Mathematical Figure Recognition for Automating Production of Tactile Graphics

Noboru Takagi
Department of Intelligent Systems Design Engineering
Toyama Prefectural University
Toyama, Japan
noboru.takagi@ieee.org

Abstract—A computer-aided system for transformation of mathematical figures into tactile graphics is useful for the visually impaired when they learn mathematics and science. To develop such a system, a study of mathematical figure recognition techniques is needed. It is natural to assume that (1) a mathematical figure includes characters and mathematical formulas to explain lines or curves that are graphical expressions of functions or relations, and (2) graphs are sometimes drawn using broken lines. Under these assumptions, this paper discusses methods of (1) separating a mathematical figure into the character components and the graph components, and (2) extracting broken line components and grouping these components into each broken line.

Index Terms—Pattern Recognition, Graph Recognition, Image Processing, Tactile Graphs, Tactile Teaching Material

I. INTRODUCTION

Graphs are frequently used to present functions or relations in mathematics and science. But, most of these graphs are in visual form, they cannot be utilized by visually impaired users. Through tactile graphics, pictures can be understood by the visually impaired. This is because tactile graphics are produced by raised patterns which can be felt with the fingertips. Although tactile graphics are useful for visually impaired students when they learn mathematics and science, in 80% of Japanese schools for the visually impaired, there is no department to produce tactile teaching material[7]. Usually, teachers produce most tactile graphics using less intelligent computer-aided systems. So, a better computer-aided system of making tactile graphics is needed.

Graph recognition techniques are necessary to develop such a system. There is some research on graph recognition. Aso et al.[6] studied a graph recognition method and in their method, graphs must satisfy many assumptions. For example, a graph has to be drawn inside a rectangular area that is specified by the x-axis and the y-axis. The graph recognition methods introduced by the authors[1], [4], [8] must also satisfy assumptions about graphs. But, many mathematical figures do not satisfy all of the assumptions. Therefore, to develop a computer-aided system for transformation of mathematical figures into tactile graphics, it is necessary to study mathematical figure recognition techniques.

We are developing such a computer-aided system[9], which will transform mathematical figures into tactile graphics. This paper describes some of the mathematical figure recognition techniques that are introduced for developing our system. First, we focus on a method that separates a mathematical figure into the character image and the graph image. Since mathematical figures often include broken lines, we discuss two methods, one is for extracting broken line components from the graph image, and the other one is for grouping broken line components into each broken line.

This paper is organized as follows. Section describes the separation of a mathematical figure. Then, in Section III, the extraction and the classification of broken line components are discussed. Section IV shows the experimental results of the two methods. Section V is the conclusion.

II. SEPARATION OF A MATHEMATICAL FIGURE INTO CHARACTER AND GRAPH COMPONENTS

The outline of the method discussed in this section is shown in Figure 1.

A. Preprocessing

We first apply the 3 processes to an input image \(I_{in} \), binarization, noise reduction, and the labeling process. After the labeling process, we have all of the connected components of \(I_{in} \), that is, \(C_1, \ldots, C_l \). Then, for each component \(C_i \), a rectangle \(R_i \) that circumscribes \(C_i \) is determined. Figure 2(a) shows an example of input images, and some components and rectangles that circumscribe the components are given in Figure 2(b).

B. Separation of A Mathematical Figure into Small and Large Components

In general, a graph includes coordinate axes, and lines or curves that express functions or relations. A single graph component usually occupies a larger area than a character component. In the process (1) shown in Figure 1, we classify large components as graph components, and then separate them from small components.

First, we take the length of the long side of input image \(I_{in} \), and let it be \(\ell_{in} \). Then, for every component \(C_i \), if \(\ell_i \geq w \times \ell_{in} \), then it is classified as a graph component, where \(\ell_i \) is the length of the long side of \(R_i \), and \(w \) is a weight of \([0, 1]\).
Fig. 1. Outline of Separation of A Mathematical Figure into Character and Graph Components

(a) An Input Image I_m

(b) Components and Rectangles That Circumscribe the Components

Fig. 2. An Example of Components and Rectangles That Circumscribe the Components

C. Extraction of Broken Line Components

Graphs are sometimes drawn using broken lines. The input image I_m in Figure 1 is an example of this kind of graph. The method from Section II-B classifies broken line components as small components (see the image I_S in Figure 1). Given an image I_S, this section discusses a method of extracting broken line components from I_S. The following procedure shows the outline for separation of I_S into broken line and character components.

Input: Image I_S

Output: Images I_B and I_C

Step 1: Classify each component of I_S into rectangular or non-rectangular components by template matching. Then, let $I_{B'}$ be the image of rectangular components, and let $I_{C'}$ be the image of non-rectangular components.

Step 2: Let B' be the set of components in $I_{B'}$. Then, apply the agglomerative hierarchical clustering[5] to B' in order for each cluster to consist of components of the same broken line.

Step 3: Calculate local segment densities[3] of $I_{C'}$, and then roughly separate $I_{C'}$ into character areas.

Step 4: For each cluster G given by Step 2, if 6% or more of G is covered by a character area given by Step 3, then classify all components of G as character components.

Step 5: Remove every component, which was classified as a character component from $I_{B'}$, and let the remaining image be I_B. Let I_C be the image given by combining $I_{C'}$ and the character components. Output I_B and I_C.

Let I_C be the image given by combining I_L and $I_{B'}$, then I_C is the graph image of $I_{B'}$. I_C is the image consisting of character components of $I_{B'}$.

1) **Rough Classification of Broken Line Components by Template Matching:** A broken line component usually resembles a rectangle. So, in Step 1, each component of I_S
is classified into rectangular or non-rectangular components. A component of I_S is said to be a tentative broken line component, if it was classified as a rectangular component. The following is our template matching procedure.

Input: Component C of I_S

Output: Yes, if C was classified as a tentative broken line component, otherwise No.

Step 1: Calculate slope a of the longitudinal orientation of C by Formula (1).

$$
\sum_{x=1}^{N} \sum_{y=1}^{M} (x - m_x)(y - m_y)C(x,y) \\
a = \frac{\sum_{x=1}^{N} \sum_{y=1}^{M} (x - m_x)(y - m_y)C(x,y)}{\sum_{x=1}^{N} \sum_{y=1}^{M} (x - m_x)^2C(x,y)}
$$

(1)

where (m_x, m_y) is the centroid of C, $C(x,y) = 1$ when the pixel (x,y) is in C, otherwise $C(x,y) = 0$, and N and M are the length of both sides of the rectangle that circumscribes C.

Step 2: Determine a rectangle such that (1) it circumscribes C and (2) its longitudinal orientation is equal to the slope a. Denote the rectangle by R^a.

Step 3: If the following inequality is true (i.e., more than 80% of C is covered by R^a), then C is classified as a tentative broken line component.

$$\frac{\text{Number of Pixels of } C}{\text{Number of Pixels of } R^a} > \theta_1$$

The image of tentative broken line components of I_S is I_{TB}, and the image of the components of I_S other than the tentative broken line components is I_C.

2) Cluster Analysis of Tentative Broken Line Components:

In this section, we introduce a technique of making up clusters in order for each of them to include the components of the same broken line. Since, generally, the distance between two adjacent components of the same broken line is very short, the agglomerative hierarchical clustering is selected to make clusters. Here, the dissimilarity value $d^*(G_1, G_2)$ between two clusters G_1 and G_2 is calculated by the following formula.

$$d^*(G_1, G_2) = \min_{C_1 \in G_1, C_2 \in G_2} D^* (C_1, C_2)$$

(2)

where $D^* (C_1, C_2)$ is the distance between R_{G_1} and R_{G_2}, which are the rectangles determined by the same way in the previous section.

Further, we made an assumption for making up clusters. That is, a broken line is assumed to be either a straight line or a smooth curve. We measure curvature[2] to determine the smoothness of a broken line. Let G_1 and G_2 be two clusters of broken line components, and let C_1 and C_2 be components of G_1 and G_2 such that the distance $D^*(C_1, C_2)$ gives the dissimilarity value $d^*(G_1, G_2)$ (see Figure 3(a)). Then, the curvature at the connected point of the clusters G_1 and G_2 is calculated by

$$\kappa = |\varphi_1 - \varphi_{12}|$$

where φ_1 is the angle of C_1, and φ_{12} is the angle of the line segment which connects the ends of C_1 and C_2 (see Figure 3(b)).

The following is the procedure of our cluster analysis for tentative broken line components.

Input: A set of components $\{C_1, \ldots, C_k\}$ of I_{TB}

Output: Clusters $\{C_1, \ldots, C_k\}$

Step 1: Calculate the distance $D^*(C_1, C_2)$ between each pair of components C_i and C_j ($i \neq j$). Let D be the set of all distances. Note that there are $\kappa C_2 = k(k - 1)/2$ distances in the set D.

Step 2: Select the minimum distance from D, say δ, and set $D \leftarrow D - \{\delta\}$. Continue this process until the two components C_i and C_j (which give the distance δ) are not members of the same cluster. Then, let the two clusters be G_1 and G_2.

Step 3: If $\delta \geq \theta_2$, then output the clusters and stop the procedure, otherwise go to Step 4.

Step 4: Compute the curvature κ between the two clusters G_1 and G_2. If $\kappa \leq \theta_3$, then merge G_1 and G_2. Go to Step 2.

3) Local Segment Density Analysis of Character Components:

Usually in the template matching process of Section II-C, the equal signs (=) and the minus signs (−) etc. are classified as tentative broken line components (see I_{TB} in Figure 1). Furthermore, it is possible for a character component to be misclassified as a tentative broken line component, if it resembles a rectangle.

Given an image I_C, we first calculate the local segment density for every pixel. The characteristic feature of local segment density is that the more characters that exist around a pixel, the higher the density at that pixel. Figure 4(a) shows local segment densities of the image I_C in Figure 1. Then, the binary image of local segment densities roughly gives us areas in which characters exist. For example, Figure 4(b) is the binary image given from Figure 4(a), and then the character components are roughly separated into the black areas. Let S_l be a character area of I_C (see Figure 4(b)). Then, lastly, for every cluster G (which is given by the procedure of the previous section), if 6% or more of the components in G was included in S_l, then components in S_l are distinguished.
Consider the chain line shown in Figure 6. The number of pixels for each component was counted, and Table I is a list of these numbers. The number of the left-most of the list is the number of pixels of the component that is on the left-most of the chain line. We then applied k-means clustering[5] to the set of these numbers by setting $k = 2$. The clustering result is shown in Table I. This clustering result was acceptable, i.e., the short segments were correctly grouped into one cluster, and the large segments were also correctly grouped. Then, the problem is how to evaluate the correctness of a clustering result. To evaluate the clustering result, we measure two cluster validities, Davies-Bouldin Index V_{DB} and Dunn's Index V_D[10], which is defined in the following. Let X be a set of samples and let $U = \{G_1, \ldots, G_c\}$ be a α-partition of X, that is $U \subseteq G_i = X$, $G_i \cap G_j = \emptyset$ if $i \neq j$, and $G_i \neq \emptyset$ for any $i = 1, \ldots, c$. The distance between two samples x and \overline{y} is denoted as $\delta(x, y)$. Then, Davies-Bouldin Index V_{DB} is defined by the following formula.

$$V_{DB} = \left(\frac{1}{c} \sum_{i=1}^{c} \left(\max_{i \neq j} \left\{ \delta(G_i, G_j) \right\} \right) \right),$$

where $\alpha_i = \sum_{x \in G_i} \left(\max_{\overline{y} \in G_j} \delta(x, \overline{y}) \right)$ and $\overline{y}_i = \sum_{x \in G_i} \frac{x}{|G_i|}$ for $i = 1, \ldots, c$. Furthermore, Dunn's Index V_D is defined as follows.

$$V_D = \min_{1 \leq S \leq \alpha} \left\{ \min_{1 \leq k \neq \ell} \left(\frac{\delta(G_k, G_\ell)}{\max_{1 \leq k \leq \alpha} \left\{ \delta(G_k, G_\ell) \right\}} \right) \right\},$$

where for any clusters S and T, $\Delta(S) = \max_{x \in S, y \in T} \delta(x, y)$ and $\delta(S, T) = \min_{x \in S, y \in T} \{\delta(x, y)\}$.

Generally, for Davies-Bouldin Index, the larger the value V_{DB}, the better the α-partition U. On the other hand, for Dunn's Index, the smaller the value V_D, the better the α-partition U.

The parameter k of k-mean clustering is set at from 2 to 5. We then apply fuzzy inference to classify a cluster into a dotted line and a chain line. We determined the following 6 fuzzy rules.

Let V_{DB}^k and V_D^k be the Davies-Bouldin Index value and the Dunn's Index value when the number of cluster is $k = i$, respectively.
respectively. Further, let P_i be the number of pixels for a component $C_i \in G$ (where G is a cluster of broken line components), and denote the maximum and the minimum among all P_i's as P^+ and P^-, respectively.

Rule 1: If V_{DB} is small, then G is a chain line.
Rule 2: If the difference between V_{DB} and the minimum of $V_{DB}^1, \ldots, V_{DB}^5$ is small, then G is a chain line.
Rule 3: If the ratio $(P^-)/P^+$ is small, then G is a chain line.
Rule 4: If D_{DB} is large, then G is a dotted line.
Rule 5: If the difference between V_{DB} and the minimum of $V_{DB}^1, \ldots, V_{DB}^5$ is large, then G is a dotted line.
Rule 6: If the ratio $(P^-)/P^+$ is large, then G is a dotted line.

Fuzzy inference is performed by the product-max-centroid method. The membership functions are shown in Figure 7.

IV. EXPERIMENTAL RESULTS

This section shows experimental results of the two methods, the separation of mathematical figures and the extraction of broken lines.

A. Experimental Results of Separation of Mathematical Figures

We selected 6 mathematical figures from 4 different mathematics textbooks. Two mathematical figures were correctly separated into the character and the graph images. Figure 8 shows an example of the successful results, while Figure 9 gives an example of the failed results.

The cases where misclassifications occurred are summarized as follows.

(1) Misclassifications by Template Matching

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig7.png}
\caption{Membership Functions}
\end{figure}

(a) Membership Functions of Rule 1 and Rule 4
(b) Membership Functions of Rule 2 and Rule 5
(c) Membership Functions of Rule 3 and Rule 6
(d) Membership Functions of Consequence

Fig. 7. Membership Functions

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{A Successful Result}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig9.png}
\caption{A Failed Result}
\end{figure}

The template matching often misclassifies a graph component that does not resemble a rectangle as a character component. Arrows and broken line components that are not straight segments etc. are examples of graph components which are often misclassified as character components. The character image (c) of Figure 9 includes 1 broken line component that was misclassified, since the component was drawn by connecting two dotted line
components.

(2) Misclassifications by Hierarchical Clustering
For example, if a character component that resembles a rectangle was merged with a cluster of the broken line,
the character component will be misclassified as a graph component.

(3) Misclassifications by Local Segment Density
For example, if a negative integer, say -1, was drawn in a figure, and no character existed around this integer, then
the area of the character '1' determined by local segment density sometimes does not cover the minus sign. Such
components are misclassified as a graph component.

B. Experimental Results of Broken Line Component Classification
We collected 20 mathematical figures, and then applied the two processes from Section III. We then extracted 112 clusters
of broken line components. Note that a cluster that includes only one component was not applied to these processes. This
is because k-means clustering does not work if the data set contains only one sample. Table II shows the results of
dotted/chain line classification. Figure 10 is an successful example, i.e., all of the 6 broken lines were correctly classified
into dotted lines and chain lines. Figure 11 shows a failed example. Two dotted lines were grouped into the cluster (1),
because the distance between two dotted lines are short and the curvature at the connected point of the two dotted lines is
small. Then, since the cluster (1) contains two different dotted lines, it was misclassified as a chain line.

<table>
<thead>
<tr>
<th>Success</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/20</td>
<td>5/20</td>
</tr>
<tr>
<td>101/112</td>
<td>8/112</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS
In this paper, we discussed pattern recognition for transformation of mathematical figures into tactile graphics. This paper
introduced two methods, the separation of a mathematical figure into the character components and the graph components,
and the extraction and the classification of broken line components. Local segment density, hierarchical clustering,
and fuzzy inference play an important role in our methods. As discussed in the section of experimental results, our methods
do work well for many mathematical figures, but we have some mathematical figures that our method did not return correct
results. So, the improvement of the accuracy of our methods is our future problem.

ACKNOWLEDGEMENT
This work is supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science
(19500812).

REFERENCES
Dashd and Chained Lines for Automatic Inputting of Drawings", IEICE
1986.
Extraction Using Local and Global Segment Densities", Journal of
Using Layout Structure Knowledge", Journal of Information Processing,
in Documents by Tracking Connected Components", IEICE Transac-
and Using Tactile Educational Materials in Schools for the Blind", Bulletin of the National Institute of Special Needs Education, Vol. 31,
Transformation of Mathematical Figures into Tactile Graphics", International Journal of Intelligent Computer in Medical Sciences and Image
Processing (submited).