
Agents Learn from Human Experts:
An Approach to Test Reconfigurable Systems

Asem Eltaher1 (PhD Student), Markus Maurer1, Thomas Form2, and Mohamed Ayeb3

1 Technische Universität Braunschweig, 38106 Braunschweig, Germany
2 Volkswagen AG (VW), 38436 Wolfsburg, Germany

3Universität Kassel, 34121 Kassel, Germany

{eltaher, maurer}@ifr.ing.tu-bs.de, thomas.form@volkswagen.de, ayeb@uni-kassel.de

Abstract— Faulty software is costly and possibly life threatening as
software products permeate our daily life. Therefore, the test process
formulates an indispensable component of the development cycle; yet
it is a formidable task. In an effort to alleviate its challenges, this
contribution outlines a novel approach to enrich traditional test
techniques with intuition-based test strategies learned by observing
skilled human testers during various test sessions. Consequently, the
strategies learned would be verified, combined, and generalized to be
further applied in similar test situations. Hence, a reasonable portion
of the workload done by human testers would be shifted to the test
system itself. This leads to a significant reduction in the development
time and cost; yet the test efficiency is not sacrificed.

Keywords— learning, reasoning, embeded testing

I. INTRODUCTION

Automotive domain involves a continuous increase in the
quality expectations of the delivered products. Concurrently,
business pressures demand a significant reduction in the
development time and cost whereas ensuring more robust
products. Therefore, the test process is considered as an
indispensable component of the development cycle; yet it is an
arduous task especially for embedded reconfigurable systems,
e.g. infotainment systems, driver assistant systems, etc.

Generally, a reconfigurable Device-Under-Test (DUT) is a
component-based system that involves the possibility to
replace one or more of its component(s) [1]. This consequently
permits slightly modified configurations of the same DUT,
which make the corresponding test process an expensive
burden in two diverse aspects. First, given the new delivered
configuration, what has to be (re)tested? Second, assuming the
inevitability of faults, when should the testing be stopped?

One solution is the automatic generation of test cases from
the DUT’s specifications according to a definite coverage
criterion, which is shown in [2] to positively augment the test
process. Nevertheless, this approach assumes the availability
of formal and error-free specifications, which is –in case of
reconfigurable DUTs- an overambitious assumption as one or
more component(s) may be supplied by a third party.

Related work in [3] generates test suites by combining
statistical approaches and redundancy techniques. Initial
experiments show auspicious results, however, an empirical

study in [4] shows that a substitution of a single component
may entail -in some cases- to (re)execute the whole test cases.

Recently, diverse contributions -e.g. [5, 6] - tend to enrich
traditional test techniques via imitating human intelligence
during a test session. Specifically, the idea is to interview
skilled human testers to get an insight into their experiences,
which formulate the training sets for a learning system.

Consequently, a Bayesian Networks (BNs) model is trained
to direct the test cases to the most likely defect areas [6]. The
results illustrated show remarkable contributions, but this
approach formulates a tough duty on the test experts since “it
requires normally the analysis of a large number of cases,
covering almost every possible combination of input
variables” [6]. Furthermore, the theory of fuzzy logic shows
that humans often describe their experiences in very imprecise
and vague language that can hardly be formally described [7].

One other related approach is detailed in [8], in which
skilled human testers are subsequently involved in the test
process to adapt the predefined test strategies according to the
test results obtained. Research achieved in [8] resulted in a
corresponding cost model that can be formulated as:

T

kLC dttwCTmPTmC

TmPCTCTC

0
32

10

)()()1()(

)()1()()(

Such that:
C(T): Overall cost function in the testing period (T).
C0(T): Human engagement cost.
C1: Cost of correcting an error during testing.
P: Additional fractional of detected faults.
m(T): Mean value function.
C2: Cost of correcting an error during operation.
TLC: Software life-cycle length.
C3: Cost of testing per unit testing.
wk(t): Current testing effort estimated by a logistic testing-
effort function.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE 2320

Fig. 1: Learning by observing skilled human testers.

Indeed, the periodical engagement of skilled human testers
leads to an increase in the cost factor C0(T) that makes the
process of involving human experts an expensive contribution.
In response to this challenge, this contribution aims to develop
a test system that can learn intuition-based test strategies by
observing skilled human testers interacting directly with
various releases of the DUT.

Consequently, strategies learned are verified, aggregated,
and then generalized to be applied in any similar situations.
This offers a constructive framework to -not completely but at
least partially- reduce the necessity of the periodical
engagement of skilled human testers. This leads to a non
trivial reduction in the overall time and cost; yet the benefits of
involving human experts in the test process are not sacrificed.

The realization of the proposed framework is outlined in the
following sections. Section (II) illustrates the learning
environment whereas Section (III) details our approach to
learn behavioral primitives of the DUT. Then, Section (IV)
describes the realization technique and the results achieved so
far. Section (V) addresses the theory of generalization
associated with a case study. Finally, Section (VI) summarizes
the idea with an outlook about the future work.

II. LEARNING TEST SYSTEMS

A. Observation of Human-Machine-Interactions (HMI)
Intuitively, facing the fact that “it is practically impossible

to fully test a product” [9], skilled human testers posses the
potential to work with an intelligent test strategy to design and
adapt a significant range of test inputs under which a failure

may arise. Then, they proceed further till they reach a decision
that additional testing does not change the test results, which is
defined in [10] as “good enough testing”. Motivated by this
assumption, the idea is to observe HMI take place during test
sessions aiming to capture how skilled human testers behave
in complex strategic situations.

The core conception is that HMI are based on a perception-
action concept (see Fig. 1). In the perception phase, a human
tester perceives the information obtained from the DUT that is
followed by an action phase, in which the next best action(s)
has/have to be decided to reveal any hidden failures.

Practically, observing HMI is accomplished by recording
the communication data sent over the Media-Oriented-System-
Transport (MOST) data bus. To this goal, a MOST-based
interface, named VN2610 in Fig. 1, is attached to the DUT.
Then, a preliminary step before storing the data recorded is to
model it, which is illustrated in Subsection (B).

B. Modeling of Human-Machine-Interactions (HMI)
Situation-Operator-Model (SOM) in [11] models the

changes of the considered part of the external environment as
a sequence of effects. These effects are described by the items
scenes and actions. A real world scene is modeled by a
situation whereas an action is modeled by an operator [11].

The item situation (S) models the observed state of the
DUT, which consists of a set of characteristics (C) and
relations (r). Each characteristic describes a part of the DUT’s
state and possess a time-dependent parameter (P), which
describes the current observed state, e.g. CD-Status(In/Out). A
relation (ri) describes the inner connection(s) between different
characteristics of the same situation, if they exist.
 The item Operator (O), defined by its name and parameter, is
used to model the actions invoked by human testers that drive
the situation of the DUT from an initial situation (SI) to a final
one (SF), e.g. Set-Button (Button-ID).

In Fig. 2, a situation changed by an operator that leads to
another situation is shown, which is denoted in [11] as an
experience ESI

SF. Then, the current final situation is defined as
the initial one for the next experience, and so on. I.e. SOM
offers a flexible data structure to model HMI, represented in
the observed test cases, as a sequence of experiences.

Within the scope of this paper, SOM is detailed further
through the following definitions:

Definition 1: Two situations are equal, if they posses the
same characteristics with equal corresponding parameters.

Definition 2: Two operators are equal, if they have the
same name and parameter.

Definition 3: Two operators are separate, if they affect
different characteristics of the same situation when these
operators are concurrently invoked by the human tester.

Definition 4: Two operators are correlated, if they trigger
the same characteristic(s) within the same situation in case
these operators are simultaneously activated.

Action

Perception

Human Feedback

A
ck

.

R
et

rie
va

l

Visualization

HMI-
Modeling

Self-Learning Test System (Online)

Knowledge
Base

Online-Observation

ECU: C

VN2610

ECU: B

ECU: A

Skilled Human
Tester

Disp
lay

Pa
ne

l

•ECU: Electronic-Control-Unit
•MOST: Media-Oriented-System-Transport
•VN2610: Vector MOST Interface
•HMI: Human-Machine-Interactions
•Ack.: Acknowledgement

Device-Under-Test (DUT)

Action

Perception

Human Feedback

A
ck

.

R
et

rie
va

l

Visualization

HMI-
Modeling

Self-Learning Test System (Online)

Knowledge
Base

Online-Observation

ECU: C

VN2610

ECU: B

ECU: A

Skilled Human
Tester

Disp
lay

Pa
ne

l

•ECU: Electronic-Control-Unit
•MOST: Media-Oriented-System-Transport
•VN2610: Vector MOST Interface
•HMI: Human-Machine-Interactions
•Ack.: Acknowledgement

Device-Under-Test (DUT)

2321

Fig. 2: Structure of Situation-Operator-Model (SOM) [11].

Definition 5: Two experiences are similar, if the initial
situations are equal, operator(s) of the first experience is/are a
subset of the second one, and the final situations do not match.
I.e. SI1=SI2, O1 O2, and SF1 SF2.

Definition 6: Two experiences are homogeneous, if they
posses equal initial situations, their operators share the same
name but with different parameters, and the final situations are
not equal. I.e. SI1=SI2, O1(name) = O2 (name), O1(Parameter)
O2 (Parameter), and SF1 SF2.

C. Knowledge Base and Human Feedback
Observing skilled human testers is potentially effective

provided that the learning environment conveys a flexible data
structure that can be optimally exploited. This is especially
true, if it is needed to retrieve similar experiences for further
learning purposes or even to judge the behavior of the DUT.
Additionally, a mean of communication between the test
system and human testers must be provided to enrich the
learning process with human feedback.

The objective of this module is to enable human testers to:
a) acknowledge the consistency of the stored experiences and
b) alter the stored data. Case (a) is triggered, if the test system
announced the existence of inconsistent experiences in its
knowledge base. This would be the case, if it observed the
same test case with two different results (i.e. SI1=SI2, O1 = O2,
and SF1 SF2), which may occur due to a human error.

On the other side, altering the knowledge base is demanded,
if the DUT introduced wrong reactions during test sessions.
Derived by these cases, the test system has been enriched with
a 2D visualization module to facilitate the feedback process.
Then, the provided acknowledgment is saved in the knowledge
base, i.e. learned, for similar future cases.

A complete description of HMI-Modeling using SOM and
the learning environment is given in [12], in which it is
extended in this contribution to overcome the boundary from
individual to cooperative learning as shown in Subsection D.

D. Cooperative Learning
Intuitively, the motivation behind cooperative learning is

twofold. First, it is not practically possible to build a faithful
model of HMI given an individual training session, which may
suffer from any cognitive bias found in human testers. Second,
it is not feasibly possible for a single individual to comprehend
the entire scope of possible interactions and, therefore, some
entire segments of the test process may be overlooked. Given
this premise, cooperative learning is necessary to guard the
learning process against overfitting or underfitting and to
maximize individual results.

As a response, the idea is to aggregate several test strategies
from skilled human testers interacted with various releases of
the DUT. And to this goal, the notion of task relatedness has to
be defined, which is the common test case(s) achieved by
human testers during the learning phase.

Practically, the existence of common test case(s) among
diverse test strategies is not a naive assumption. It has been
shown in [13] that test scenarios performed by skilled human
testers, regardless their test strategy; share some test cases that
aim to stimulate the basic functions of the DUT.

Consequently, a coverage criterion has to be defined prior to
the test process initialization. A conventional approach is to
build a reachability graph to show all the transitions and
configurations that are reachable from a defined initial state.
Then, a commonly used test coverage criterion is to test each
edge in the reachability graph at least once [14].

Finally, a preliminary step on the way to generalize the
strategy learned is to define behavioral primitives of the DUT
and their correlations to the actions invoked by the human
testers during the learning phase.

III. LEARNING BEHAVIORAL PRIMITIVES

A. Idea
The necessity to learn behavioral primitives arises from the

ability of the test system to differentiate the test cases into
simple (deterministic) and compound (non deterministic) test
cases. In deterministic cases, the action-reaction relationship is
governed by a one-to-one correspondence whereas non
deterministic test cases lead to a many-to-many relationship.

In the later case, the objective is to identify, which operator
(O) has triggered which characteristic (C). To this end,
supervised clustering using Rule-Based- Reasoning (RBR) is
adopted in case of simple test cases. Whereas Case-Based-
Reasoning (CBR) is used in case of compound test cases.

B. Supervised Clustering using Rule-Based Reasoning
RBR is to reason using a prior knowledge [15], which

invokes in our case three algorithms. The first one compares
each characteristic’s parameter of SI with its corresponding
one of SF. If they are equal, the system compares the
remaining characteristics. Otherwise, it associates the operator
to the triggered characteristic, i.e. the characteristic with the
changed parameter.

Characteristic (Ck)

O (Parameter)
[e.g. Button_ID]

Parameter (Ck)

Relation (ri)

Final
Situation (SF)

[e.g. CD_Status]

[e.g. In, or Out]

Operator (O)
[e.g. Set-Button]

O

Initial
Situation (SI)

Characteristic (Ck)

O (Parameter)
[e.g. Button_ID]

Parameter (Ck)

Relation (ri)

Final
Situation (SF)

Final
Situation (SF)

[e.g. CD_Status]

[e.g. In, or Out]

Operator (O)
[e.g. Set-Button]

Operator (O)
[e.g. Set-Button]

O

Initial
Situation (SI)

Initial
Situation (SI)

2322

2323

well as SOM is done using Microsoft C++. The knowledge
base module is realized in Python due to its strong linkage to
free object-oriented databases like DyBASE used to realize the
knowledge base. Additionally, the visualization module is
realized using the visual libraries of Python (VPython).

 The experimental testbed is an infotainment DUT, which
consists of three Electronic-Control-Units (ECUs) connected
through a MOST data bus. Then, several operators are defined
to model the possible actions that might be invoked by human
testers. Additionally, a situation is defined to include a vector
of significant characteristics of the DUT, which have to be
observed during the learning phase. The complete library of
the operators and characteristics is detailed in [18].

For demonstration purposes, two individual test scenarios
are conducted as shown in Fig. 4a. Then, the migration from
individual to cooperative learning took place with the results
shown in Fig. 4b.

Following the early mentioned coverage criterion in [14],
the test system comes out with four diverse test scenarios:

1. E0
5, E5

3, E3
4, and E4

6.
2. E0

1, E1
3, E3

4, and E4
7.

3. E0
5, E5

3, E3
4, and E4

7.
4. E0

1, E1
3, E3

4, and E4
6.

Obviously, the first two test scenarios are just a replica of
the scenarios learned from the human testers A and B
respectively. However, the third and fourth scenarios
formulate new test suites, since the chain in the third scenario
(E3

4-E4
7) is tested under different initial conditions (E0

5-E5
3)

rather than the conditions learned from the human tester B
(E0

1-E1
3). Similarly, the chain in the fourth scenario (E3

4-E4
6)

is tested under varied initial conditions (E0
1-E1

3) rather than
the conditions learned from the human tester A (E0

5-E5
3).

Hence, the developed framework is capable of overcoming
the limit from just imitating human behavior to optimize it,
which definitely improves the coverage criterion of the test
process through the autonomous generation of new test suites.

Consequently, the reasoning paradigm is activated to learn
the behavioral primitives of the DUT. Interestingly, the results
achieved match exactly the initial results described in [12]
with even more confident in the approach applicability since
the test system has been enriched, in this paper, with the early
described RCC.

V. LEARNING VERSUS TESTING

Actually, the learning paradigm aims to provide an
intuition-based oracle to test either DUTs that are similar to
the one used in the learning session or the same DUT, but with
a slightly modified configuration. Therefore, one more
enhancement to the framework, introduced in [12], is how
what is learned during the initial configuration can be
analogically transferred to similar configurations.

Fig. 4. Individual versus cooperative learning.

To this goal, generalization techniques like Neural Networks
(NNs), Support Vector Machines (SVMs), and Rule Extraction
(RE) are surveyed. Though the remarkable contributions of
NNs and SVMs, one of the significant resistances against
these techniques is their lack of interpretability. Specifically, it
is difficult for a human analyst to understand the reasoning
behind these models’ decisions [19].

Conversely, generalization with logical rules is more
acceptable to human analysts due to the comprehensibility of
such an approach and the possibility to be validated [20].
Motivated by this fact, generalization using rule extraction is
adopted and the theory can be summarized as following:
a) Classification: The domain knowledge is classified into sub
regions of homogeneous experiences (see Def. 6).
b) Mapping framework: Stored data is described in terms of
the Man-Machine-Interface (MMI) using linguistic variables.
 c) Rule-based representation: Body of the learning module is
established and trained by a set of domain examples followed
by the RE phase.

A. Classification
The objective of this module is to classify the stream of test

cases into sub regions of homogeneous experiences. And,
therefore, it would be possible to obtain different rule sets that
govern the DUT’s behavior in various environmental
conditions described by the initial situation (SI) of the DUT.

A typical example would be gathering test cases that share
the same initial situation, in which human testers tried to
increase/decrease the volume status to various levels. I.e. these
test cases share the same initial situation, the same operator,
but the operator’s parameter varies and the final situation as
well. And the idea is to find a logical rule that faithfully
describe a generalized behavior of the DUT, given this initial
situation and this operator, based on the observed samples.

(b) (a)

E 0
1

E0
5

E3
4

E4
6

A

E5
3

E0
1

E1
3

E3
4

E4
7

B

E3
4

E4
6

E0 5

E5 3
E 1

3

Action

Reaction

Device
Under Test

Test Cases

Generator

E4
7

E 0
1

E 0
1

E0
5E0
5

E3
4

E4
6E4
6

AAA

E5
3E5
3

E0
1

E1
3

E3
4

E4
7

BBB

E3
4

E4
6

E0 5E0 5

E5 3E5 3
E 1

3

Action

Reaction

Device
Under Test

Test Cases

Generator

E4
7

E 0
1

2324

B. Mapping Framework: Abstract Description
Intuitively, it is not possible to learn without prior

commitments over how the strategies learned can be encoded.
Feature Space Mapping (FSM) in [21] is used to define
features that identify the problem domain.

Practically, component-based systems entail -on one side-
reconfigurable structure, which is the internal ECUs. On the
other side, MMI formulates a settled part that is not frequently
changed. And the idea behind adopting FSM is the usage of
linguistic variables to encode the strategies learned in terms of
the fixed part of the DUT rather than its reconfigurable one.
Hence, the rules learned can be (re)applied; even if the DUT’s
internal structure is slightly modified.

Typically, linguistic variables associated with an MMI for
an infotainment DUT would, on one side, describe the actions
invoked by human testers. One the other side, linguistic
variables have to describe the reaction(s) introduced by the
DUT. The used variables are partially shown in Table 1.

C. Rule Extraction (RE)
An initial step towards RE is to differentiate diverse types of

states observed during the learning session. Practically,
observing an infotainment DUT involves observing three
diverse arts of states [13]:

Continuous states: e.g. volume level.
Discrete states: e.g. CD track status (1, 2…n).
Logical states: e.g. loud speaker (on/off).

Generally, a logical rule that describes the HMI take place
during a test session would be:
For all SI=Sx:

IF (n (index) = nx d(index)=dx P(index)=Px)
THEN (Y=Yx))

Table 1: Linguistic variables for the mapping framework .

MMI
LINGUISTIC
VARIABLE

DESCRIPTION POSSIBLE
PARAMETERS

D
U

T
R

ea
ct

io
ns

 Vi/Vf
Initial/Final state of
the volume signal. Decimal value.

Ti/Tf
Initial/Final state of
the CD-track. Numerical value.

Li/Lf

Initial/Final state of
the speaker (on-
off).

Binary value.

H
um

an
 T

es
te

r A
ct

io
ns

 n (index)
It indicates the
number of turns of
the button
identified by index.

A numerical
value ranges from
0 to n.

d (index)

It indicates the
rotational direction
of the button
identified by index.

 1: Clockwise
-1: Anti-
Clockwise
0: No rotation

P (index)
It indicates the push
state of the button
identified by index.

1: Pushed
0: Released

Table 2: Rule Extraction: Structure of the information table.

Table 2a): Information table of continuous functions, e.g. Volume.

IP: Input
OP: Output

V=
(Vf -Vi) /Vi

COMMUNICATION
DATA

LINGUISTIC
DESCRIPTION

IP OP IP OP
Vi O1 Vf n d P V

V
A r1 28 44 44 1 1 0 0.5
B r2 28 52 52 3 1 0 0.8

Table 2b): Information table of discrete functions, e.g. Track-Status.

T=Tf -Ti

COMMUNICATION
DATA

LINGUISTIC
DESCRIPTION

IP OP IP OP
 Ti O2 Tf n d P T

T A r3 1 3 3 2 1 1 2
B r4 1 5 5 4 1 1 4

Table 2c): Information table of logical functions, e.g. On / Off

Lf : Final
State

COMMUNICATION
DATA

LINGUISTIC
DESCRIPTION

IP OP IP OP
 Li O3 Lf n d P Lf

L
A r5 1 0100 0 0 0 1 0
B r6 0 0111 1 0 0 0 1

Such that: Sx is the observed initial situation whereas the body
of the IF condition encodes the humans’ action(s) with implicit
timing parameters. Concurrently, Y indicates the reaction(s)
introduced by the DUT with implicit timing parameters too.

D. Case Study:
Table (2a) represents different training samples for a

continuous state, e.g. volume level, observed from diverse
testers (A and B). The invoked human’s action (O1) is Set
Volume (Volume-Level) to shift the volume state from an
initial value of (28) to various levels, e.g. 44, 52, etc. Then,
several individual rules (r1, r2) would be described as follows:

For all SI=S1:
r1: IF (n (0) = 1 d(0)=1 P(0)=0) THEN (V=0.5)

 r2: IF (n (0) = 3 d(0)=1 P(0)=0) THEN (V=0.85)

Relying on individual rules that grow exponentially tends to
obtain models that signify overfitting. Therefore, a fruitful
way is to generalize the individual rules r1, r2, etc. A
corresponding generalized rule would be:

 For all SI=S1:
IF (n (0) = ni d(0)=1 P(0)=0) THEN (Vi=ƒ (ni) ± μ)

Such that, (ƒ) encodes a non linear mapping between the
numbers of turns (ni) and the corresponding change in the
volume output (Vi) with a given tolerance (μ).

2325

Similarly, Table 2b shows several training cases for a
discrete state, e.g. CD track status. Here, the invoked human’s
action (O2) is Set Track (Track-Number) from an initial value
of (1) to different final states, e.g. 3, 5, etc. Hence, multiple
individual rules (r3, r4) would be described as follows:

For all SI=S2:
r3: IF (n (1) = 2 d(1)=1 P(1)=1) THEN (T=2)
r4: IF (n (1) = 4 d(1)=1 P(1)=1) THEN (T=4)

Similarly, relying on numerous individual rules would be of
no practical use. Therefore, a corresponding generalized rule
would be learned by the test system such that:

For all SI=S2:
 IF (n(1)=nj d(1)=1 P(1)=1) THEN (Tj=g (nj) ± μo)

Here, an equality function (g) encodes the relationship
between the actions’ sequence, which is the clock wise
rotation of the button with the index of (1) by (nj) turns
followed by a push action, and the change of the track status
(T). In addition, (μ0) is a tolerance only for the reaction time
whereas the tolerance for the reaction itself is zero.

Finally, Table (2c) shows an example to learn the behavior
of logical states in response to the human’s action (O3) Set
Mute or Set Loud. Similarly, a set of individual rules (r5, r6) is
defined such that:

For all SI=S3 (Li=1):
r5: IF (n (2) = 0 d(2)=0 P(2)=1) THEN (Lf=0)

For all SI=S4 (Li=0):
r6: IF (n (2) = 0 d(2)=0 P(2)=1) THEN (Lf=1)

Then, the set of generated individual rules would be
generalized like the following:

For all (SI=S3 SI=S4):
IF (n (2) = 0 d(2)=0 P(2)=1) THEN (L=h (Li)+μ*)

Indeed, a negation function (h) encodes the expected
reaction of the DUT (Lf) in case the button indexed by (2) is
pushed. Similarly to discrete states, (μ*) indicates an allowable
tolerance concerning the reaction time whereas the tolerance
for the reaction itself is zero.

Finally, it is worthwhile to mention that exact test cases are
subjected first to a consistency check (see Section II-C),
before they are used as training samples. Furthermore,
individual rules are not only learned from deterministic test
cases, but also from decomposing non deterministic cases
using the reasoning algorithm described in Section (III).

VI. CONCLUSION AND FUTURE WORK

A. Summary
This contribution outlines an ongoing research work that

aims to enrich traditional test techniques with intuition-based
test strategies learned by observing skilled human testers.
Then, strategies learned would be verified, combined, and then
generalized to be applied in similar problem domains.

B. Limitations versus Contributions
One of the intrinsic limitations of this approach is its

relatively narrow domain of applicability. Indeed, it looses a
reasonable portion of its effectiveness, if the human factor is
not deeply involved in the test process. However, the proposed
framework gets a wide acceptance in the automotive domain,
where testing of reconfigurable DUTs, e.g. driver assistant
systems, receives a fair deal of attention.

Moreover, the developed framework lacks the power to
mathematically describe the motivations behind its own
generated strategy. This is definitely true since strategies
generated by human experts, which are a part of the self-
generated strategy, stem from their rules of thumb derived by
cognitive heuristics rather than mathematical formulas.

Nevertheless, the proposed approach enriches traditional test
techniques with an optimal combination between automatic
procedures and intuition-based test strategies to maximize
individual benefits.

In addition, confronting the fact that manual construction of
test data sets consumes a large part of the test effort during the
development cycle [22]; the proposed framework provides the
capability to teach technical systems test scenarios just by
demonstrating them. This leads to a substantial reduction in
the time and energy devoted in writing script-based scenarios.
Adding to this, it eliminates the heavy burden thrown on the
human experts while trying to verbalize their past experiences.

Second, cooperative learning reduces the workload thrown
on human experts who have to test any similar configurations
of the DUT. Moreover, it avoids just imitating one strategy
learned, rather replicating the strategies learned with inertia
through the autonomous generation of new test suites.

Third, the reasoning paradigm enables the test system to
learn behavioral primitives of the DUT. This consequently
leads to the automatic generation of its specifications without
any extra workload on the quality assurance staff since the test
process has to be any way accomplished.

Fourth, the proposed theory to generalize strategies learned
reduces the necessity of the periodical engagement of skilled
human testers in case the availability of new releases.

C. Research Plan versus Evaluation
Within the scope of this contribution, the availability of

skilled human testers is assumed. However, it is planned to
investigate the requirements on human testers to be considered
as skilled testers. For instance, their history sheets, number of
revealed errors versus execution time, etc.

In addition, it is necessary to define quantitative metrics to
evaluate the strategies learned in order to minimize the
exposure to overfitting or underfitting. For example, the
overall states’ coverage resulted from the training sessions
with respect to the pre-designed specifications of the DUT.

2326

One other key element of the future work is to generate the
behavioral primitives (specifications) of the DUT using a
standard data format, e.g. Finite-State-Machine (FSM). This
would increase the degree of acceptance of the developed
framework since no extra tools have to be learned.

Furthermore, a long-term goal is to offer the test system
various training sessions with a real DUT and then test its
generalized strategy against a simulated one. This is especially
effective to judge how limited the generalized rules are since it
is feasible to simulate new test situations that might be
difficult to be done using a real DUT.

Finally, feasible evaluation metrics can determine the extent
to which improvement has been reached. Generally, the
designed metrics fall under two categories; how much the
human efforts are reduced? And how far the test process has
been improved?

Qualitative metrics are supposed to measure the degree of
satisfaction from the rules expressive power. Additionally, it is
worthwhile to test the fidelity of the extracted rules to mimic
the strategies learned.

Quantitative metrics would be reasonable to evaluate the
extent of the test process improvement. For example, the
number of new generated test scenarios in comparison with the
learned ones, percentage reduction in the time needed by
human testers, percentage increase of the found errors,
percentage increase of the states’ coverage, how often the test
system misfired the generalized rules, and its ability to predict
the behavior of new configurations.

VII. REFERENCES

[1] G. Denaro, L. Mariani, and M. Pezze: Self-Test Components for
Highly Reconfigurable Systems. In Electronic Notes in
Theoretical Computer Science, Volume (82), Number (6), 2003.

[2] A. Hessel: Model-Based Test Case Selection and Generation for
Real-Time Systems, PhD thesis. In Digital Comprehensive
Summaries of Uppsala Dissertations from the Faculty of Science
and Technology, ISSN 1651-6214; 301, 2007.

[3] E. A. Bezerra, F. Vargas, and M.P. Gough: Improving
Reconfigurable Systems Reliability by Combining Periodical
Test and Redundancy Techniques: A Case Study. In Journal of
Electronic Testing: Theory and Applications, Volume (17), Issue
(2), Pages 163-174, 2001.

[4] M.P.E. Heimdahl and D. George: Test-Suite Reduction for
Model Based Tests: Effects on Test Quality and Implications for
Testing. In the Proceedings of the 19th International Conference
on Automated Software Engineering, IEEE Computer Society,
2004.

[5] D. A. Wooff, M. Goldstein, and F. P. A. Coolen: Bayesian
Graphical Models for Software Testing. In IEEE Transactions on
Software Engineering, Volume (28), Number (5), May 2002.

[6] J. Gras, R. Gupta, and E. Minana: Generating a Test Strategy
with Bayesian Networks and Common Sense. In the Proceedings
of the Testing: Academic and Industrial Conference- Practice
and Research Techniques, IEEE Computer Society, 2006.

[7] L. A. Zadeh: Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes. In IEEE Transactions
on Systems, Man, and Cybernetics, Volume (3), Number (1),
Pages 28-44, January 1973.

[8] C. Huang and M.R. Lyu: Optimal Release Time for
Software Systems Considering Cost, Testing-Effort, and
Test Efficiency. In IEEE Transactions on Reliability,
Volume (54), Number (4), December 2005.

[9] C. Kaner: The Impossibility of Complete Testing. In Law of
Software Quality Column, Software QA Magazine, Volume (4),
1997.

[10] J. Bach: A Framework for Good Enough Testing. In the
Proceedings of the IEEE Computer Society, Volume (31),
Number (10), Pages 124-126, 1998.

[11] D. Söffker: Interaction of Intelligent and Autonomous Systems-
Part I: Qualitative Structuring of Interaction. In Mathematical
and Computer Modeling of Dynamical Systems, Volume (14),
Issue (4), Pages 303-318, August 2008.

[12] A. Eltaher, T. Form, M. Ayeb, and M. Maurer: A Generic
Architecture for Hybrid Intelligent Test Systems. In the
Proceedings of the 7th IEEE International Conference on
Cybernetic Intelligent Systems, September 9-10, London, United
Kingdom, 2008.

[13] M. Maurer, A. Eltaher, M. Reichel, T. Müller, M. Miegler, D.
Niederkon, and B. Strasser: In the 1st Workshop on: New Tools
for Automated Testing Techniques Applied to Infotainment
Systems, AUDI AG, Ingolstadt, Germany, June 2008.

[14] Y. Levendel: Using Untampered Metrics to Decide When to Stop
Testing Software. In the Proceedings of the IEEE International
Conference on EC3-Energy, Computer, Communication and
Control Systems, Volume (2), Pages 352-356, August 1991.

[15] R. Xu and D. Wunsch: Survey of Clustering Algorithms.
In IEEE Transactions on Neural Networks, Volume (16),
Number (3), May 2005.

[16] A. Eltaher: Towards Good Enough Testing: A Cognitive-
Oriented Approach Applied to Infotainment Systems. In the
Proceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering, September 15-19, 2008,
L’Aquila, Italy.

[17] H. Liang, J. Dingel, and Z. Diskin: A Comparative Survey
of Scenario-Based to State-based Model Synthesis
Approaches. In the Proceedings of the 2006 International
Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools, ISBN: 1-59593-394-8, Pages: 5-
12, 2006, China.

[18] A. Eltaher and T. Form: Modeling and Realization of Human-
Machine-Interaction as an Approach for a Self-Learning Test
System. In the Proceedings of the 3rd International Conference on
Simulation and Testing, ISBN 978-3-8169-2818-8, 2008,
Germany.

[19] C. Alippi and P. Braione: Classification Methods and Inductive
Learning Rules: What We May Learn from Theory. In IEEE
Transactions on Systems, Man, and Cybernetics-Part C:
Applications and Reviews, Volume (36), Number (5), 2005.

[20] J. Huysmans, R. Setiono, B. Baesens, and J. Vanthienen:
Minerva: Sequential Covering for Rule Extraction. In IEEE
Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, Volume (38), Number (2), April 2008.

[21] W. Duch, R. Adamczak, and K. Grabczewski: A New
Methodology of Extraction, Optimization, and Application of
Crisp and Fuzzy Logical Rules. In IEEE Transactions on Neural
Networks, Volume (12), Number (2), March 2001.

[22] B. Baudry, F. Fleurey, J. M. Jezequel, and Y. Le Traaon:
Automatic Test case Optimization: A Bacteriological Algorithm.
In Proceedings of the IEEE Computer Society, Volume (22),
Number (2), Pages 76-82, 2005.

2327

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

