fig. 1. The architecture of CMAC. 

III. PIACMAC SYSTEM DESIGN

A. Description of CMAC 
The network structure of CMAC is shown in Fig. 1. The 

architecture of CMAC includes input space, association 
memory space, receptive-field space, weight memory space 
and output space. The network structure of CMAC is shown in 
Fig. 1. The output of CMAC can be expressed as [4] 

)(
1

z
N

q
qqwy  (5) 

where T
Lz,,z,z ][ 21z  is the input vector, 

q
 is the 

receptive-field basis function of the qth receptive-field, 
qw

denotes the connecting weight value of the qth receptive-field, 
N  is the number of receptive-field, and the receptive-field 
basis function is defined as 

L

j
jjkq z

1

)()(z , for Nq ,,2,1  (6)  

where Gaussian function is adopted as the receptive-field 
basis function which can be represented as 

2

2)(
exp)(

jk

jkj
jjk

mz
z , for Mk ,2,1  (7)  

where )( jjk z  presents the kth block of the jth input 
jz  with 

the mean 
jkm  and variance 

jk
 and M  is the number of 

block. For ease of notation, the output can be expressed in a 
vector notation as 

),,( mzwTy  (8)  

where 
T

Nq www ],...,,...,[ 1w  (9)  

T
Nq ],...,,...,[ 1  (10)  

T
LMMLL mmmmmm ,...,,...,,...,,,..., 1212111m   (11)  

T
LMMLL ,...,,...,,...,,,..., 1212111 . (12) 

This implies that there exists a CMAC of (5) such that it can 
uniformly approximate a nonlinear even time-varying 
function . Theoretically, there exists optimal weight vectors 
such that [4, 12] 

****** ),,( wmzw TTy  (13) 

where  denotes the approximation error, *w  and *  are the 
optimal parameter vectors of w  and , respectively, and 

*m  and *  are the optimal parameter vectors of m  and ,
respectively. In fact, the optimal parameter vectors that are 
needed to best approximate a given nonlinear function 
cannot be determined. Thus, an estimation function is defined 
as

wmzw ˆˆ)ˆ,ˆ,(ˆˆ TTy  (14) 

where ŵ  and ˆ  are the estimated parameter vectors of w
and , respectively, and m̂  and ˆ  are the estimated 
parameter vectors of m and , respectively. Define the 
estimation error as 

ww ˆˆ~ ** TTyy

www ˆ~~ˆ~~ TTT  (15) 

where www ˆ~ *  and ˆ~ * . In the following, some 
tuning laws will be derived to online tune the parameters of 
CMAC to achieve favorable estimation of a nonlinear 
function. To achieve this goal, the Taylor expansion 
linearization technique is employed to transform the nonlinear 
function into a partially linear form, i.e. [4] 

hmm
~~~ TT  (16) 

where mmm ˆ~ * , ˆ~ * , h  is a vector of higher-order 

terms, mmm mmm ˆ
21 |N , and 

ˆ
21 |N . Substituting of (16) into (15) 

yields 
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whmww m
ˆ~)~~(ˆ~~~ TTTTTy

whwwwmw m

~~ˆˆ~ˆ~ˆ~ TTTTT  (17) 

To speed up the convergence of CMAC learning, the optimal 
vector *w  is decomposed into two parts as [13] 

***
IP www IP  (18) 

where *
Pw  and *

Iw  are the proportional and integral terms of 
*w , respectively, P  and I  are positive constants, and 

t

d
0

**
PI ww . The estimation vector ŵ  is decomposed into 

two parts as 

IP www ˆˆˆ IP  (19) 

where Pŵ  and Iŵ  are the proportional and integral terms of 

ŵ , respectively, and 
t

d
0

ˆˆ PI ww . Thus, w~  can be 

expressed as 
*ˆ~~
PPI wwww PPI  (20) 

where III www ˆ~ * . Substituting (20) into (17), it can obtain 
that 

wwmwww mPPI ˆ~ˆ~ˆ)ˆ~(~ * TTT
PPIy

whw ~~ˆ TT

wwmww mPI ˆ~ˆ~ˆˆˆ~ TTT
P

T
I   (21) 

where the uncertain term whwwP

~~ˆˆ* TTT
P

denotes the lump of approximation error, and is assumed to be 
bounded by E0 , in which E  is a positive constant. 
However, this uncertainty bound E  cannot be obtained in 
practice.  
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Fig. 2. The block diagram of PIACMAC system. 

B. Design of PIACMAC 
The PIACMAC system with a PI-type learning algorithm is 

shown in Fig. 2, where the control law is designed as 

cpcmac uuu  (22) 

in which a sliding surface is defined as 
t

n
nn dekekes

0

2)-(
1

1)-( )(... . (23) 

The CMAC cmu  is used to approximate the ideal controller in 
(3), and the compensation controller cpu  is derived to 
compensate for the difference between the ideal controller and 
CMAC. Substituting (22) into (1) and using (3) and (23), the 
error dynamic equation can be obtained as 

suuuekeke cpcmn
nn *)1(

1
)( . (24) 

By using the approximation error equation (21), (24) can be 
rewritten as 

cp
TTT

P
T

I us wwmww mPI ˆ~ˆ~ˆˆˆ~ . (25) 

To guarantee the uniformly ultimately bounded stability of the 
closed-loop PIACMAC control system, a Lyapunov function 
candidate is defined as 

22 ~
2
1~~

2
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2
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1 EsV

E

TT

m

TI mmww II  (26) 

where m ,  and E  are positive learning-rate constants, 
EEE ˆ~  in which Ê  is the estimated approximation error 

bound. Taking the derivative of Lyapunov function in (26) 
and using (25), yields 

EEssV
E
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T
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)
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If the adaptation laws are chosen as 

)ˆ(ˆˆ 0www IP Is  (28) 

)ˆ(ˆˆ 0www II Is  (29) 

)]ˆ(ˆ[ˆ
0mmwm m mm s  (30) 

)]ˆ(ˆ[ˆ 0ws  (31) 

where I , m  and  are small positive constants, 0w , 0m
and 0   are initial estimation vectors of *w , *m  and * ,
respectively, and compensation controller is design as 
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)tanh(ˆ sEucp  (32) 

with bound estimation law as 

)ˆ()tanh(ˆ
0EEssE EE  (33) 

where )tanh(  is a tangent function,  and E  are small 
positive constants, and 0E  is initial estimation vectors of  E .
Using (28)-(33), (27) can be obtained as 
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It can be found that the following inequality holds for any 
0  [14] 

)tanh(0 sss  (35) 

where  is a constant satisfying ))1(exp( . Using the 
inequality (35), (34) can be rewritten as 
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where  denotes an induced norm. Considering the 
Lyapunov function (26), (36) can be obtained as 

bVaV  (37)  

where a  and b are positive constants given by 

),,,min( EEmmIa  (38) 

2
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1 mmwwI mIIb
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If (39) satisfies 

)exp())0(()(0 atVtV  (40) 

where 0
a
b , then e , Iw , m ,  and E  are uniformly 

bounded. Using (26) and (40) and giving any 2 , there 
exists T  such that for all Tt  the error satisfies 

)(te . (41) 

Thus, the uniformly ultimately bound stability of the closed-
loop system can be guaranteed [14]. 

IV. SIMULATION RESULTS

To illustrate the performance and efficiency of the 
proposed PIACMAC system, it is applied to control a Duffing-
Holmes chaotic system. Recently, the issue of chaotic control 
system design has become a significant research topic in the 
physics, mathematics and engineering communities. Chaotic 
system is a nonlinear deterministic system that displays 
complex, noisy-like and unpredictable dynamic behavior; it 
has been found in many engineering systems such as in 
biological system, chemical reactions, laser physics, secure 
communication and biomedical. The dynamic equation of 
Duffing-Holmes chaotic system is described as [15, 16] 

ufutcosxxxx )()(0.30.25 3 x . (42) 

The time response of the uncontrolled Duffing-Holmes 
chaotic system with initial conditions (0, 0) is shown in Fig. 3. 
It is clearly shown that the uncontrolled Genesio chaotic 
system has complex chaotic trajectories. 
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Fig. 3. The uncontrolled Duffing-Holmes chaotic system. 
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Fig. 4. Simulation results of the PIACMAC system with 0P .

It should be emphasized that the development of the 
PIACMAC system does not need to know the dynamics of the 
controlled system. The parameters of the PIACMAC system 
can be online tuned by the proposed adaptive laws. The 
parameters for the PIACMAC system are selected as 21k ,

12k , 10I , 1.0Em ,
01.0EmI  and 1.0 . All the parameters are 

chosen through some trials to achieve good transient control 
performance in the simulation considering the requirement of 
stability and possible operating conditions. The simulation 
results of the PIACMAC system with 0P  for initial 

conditions (0, 0) are shown in Fig. 4. As 0P , this results in 
the I-type learning algorithm. The tracking responses of state 
x  and x  are shown in Figs. 4(a) and 4(b), and the associated 
control effort is shown in Fig. 4(c). The simulation results 
show that it can achieve trajectory tracking performance; 
however, the convergence of tracking error is slow. Therefore, 
to achieve faster convergence performance, the PIACMAC 
system with 1P  is applied to Duffing-Holmes chaotic 
system again. The simulation results of the PIACMAC system 
with 1P  for initial conditions (0, 0) are shown in Fig. 5. 
The tracking responses of state x  and x  are shown in Figs. 
5(a) and 5(b), and the associated control effort is shown in Fig. 
5(c). From the simulation results, it is seen that the tracking 
errors converge quickly by using the PI-type learning 
algorithm. 
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Fig. 5. Simulation results of the PIACMAC system with 1P .

V. CONCLUSIONS

This paper has successfully developed an adaptive CMAC 
(PIACMAC) with a PI-learning algorithm. The proposed 
PIACMAC system is composed of a CMAC and a tangent 
function compensation controller. The Lyapunov stability 
theorem is utilized to derive the parameter tuning algorithms to 
guarantee the uniformly ultimately bounded of closed-loop 
system. This control system not only speeds up the 
convergence of tracking error by using the PI-type learning 
algorithm but also dispels the control chattering by using the 
tangent function compensation controller. The effectiveness of 
the proposed PIACMAC system is verified by the simulations 
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of chaotic system control. Simulation results validate the good 
tracking performance of the proposed PIACMAC system.  

The major contributions of this paper are: 1) The proposed 
PIACMAC system can achieve favorable tracking 
performance in controlling complex uncertain chaotic systems. 
2) the Lyapunov stability theorem is utilized to derive the 
parameter tuning algorithms to guarantee that the closed-loop 
system is uniformly ultimately bounded; 3) the convergences 
of the tracking error can be speeded up by using the PI-type 
learning algorithm; and 4) the control chattering can be 
dispelled by using the hyperbolic tangent function 
compensation controller. 
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