
 SMC 2009

A New Genetic Algorithm for the SET k-cover
Problem in Wireless Sensor Networks

Yun-long Li, Xiao-min Hu and Jun Zhang
Department of Computer Science

SUN Yat-sen University
Guangzhou, P.R. China, 510275

junzhang@ieee.org

Abstract—The SET k-cover problem is an NP-complete
combinatorial optimization problem, which is derived
from constructing energy efficient wireless sensor net-
works (WSNs). The goal of the problem is to find a way to
divide sensors into disjoint cover sets, with every cover set
being able to fully cover an area and the number of cover
sets maximized. Instead of using deterministic algorithms
or simple genetic algorithms (GAs), this paper presents a
hybrid approach of a GA and a stochastic search. This
approach comprises two core modules. The first is the in-
teraction module, which is applied to improve the quality
of the population through interaction of individuals. The
second is the self construction module, which is a stochastic
search procedure running without interaction of individu-
als. The interaction module is implemented as a combina-
tion of selection and crossover, which can efficiently ex-
ploit the solutions currently found. The self-construction
module includes an adjusted mutation operation and three
additional operations. This module is the main force to
explore the solution space which can eliminate the ineffi-
ciency of using classical GA operations to explore the solu-
tion space. Experimental results show that the propose
algorithm performs better than the other existing ap-
proaches.

Keywords—SET k-cover problem, disjoint set covers problem,
wireless sensor network, genetic algorithm, coverage

I. INTRODUCTION

A wireless sensor network is composed of many sensors
with limited energy supply. Therefore, it is important to save
energy for the sensors to extend their lifetime. One basic idea
for energy saving is to separate sensors into different groups
such that every group of sensors can handle the job indepen-
dently. When one group is working, the other groups can be
set to sleep.

Usually, the job for the sensors to do is to cover some tar-
gets and make sure that the target is under control. There may
be many targets to be covered. Usually the position of sensors
can be computed carefully to make sure that the sensors can
work efficiently, but sometime it is difficult to place the sen-
sors into the positions prearranged. The reason can be various,
such as the number of the sensors is too large to be placed one

by one or the position is difficult to be approached. So the
sensors are randomly deployed and the positions of the sensors
are located after the deployment. Cardei and Wu [1] presented
a survey to coverage problems in WSNs. According to the
category introduced in [1], the problem addressed in this paper
belongs to the area coverage problem, which means that the
target to be covered is a continuous area. Only considering the
sensing mechanism, the objective of the problem is to con-
struct energy-efficient networks and maximize the network
lifetime. The problem is described as follows.

Given the positions of a number of randomly deployed
sensors, every sensor covers the area within its sensing range.
The optimization goal is to find the maximum number of dis-
joint sets of the sensors, in which every set covers the whole
area completely.

As defined in [2], the above problem is called the SET k-
cover problem, which is also called the disjoint set covers
problem [3]. This problem has been proven NP-complete
[2][3].

Various approaches have been proposed for solving the
SET k-cover problem. Slijepcevic and Potkonjak [2] proposed
a greedy approach called the “most constrained - minimally
constraining covering (MCMCC)” heuristic. MCMCC is gree-
dy in essence and in many cases can not find a good enough
solution. A “maximum covers using mixed integer program-
ming (MC-MIP)” heuristic was proposed by Cardei and Du
[3]. MC-MIP is infeasible when the scale of the problem is
large as the running time of the algorithm increases exponen-
tially. Besides the above deterministic approaches, a GA based
approach named “genetic algorithm for maximum disjoint set
covers” (GAMDSC) is proposed by Lai et al. [4]. GAMDSC
works well only when the number of targets is small. When
the number of targets increases, using simple crossover and
mutation to explore the solution space as GAMDSC does is
ineffective.

A new genetic algorithm (GA) [5]-[15] based approach,
which is called the flowing-GA, is proposed to solve the SET
k-cover problem in this paper. The design goal of the flowing-
GA is to apply a more efficient strategy to explore the solution
space besides taking advantage of a multi-agent system. The
goal is achieved by using a GA interaction module and a self
construction module.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
1442

 SMC 2009

The design of the interaction module is straightforward by
using the traditional GA operations such as selection and cros-
sover, whereas the design of the self construction module is
much more critical.

In the flowing-GA, a feasible solution is defined as a solu-
tion composed of a number of cover sets, of which at most
only one cover set cannot cover the whole area completely.
This structure is maintained all the time. The self construction
module is designed based on the following consideration. For
any feasible solution with a number of complete cover sets and
an incomplete cover set (if the solution has no incomplete
cover set, it can be taken as an empty incomplete cover set),
every cover set is considered as a vessel. Sensors can flow
from one vessel to another as long as the structure is main-
tained. A number of flow strategies thus can be carried out to
make the flowing of sensors balanced and efficient. The flow
of sensors is implemented in a stochastic way in order to inject
diversity to the population. This flowing sensors model gives
the name “flowing-GA” in this paper.

The proposed algorithm overcomes the limitation in the
classical GA and the deterministic approaches. Experimental
results show that the flowing-GA outperforms other former
approaches in the literature. The analysis made in this paper
also provides a deeper understanding of the SET k-cover prob-
lem by using a factor called “redundancy rate” to estimate the
difficulty of the problem.

The remainder of this paper is organized as follows. In
Section II, a formal mathematical description of the SET k-
cover problem and its analysis are presented. Section III gives
the implementation of the proposed flowing-GA in detail. In
Section IV, experimental results and analysis are provided.
Finally, a conclusion is drawn in Section V.

II. PROBLEM DEFINITION AND ANALYSIS

A formal mathematical definition of the SET k-cover prob-
lem is provided as follows:

Let V= },...,,{ 21 Nvvv defines a set of N sensors, and
Area= },...,,{ 21 Naaa defines the area that every sensor in V
covers. Let I denotes the whole area to be covered. The optim-
al goal is to find a set M= },...,{ 1 kSS with k maximized,
where VSi ⊂ , i=1,...,k, ji SS = ∅ , ,...,kjiji 1,, =≠∀ and

iS covers I completely.

Based on the above definition, the area a sensor covers and
the target area to be covered can be any shape and size. Some
analysis on the problem is made as follows.

A. SET k-cover Problem and K-coverage Problem.
The K-coverage problem, as defined in [16], is described

as follows. Given an area, if at least k sensors cover every
point in the area and at least one point is covered k times, then
the area is called k-covered. The goal of the k-coverage prob-
lem is to find out k if the area is k-covered.

As is described above, the K-coverage problem is very
similar to the SET k-cover problem, but they are different. Fig.
1 provides a simple example to show the distinction between

these two problems. In Fig. 1, rectangle DEFG is 2-covered
but only get SET 1-coverage. Actually, solving corresponding
K-coverage problem can provide the original SET k-cover
problem an upper bound which may not be reached but still
useful.

22

22

3
33

3

3 3

33
2

2

2

3

c

b a

G F

ED

C

BA

Figure 1. An example of a k-covered area but not a SET k-covered area.
Circles show the area covered by sensors. The number on each field shows the

time a field is covered. A, B and C are sensors and a, b and c are 2-covered
fields. The square is SET 1-covered but 2-covered.

B. An Influence Factor for Analyzing the Difficulty of the
SET K-cover Problem
It is often taken that the larger the number of sensors is, the

more difficult the problem is. But in the SET k-cover problem,
the number of the sensors is just a factor reflecting the diffi-
culty. Another important factor , which is called the “redun-
dancy rate”, is defined as follows.

Define
=

=
N
i iaS

1
)(α , and let k indicate that the whole

area is k-covered. Then the redundancy rate is

kIS

aS

kIS

N
i i

⋅
=

⋅
= =

)(

)(

)(
1αη . (1)

where denotes the total area that all the sensors cover.)(iaS
denotes the area covered by sensor i.)(IS indicates the ob-
served area of I. According to the definition, shows the re-
dundancy rate of sensors on the whole area. The smaller is,
the less redundant sensors are. The lower bound of is never
smaller than 1.

If “I” is a rectangle of L*W and every sensor covers a disk
of the same radius R, the expression of is transformed to

)(

1 22

WLk
RN

kWL
RN

WLk ⋅
⋅=⋅

⋅
⋅=

⋅⋅
= ππαη . (2)

Williams [17] proved that the minimum number of M circles
to cover a rectangle satisfies the equation as

27
22 ππ =

⋅
⋅
WL
RM . (3)

1443

 SMC 2009

So the minimum number to cover the area k times is
N=kM. Then the lower bound of in this situation can be cal-
culated as

 inf(η) = 2092.1
27

2
)(
2

≈=
⋅
⋅⋅ ππ
WLk

RMk . (4)

If is very large, the problem can be solved easily and fast
even though N is large. But if is small and N is considerably
large, the problem will be extremely difficult to find the best
solution. Details will be discussed in section IV

III. THE PROPOSED FLOWING-GA
In this approach, the two-dimensional area to be covered is

modeled as a rectangle of L*W and the area covered by a sen-
sor is modeled as a disk with the same radius R. The term
“field” is used to indicate the sub area which is separated by
the sensing area of the sensors [2]. The upper bound of the
SET k-cover problem can be approximated as the result of the
corresponding K-coverage problem. In order to facilitate the
computation, the rectangle area is divided into grids. After the
fields are computed, every field can be taken as a target. The
problem is transformed to find a maximum number of cover
sets, with every cover set being able to cover all the targets.
The calculation of fields can be referred in [2]. The critical
fields (these fields being covered minimum times) in a k-
covered sensor deployment are also identified. A set of critical
lists is thus recorded as the sensors which cover the fields.
These works are done as prior computations.

Fig. 2 shows the complete flowchart of the proposed algo-
rithm. Details of the flowchart are explained as follows.

A. Solution Representation for Flowing-GA
Every chromosome is encoded as a list of integers. Each

gene of a chromosome represents one sensor (by the index of
the gene) and the value of the gene indicates the cover set
which the sensor belongs to. Different from the GAMDSC, the
representation of chromosomes in the flowing-GA maintains
the structure of a feasible solution mentioned above. The sen-
sors having the same gene value in a chromosome must form
complete coverage to the area, except for the cover set with
the largest gene value. Therefore, the incomplete cover set of a
solution, if there is one, is always indexed as the last cover set
in its chromosome.

Every individual is represented as a structure {chromo-
some; fitness; check}. The “fitness” stands for the evaluation
value of the individual. The “check” indicates the index of the
last cover set, which also stands for the number of the con-
structed disjoint complete cover sets (cover sets are indexed
from 0).

B. Initialization
Initially, a population P composed of NP individuals is

created. The chromosomes must be initialized to be feasible
solutions, which satisfy the encoding requirement. In the flow-
ing-GA, all the positions of a chromosome are firstly initia-
lized to 0, which means that all sensors are put into a single
cover set 0. It must be a complete coverage scheme. Otherwise
the deployment of sensors fails.

Then in every chromosome, the redundant sensors in the
cover set 0 are randomly moved to form a new set. For the
other fields of an individual, the “check” field is set to 1 if the
whole set of sensors can make a complete cover set and the
“fitness” field is computed as the following evaluation step.

Figure 2. The flowchart of flowing-GA

C. Fitness Evaluation
The fitness function is defined by summing up the total

coverage rates of all the cover sets. For an individual p,

).(. checkpatecoverage_rp.checkfitnessp += , (5)

where

 fieldsnumber ofthe total
checkpsetbyeredfieldsofnumberthecheckpatecoverage_r .cov).(= ,(6)

coverage_rate(p.check) denotes the coverage rate of the cover
set p.check, and p.check denotes the number of complete cover
sets and also the index of the incomplete cover set.

For every individual, the fitness value is updated if the
coverage rate of the incomplete cover set equals to 1, which
means that the incomplete cover set has become a complete
cover set. Therefore, p.check is increased by 1, that is, p.check
= p.check +1, which means a new cover set is added and sen-
sors will flow into it in the following generations. The quality
of the population is improved as p.check increases. In every
generation, the individual with the highest fitness value is cho-
sen as the best individual p(best). If p(best).check equals to the
upper bound k, the program will be stopped.

D. Interaction Module
The design goal of interaction module is making use of the

interaction of individuals to improve the quality of the popula-
tion. The interaction module is implemented as the combina-
tion of selection and crossover. Every time two individuals are
selected from the original population, and then a new individ-

1444

 SMC 2009

ual is created by a uniform crossover. After that, the best one
of the three individuals is chosen to the new population. The
selection and crossover operation is implemented for generat-
ing NP new individuals. New individual generated by cros-
sover may not be a feasible solution, in this case it will be
abandoned and only its two parents are compared.

E. Self construction Module
The self construction module comprises of a mutation op-

eration and three stochastic greedy search operations, which
are the forward-flowing, backward-flowing and critical-
flowing. The mutation operation is used for eliminating search
bias generated by the greedy search operations. The greedy
search operations are designed to construct a solution with
more complete cover sets than the original one. Note that the
structure of a feasible solution is always maintained. Details
are discussed as follows.

1) Mutation
In the flowing-GA, the mutation operation is cooperated

with the three additional operations to make the self construc-
tion module work like “backtracking”. The operation is com-
mitted under some conditions. First, it is executed once every
D generations. During these D generations, “forward search”
is dominated in optimizing the population. Second, when mu-
tation is performed, the mutation rate PM is computed as the
number of individuals which have the fitness equal to the best
fitness value to the total population size. For each individual,
if a randomly generated number in [0,1) is smaller than PM,
then the sensors in the last cover set of this individual are se-
lected at a probability Δ to flow back to a randomly chosen
complete cover set. The structure of a solution is still kept,
because only sensors in the incomplete cover set can flow out.

2) Forward-flowing (FF)
The forward-flowing operation is used to select sensors

which are redundant (that means if these sensors are removed,
the complete coverage is still maintained) from the complete
cover sets, and put these sensors into the incomplete cover set.
The redundant sensors are flowing from the complete cover
sets to the incomplete cover set (Fig. 3).

Figure 3. Forward-flowing

The operation is implemented in the following way. For
every individual, randomly select a sensor belonging to a
complete cover set. If the sensor is redundant, it will be put
into the incomplete cover set. This operation is run several
times for every individual in every generation.

3) Backward-flowing (BF)
The backward-flowing operation randomly chooses sen-

sors of all cover sets (including the incomplete one) which are
redundant and then puts them into randomly selected complete
cover sets. That means redundant sensors are flowing from the
incomplete cover set into the complete cover sets, or flowing
between the complete cover sets (Fig. 4).

Figure 4. Backward-flowing

The operation is implemented as follows. For every indi-
vidual, randomly select a sensor. If the sensor is redundant,
randomly select a complete cover set which is different from
the set that the sensor belongs to. Then put this sensor into the
cover set. This operation is also run several times for every
individual in every generation.

The difference between the mutation operation and the
backward-flowing operation for the incomplete cover set is
obvious. In mutation, sensors are selected by a probability,
regardless of redundancy. But in the backward-flowing opera-
tion, only the redundant sensors can flow out.

4) Critical-flowing (CF)
Each critical list includes the sensors covering a same crit-

ical field. Different from GAMDSC, in the flowing-GA, if the
incomplete cover set does not have any sensor covering a crit-
ical field and there is a redundant one in other cover sets, the
redundant sensor will be moved to the incomplete cover set.
This operation is used to speed up the construction of a new
complete cover set for each individual.

IV. EXPERIMENTS AND ANALYSIS

Two experiments are conducted to examine the perfor-
mance of the flowing-GA on some moderate test cases and
some difficult test cases. The algorithms used for comparison
with the flowing-GA are the MCMCC [2] and the GAMDSC
[4].

Parameter settings for the experiments are as follows. If
not specially stated, all experiments use the same parameters
settings as NP=3 (for approach flowing-GA), NP=100 (for
GAMDSC as the author recommended), the maximum value
of G (number of generations) is not fixed, D=100, Δ=0.3, the
FF and BF operations in the flowing-GA run 5 times for every
individual. The observed area to be covered is a 50*50 rectan-
gle area. All experiments are run on a computer with P4
2.8GHz CPU.

A. Experiments on Randomly Generated Examples
The goal in this experiment is to compare the time con-

suming and the solution quality for the three algorithms in
solving some randomly generated test cases, which is of mod-
erate difficulty (this means most of the algorithms can solve
the test cases within the predefine time). There are 9 test cases
with a different number of sensors (N) or a different radius
value (R). Every experiment is run 30 times independently.
Table I shows the experimental results. The “field” column
denotes the number of fields of each test case. The “Best solu-
tion” column of GAMDSC shows the best solution found by
GAMDSC. The “rate” column shows the rate of finding the
upper bound. In this experiment, if GAMDSC cannot obtain
the optimal value, the best result in the 200th generation is rec-
orded. In the flowing-GA, once the optimal solution is found,

1445

 SMC 2009

the algorithm terminates. It can be observed in Table I that
GAMDSC runs a significantly longer time than the flowing-
GA and the results of GAMDSC are much worse than the
flowing-GA. Note that GAMDSC is originally proposed for
solving point-coverage problems, which involves a very small
number of target points. However, the test cases in this expe-
riment are area-coverage problems with much larger scales of

the number of sensors and targets. Table I shows the perfor-
mance of GAMDSC is unsatisfactory (it fails to find the best
solution in 8 of 9 test cases), which indicates GAMDSC is not
suitable for solving area-coverage problems. When solving
area-coverage problems, both MCMCC and the flowing-GA
can find the optimal solutions for the test cases. The time used
by the flowing-GA is shorter than that of MCMCC.

TABLE I. TEST RESULTS FOR CASES WITH DIFFERENT N OR R. ALL SENSORS ARE GENERATED RANDOMLY

Test case Flowing-GA GAMDSC MCMCC

N R Field Upper bound Time(ms) G Solution Rate Time(ms) G Best solution Rate Time(ms) Solution

1000 5 6076 5 4911.467 142.6667 5 100 136339.6 200 2 0 332828 5

1000 8 2498 17 7556.767 313.4333 17 100 135678.6 200 6 0 773515 17

500 8 2400 7 2255.8 174.7 7 100 63989.07 200 5 0 71469 7

500 10 1586 15 20611.43 2155.6 15 100 65587.1 200 8 0 115969 15

400 10 1556 9 897.3667 94.8 9 100 48977.6 200 8 0 51234 9

400 15 676 23 965.6667 133.2 23 100 48119.73 200 19 0 75578 23

300 15 673 16 473.4667 82.6333 16 100 29764.13 200 14 0 31469 16

300 20 400 32 611.4 116.6 32 100 30299.43 200 27 0 41469 32

100 20 385 7 43.2 16.4 7 100 278.1333 9.2667 7 100 1375 7

For the data set with 400 sensors, tests are conducted with
the value of R increasing from 1 to 20. The number of cover
sets found by the three algorithms is shown in Fig. 5. Both the
flowing-GA and the MCMCC can find the optimal solutions
for all these R values so they are drawn together.

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

N
um

er
 o

f C
ov

er
 se

ts
 fo

un
d

R

flowing-GA and MCMCC
 GAMDSC

Figure 5. Number of cover sets with R increasing from 1 to 20 for the test
case N=400

Usually in a random deployment of sensors, most fields are
covered densely while some others are covered sparsely, be-
cause the randomly deployed sensors may not be uniformly
distributed. If there are many redundant sensors in the area,
complete cover sets are easier to be made. So tests should be
conducted to check the situation when there are fewer redun-
dant sensors. The redundancy rate proposed in section II will
be useful.

B. Performance Comparison on Difficult Test Cases
In this experiment, the goal is to compare the performance

of the algorithms when the redundancy rate in the problem is
reduced. Test data sets are generated with different values.
They are generated in an iterative way. First a data set is gen-

erated with randomly deployed sensors, and then the best solu-
tion is found through the flowing-GA. After that the program
keeps running for 200 generations to make some redundant
sensors flow into an additional set. The sensors in the addi-
tional set are removed thus a new deployment case is generat-
ed. The procedure goes several rounds, every round generate a
deployment case which is less redundant. All the test cases
generated in the same procedure share the same upper bound
of complete cover sets.

TABLE II. RESULTS OF TEST DATA GROUP 1 AND DATA GROUP 2

 Test case detail Flowing-GA MCMCC

 N UB S Avg G AvgT(ms) S T (ms)

Data
group

1
R=5

1000 6.3 5 5 177 5750.533 5 259500

650 4.1 5 5 260 4320.833 5 62766

564 3.6 5 5 636 7947.9 5 39015

482 3.0 5 5 2591 25392.2 4 20812

427 2.7 5 5 24270 193427.1 4 12953

Data
group

2
R=8

560 5.0 9 9 448 6576.033 9 143078

372 3.3 9 9 795 5956.267 9 30016

305 2.7 9 9 10315 62883.4 7 15266

280 2.5 9 9 40589 224024.5 7 11250

In this experiment, two groups of data sets for the tests are
generated from different initial data sets independently. Every
test case is run 30 times. The results and the values of the
tests are shown in Table II (“UB” means “upper bound”, “S”
means best solution found). As the GAMDSC works not as
well as the other two algorithms, which have been shown in
the previous experiments, only the performances of flowing-
GA and MCMCC are compared.

1446

 SMC 2009

As it can be seen from the test results in Table II, the pro-
posed flowing-GA finds the best solutions in all test cases,
whereas the MCMCC cannot find the best solutions in test
cases N=482, 427, 305, 280. For the cases that both algorithms
can find the best solutions, the flowing-GA performs better
than the MCMCC by consuming shorter time. The experimen-
tal results show that the flowing-GA performs well even in
solving difficult test cases. Fig. 6 shows the curves of time
used when the value of decreases. With the best solution
unchanged, the smaller is, the more difficult to find the best
solution. A reason for this phenomenon is that when the value
of decreases, the set that a sensor should be put in becomes
more and more restricted.

7 6 5 4 3 2

0

50000

100000

150000

200000

250000

Ti
m

e
co

ns
um

ed
 to

 fi
nd

 th
e

be
st

 so
lu

tio
n

(m
s)

η

 data group 1
 data group 2

Figure 6. Curves of the time used when decreases.

V. CONCLUSIONS

In this paper a GA based approach called the flowing-GA
is proposed to solve the SET k-cover problem. The flowing-
GA is composed of two key modules: the interaction module
and the self construction module. With the interaction module,
the advantage of the GA as a multi-agent system is used to
enhance the quality of the population. The proposed self con-
struction module, which is designed to generate solutions in a
flowing model, is much more efficient to generate complete
set covers for a solution. A simple example is provided to de-
note the difference between SET k-cover problem and the K-
coverage problem. A factor called “redundancy rate” is pro-
posed in this paper to denote the hardness of a SET k-cover
problem. Experimental results shows the algorithm works
quite well when applied to the problem.

Although the flowing-GA works well in these test cases, it
still needs to be enhanced further. When the problem becomes
more difficult, the time consumed by the flowing-GA to find
the best solution increases rapidly. For the future work, more
controlled heuristic operations should be applied to the algo-
rithm, in order to make the algorithm capable for more diffi-
cult SET k-cover problems.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (NSF) of China under Project 60573066, in part by
the NSF of Guangdong under Project 5003346, in part by the

Scientific Research Foundation for the Returned Overseas
Chinese Scholars, State Education Ministry, China, in part by
the National Natural Science Foundation of China (NSFC)
Joint Fund with Guangdong under Key Project U0835002, in
part by the National High-Technology Research and Devel-
opment Program of China no. 2009AA01Z208. Jun Zhang is
the corresponding author, e-mail: junZhang@ieee.org.

REFERENCE

[1] M. Cardei and J. Wu, “Energy-efficient coverage problems in wireless
ad-hoc sensor networks,” Computer Communications vol. 29, pp. 413–
420, 2006.

[2] S. Slijepcevic and M. Potkonjak, “Power efficient organization of
wireless sensor networks,” in ICC, Helsinki, Finland, 2001, pp. 472–
476.

[3] M. Cardei and D.-Z. Du, “Improving wireless sensor network lifetime
through power aware organization,” Wireless Networks, vol. 11, pp.
333–340, 2005.

[4] C.-C. Lai, C.-K. Ting and R.-S. Ko, “An effective genetic algorithm to
improve wireless sensor network lifetime for large-scale surveillance
applications,” in IEEE Congress on Evolutionary Computation,
Singapore, 2007, pp. 3531–3538.

[5] J. H. Holland, Adaptation in natural and artificial system, Ann Arbor,
The University of Michigan Press, 1975.

[6] J. Zhang, H. S. H. Chung and W. L. LO, “Clustering-based adaptive
crossover and mutation probabilities for genetic algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 11, no.3, pp. 326–335,
2007.

[7] J. Zhang, W. L. Lo, and H. S. H. Chung, “Pseudocoevolutionary genetic
algorithms for power electronic circuits optimization,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C, vol.36, no.4,
pp. 590–598, 2006.

[8] Y. Lin and J. Zhang, “A novel geometric center design method for
genetic algorithm optimization,” in IEEE SMC 2008, Singapore, 2008,
pp. 1446–1453.

[9] X.-M. Hu, J. Zhang, and J.-H. Zhong, “An enhanced genetic algorithm
with orthogonal design,” in IEEE World Congress on Computational
Intelligence (WCCI 2006) and CEC 2006, Canada, 2006, pp. 3174–3181.

[10] J. Zhang, H. S. H. Chung, W. L. Lo, S. Y. R. Hui, and A. Wu,
“Implementation of a decoupled optimization technique for design of
switching regulators using genetic algorithms,” IEEE Transactions on
Power Electronic, vol.16, no.5, pp. 752–763, 2001.

[11] Y. Lin and J. Zhang, “An Isoline Genetic Algorithm,” in IEEE Congress
on Evolutionary Computation, Norway, 2009, pp. 2002–2007.

[12] J. Zhang, J.-H. Zhong, and X.-M. Hu, “A Novel Genetic Algorithm with
Orthogonal Prediction for Global Numerical Optimization,” in SEAL
2008, LNCS 5361, pp. 31–40, 2008.

[13] J. Xiao, Y.-P. Yan, Y. Lin, L. Yuan and J. Zhang, “A Quantum-inspired
Genetic Algorithm for Data Clustering,” in IEEE Congress on
Evolutionary Computation 2008, Hong Kong, 2008, pp. 1513–1519.

[14] Y. Lin, J. Huang and J. Zhang, “New Evaluation Criteria for the
Convergence of Continuous Evolutionary Algorithms,” in IEEE
Congress on Evolutionary Computation 2008, Hong Kong, 2008, pp.
2431–2438.

[15] T. Huang, J. Huang, and J. Zhang, “An Orthogonal Local Search
Genetic Algorithm for the Design and Optimization of Power Electronic
Circuits,” in IEEE Congress on Evolutionary Computation 2008, Hong
Kong, 2008, pp. 2452–2459.

[16] C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless
sensor network,” in WSNA’03, San Diego, California, USA, 2003, pp.
115–121.

[17] R. Williams, The geometrical foundation of natural structure: A source
book of design, Dover Pub. Inc., New York, pp. 51–52, 1979.

1447

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

