
Platform-independent development of collaborative
Wireless Body Sensor Network applications: SPINE2

G. Fortino, A. Guerrieri
Dept. of Electronics, Informatics and Systems (DEIS)

University of Calabria
Via P. Bucci, 87036 Rende (CS), Italy

g.fortino@unical.it, aguerrieri@deis.unical.it

F. Bellifemine, R. Giannantonio
Telecom Italia Labs

Via G. Reiss Romoli, 274. Torino, Italy
{fabioluigi.bellifemine,

roberta.giannantonio}@telecomitalia.it

Abstract—Rapid development of Wireless Body Sensor
Network (WBSN) applications can be enabled by suitable
domain-specific frameworks which are usually organized in two
parts: a base-station-side (or coordinator) and a sensor-node-side.
While the former can be based on the Java language so being
highly portable, the latter is usually highly dependent on the
exploited sensor platform. Available state of the art frameworks
follow such an organization and, in particular, the current
version of SPINE is based on TinyOS and can be only used to
effectively develop collaborative WBSN applications for TinyOS-
based sensor platforms. To develop SPINE-based applications for
new sensor platforms, the SPINE framework should be re-
implemented for each new sensor platform to be exploited. This
not only increases development efforts but also enforces SPINE-
oriented developers to become skilled on the low-level
programming abstractions provided by a new employed sensor
platform. In this paper we discuss issues related to platform-
independent development of collaborative WBSN applications
and, specifically, describe the requirements, architecture and first
implementation experiences of SPINE2 which aims at reaching a
very high platform independency and raising the level of the used
programming abstractions by providing a task-oriented
programming model. The paper also discusses how such a task-
oriented model enables dynamic task assignment and holistic
collaborative task execution also for resource-constrained
environments such as tiny sensor nodes.

Keywords—Wireless body sensor networks, software
development methodology, task-oriented programming.

I. INTRODUCTION

Wireless body sensor networks (WBSNs) have great
potential to enable a broad variety of assisted living
applications such as health and activity monitoring, and
emergency detection. It is therefore important to provide design
methodologies and programming frameworks which enables
rapid prototyping of collaborative WBSN applications [1].
Although several effective application development
frameworks already exist for WBSNs based on specific sensor
platforms (e.g. CodeBlue [2], SPINE [3], Titan [4]), effective
methods for platform-independent development of WBSN
applications which would enable rapid development of multi-
platform applications and fast application porting from one
platform to another, are still missing or in their infancy. In fact,
the aforementioned frameworks can be only used to effectively
develop WBSN applications for TinyOS-based sensor
platforms. Thus, to develop applications for new sensor

platforms, such frameworks should be implemented for each
new sensor platform to be exploited. This not only increases
development efforts but also enforces developers to become
skilled on the low-level programming abstractions provided by
a new employed sensor platform.

In this paper we first categorize and discuss interesting
approaches which can effectively support platform-independent
development of WSN applications (see section 2); then (in
section 3 and 4), we present the current efforts (design and
current implementation status) towards the definition of
SPINE2, an evolution of the SPINE (Signal Processing In-
Node Environment) framework [3] based on the C-language,
which aims at supporting the development of platform-
independent assisted living applications. The goal is to reach a
very high platform independency for C-like programmable
sensor platforms (e.g. TinyOS [5], Ember [6], ZStack [7]) and
raise the level of the provided programming abstractions from
platform-specific to platform-independent.

SPINE2 offers a task-oriented model for programming the
sensor nodes of a collaborative WBSN. In particular tasks (e.g.
sensing, feature extraction, aggregation, data transmission) can
be dynamically discovered, created, activated, scheduled and
controlled by the coordinator on each sensor node in order to
fulfill a goal-directed overall task of the distributed system
implemented by the network of sensor nodes. Dynamic
distribution of tasks allows – among the others – preprocessing
of sensed data directly on the node, a significant reduction of
data transmission and battery consumption, and an overall
increase of the network lifetime. Different tasks can be
assigned to each node and tasks can be controlled at execution
time via proper message exchange; in this way the network can
overall adapt to changes in context, overall goals, state of each
single node, and it can better balance load and task types
between each element of the network. Such a task-oriented
model enables a holistic approach where the WBSN capability
becomes higher than the sum of the capabilities of each
element.

The novelty of this paper is the discussion of how such a
model was implemented in resource-constrained environments,
and what architecture and approach was selected in order to
achieve platform independency and provide high level
programming abstractions that reduce time-to-market for tiny
environments.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3233

II. PLATFORM-INDEPENDENT DEVELOPMENT OF WSN
APPLICATIONS

To develop platform-independent WSN applications several
approaches, defined for platform-independent software
development in conventional distributed platforms, can be
effectively adopted, as described in the followings.

Model-driven Development (MDD). MDD is an approach
which provides a set of guidelines for structuring specifications
expressed as models and, then, translating such models into
platform-dependent code [8]. In particular, MDD defines
system functionality using a platform-independent model
(PIM) through an appropriate domain-specific language (DSL);
then, given a platform definition model (PDM) corresponding
to CORBA, .NET, the Web, etc., the PIM is transformed into
one or more platform-specific models (PSMs) that computers
can run. The PSM may use different DSLs, or a general
purpose language like Java, C#, PHP, Python, etc. Moreover,
automated tools generally perform this transformation. In [9],
an MDD framework to manage the complexity of application
development for WSNs is proposed. This framework consists
of a UML profile for WSN applications and a UML virtual
machine, named Matilda. The proposed UML profile abstracts
the low-level details of WSNs and provides higher abstractions
for application developers to graphically design and maintain
their applications. Matilda is a runtime engine used to design,
validate, deploy and execute WSN applications consistently at
the modeling layer. In [10], it is argued that current software
development of wireless sensor networks not only imposes
much work on low-level programmers but also prevents
domain experts from directly contributing parts of the software.
The proposed solution is based on the exploitation of domain-
specific languages which are inexpensive to define, have a
syntax that domain experts understand, and creating
simulations for them is easy. An application modeled through a
domain-specific language could be translated into (low-level)
platform-dependent code or into bytecode for a virtual machine
(see VM approach below). Finally in [11], a framework based
on Simulink, Stateflow and Embedded Coder which follows
the MDD approach is presented. By using such framework, an
engineer can create sensor network components (both at the
application and at the protocol level) that can be used as
building blocks to model, simulate and automatically generate
code for different underlying platforms and operating systems
(TinyOS and MantisOS).

Virtual Machine (VM). A VM runs as a normal application
inside an OS. Its purpose is to provide a platform-independent
programming environment that abstracts away details of the
underlying hardware or operating system, and allows a
program to execute in the same way on any platform. Several
efforts have been devoted to the definition of VMs for the
programming of WSN application (Matè, Deluge, SOS, Agilla,
etc). In particular, Maté [12] is a byte code interpreter (VM)
running on TinyOS, that provides safe program execution
environments, runtime re-programming, and an event-driven
stack-based architecture. Applications running in Maté use
instructions that are interpreted by virtual processors
programmed onto network nodes. The performance penalty of
the interpretation of the instructions can be alleviated by adding
application-specific instructions to the virtual machine. Maté

also supports dynamic reconfigurability of nodes through code
diffusion.

Software Layering (SL). Software layering has been largely
used for the development of communication protocol suites to
hide network heterogeneity; TCP/IP is the most notable
example. Therefore to hide heterogeneity of different sensor
platforms a basic software layer (or core framework), which
provides basic functionality, is defined for a set of sensor
platforms based on a similar programming language and
adapted to each different sensor platform through platform
specific modules. Code development is carried out through
such common programming language according to the defined
core framework. In the context of WSNs, this approach is still
scarcely used; however, due to its specific characteristics, it is
adopted for the definition of SPINE2 (see next section)

III. SPINE2
SPINE (Signal Processing in Node Environment) [3, 13] is

a software framework for the design of collaborative Wireless
Body Sensor Network (WBSN) applications. It provides
programming abstractions, APIs and libraries of protocols,
utilities and data processing functions which simplify
development of distributed signal processing algorithms for the
analysis and the classification of sensor data. SPINE 1.0 was
developed in the TinyOS environment (node side) and in Java
language (server side); it is distributed [14] in Open Source
under the LGPL license to facilitate establishing a broad
community of users and developers that contribute to the
scientific evolution of the framework with new capabilities and
applications. The latest release is SPINE 1.2 that, on the node
side, supports different kinds of hardware platforms running
the TinyOS operating system.

The subject of this paper is the new on-going developments
to release version 2 of SPINE which aims to become
independent on the low level details and operating systems of
the used sensor platform. In order to fulfill this goal, each of
the approaches introduced in section 2 might be used.

According to the MDD approach (see Fig. 1) platform
independent models developed through the SPINE language,
defined as a DSL, are translated into platform specific code
through platform specific translators. Although this approach is
very flexible and effective for platform-independent software
development, a major problem is that automatic translation
may introduce overhead in terms of generated code size and
execution speed.

According to the VM approach (see Fig. 2) a SPINE VM
programmable through a SPINE programming language should
be defined and implemented for each sensor platform to be
used. Although this approach is effective for providing
platform independence, the deployment of a VM on node able
to execute the SPINE language can be very expensive in terms
of execution speed and used resources (e.g. memory).

According to the SL approach (see Fig. 3) a SPINE core
framework is defined through a language used by the majority
of sensor platform and, then, adapted to such different
platforms through platform specific software modules. With
this approach the core framework can be accurately defined

3234

and implemented and kept highly efficient. However it fits only
sensor platforms programmed through compatible languages.

SPINE
LANGUAGE

SPINE
MODELS

TinyOS
Translator

EmberZNet
Translator

Z-Stack
Translator

TinyOS
(TelosB, MicaZ)

EmberZNet
(ST MotionBee)

Z-Stack
(TI Z-Stack)

Figure 1. SPINE2 based on the MDD approach.

SPINE VM LANGUAGE

TinyOS
Porting Interface

SPINE PROGRAMS

SPINE VM

EmberZNet
Porting Interface

Z-Stack
Porting Interface

TinyOS
(TelosB, MicaZ)

EmberZNet
(ST MotionBee)

Z-Stack
(TI Z-Stack)

Figure 2. SPINE2 based on the VM approach.

SPINE LANGUAGE (C-Language)

TinyOS
Adaptation
Modules

SPINE PROGRAMS

SPINE CORE FRAMEWORK

TinyOS
(TelosB, MicaZ)

EmberZNet
(ST MotionBee)

Z-Stack
(TI Z-Stack)

EmberZNet
Adaptation
Modules

Z-Stack
Adaptation
Modules

Figure 3. SPINE2 based on the SL approach.

Considered that our requirements were the followings:

• execution on commercial resource-constrained sensor
platforms, such as TinyOS [5], Ember [6] or Texas [7],
each one having a different operating system;

• minimization of the amount of code that should be
replicated for each specific implementation;

• enabling C-developers (eventually C++) to extend the
SPINE framework without having to learn low-level
details of specific sensor platforms or without having to
learn new programming languages, such as nesC [5];

• enabling compiling and simulating the code by using
normal ANSI C tools;

we selected the SL approach founded on the C language, which
is the language used by the sensor platforms we selected and,
as a matter of fact, by the majority of resource-constrained
environments. In the next three subsections the programming
model, the architecture and the communication protocol of
SPINE2 are described.

A. Programming Model
In SPINE2 a task-oriented programming model was

implemented on the nodes in order to best fit the requirements
of collaborative distributed applications in a resource-
constrained environment: an agent is executed on each sensor
node that – via proper message exchange – can discover,
create, activate, schedule and control tasks. Distributed and
collaborative applications can then be programmed as a
dynamically schedulable and reconfigurable set of tasks.
Different tasks can be assigned to each node of the network and
tasks can be controlled at execution time via proper message
exchange; in this way the network can overall adapt to changes
in context, in overall goals, in the state of each single node, and
it can better balance load and task types between each element
of the network. Dynamic distribution of tasks allows – among
the others – preprocessing of sensed data directly on the node, a
significant reduction of data transmission and battery
consumption, and an overall increase of the network lifetime.

Application developers do not need to program in tiny
environments. A SPINE agent is installed on each node that
allows interacting with the base station for the task assignment
and control. An application is simply a recipe listing the set of
tasks to be assigned to each node; the recipe can be executed
via the Java API of the base station and, via the same API, the
recipe can also be changed at execution time in order to
implement different states and intentions of the system.

So far, the following types of tasks have been implemented:

• SensingTask, which allows defining a sensing operation on a
given sensor. The sensing operation can be one-shot or
periodic.

• TimingTask, which allows defining timers for timing other
tasks. Timers can be one shot or periodic.

• FunctionalTask, which refers to the functional tasks defined
through programming:

o ProcessingTask, which allows to elaborate data. A specific
type of processing is the feature extraction (or simply
feature), a data processing algorithm which is carried out
on a set of values that can be taken from a data buffer of
the BufferPool.

o AggregationTask, which allows aggregating data
calculated by different functions.

o TransmissionTask, which allows transmitting data
produced by sensing, processing and/or aggregation tasks.

An example of task-oriented programming is shown in Fig.
4 by means of a data-flow-based model. In this example, the
sensed data generated by the Sensing task (by acquiring data
from a 3-axis accelerometer) are fed to the Split task that, in
turn, splits the data for the computation of three features. Each

3235

feature is implemented as a Task and fed with different data:
the Mean task uses data from all three axes (XYZ), the Min and
Max tasks uses data from the X axis. Each triple of computed
features (<Mean(AccXYZ), Min(AccX), Max(AccX)>) are
aggregated by the Aggregation task (Aggr) and sent to the
destination node by the data transmission task (Sender). The
reader can easily guess the variety of complex tasks which can
be created by using such a task composition formalism.

Accelerometer
Sensing Split

Mean

Min

Max

Acc (XYZ)

Acc (XYZ)

Acc (XYZ)

Aggr Sender

<Max(AccX),
Min(AccX),

Mean(AccXYZ)>

Figure 4. Data-flow-based model.

The SPINE task-oriented programming model is not data-
flow driven but event-driven. Thus, the data-flow model of Fig.
4, which can be seen as a model at a higher-level of abstraction,
can be defined according to the event-driven model of SPINE2
as in Fig. 5. In particular, data, which are sensed by the Sensing
task driven by a Timer1 set to a given sampling rate, are stored
into decoupling buffers for the three axes channels (AccX,
AccY, AccZ). Buffers are managed by the BufferPoolManager
component which is based on the event-based publish subscribe
paradigm. It accepts subscriptions coming from the
FunctionTasks and as soon as events related to such
subscriptions occur, it notifies, through the AcqNotify, the
FunctionTask subscriber which, in turn, can fetch the data
which it is interested in. In the proposed example, the
ProcessingTasks are notified by the BufferPoolManager when
S sensed data samples have been acquired; where S is the shift
parameter of the ProcessingTasks which compute their function
on a sample window (W) equals to n*S samples. The processed
data are passed to the AggregrationTask (Aggr) which, after
aggregation, passes them to the TransmissionTask (Sender). In
Fig. 6 a timer-driven model of the same example is shown. It
simplifies the architecture supporting SPINE2 models by
avoiding the introduction of the BufferPoolManager active
component. In particular, the FunctionTasks are not driven by
events sent by the BufferManagerPool but by timers appositely
set upon the timer driving the SensingTask. Timer2, Timer3,
and Timer4 are therefore set to S*Timer1. Moreover, also the
Aggr&SendTask (a task which jointly aggregates and
transmits) is timer driven. Timer5=Timer2+0.1*Timer2.

Mean

Min

Max

Timer1

getAcc(X)

Aggr Sender

AccX

AccY

AccZ
Acceleromet er
Sensing

BufferPool Manager
(notifier)

<Max(AccX),
Min(AccX),

Mean(AccXYZ)>

AcqN ot if y

AcqNot if y

AcqNot if y
getAcc(X)

getAcc(XYZ)

Figure 5. Event-driven SPINE2-based model.

Mean

Min

Max

Timer1

getAcc(X)

Aggr&Send

AccX
AccY

AccZAccelerometer
Sensing

BufferPool

<Max(AccX) ,
Min(AccX),

Mean(AccXYZ)>

getAcc(X)

getAcc(XYZ)

Timer2

Timer4
Timer3Ti m er2=Tim er3=Tim er4=S*Tim e r1

Ti m er5=Tim er2+0.1*Tim er2

Timer5

AggrBuffer

getAggr()

Figure 6. Timer-driven SPINE2-based model.

B. A Timer-driven Architecture

The timer-driven architecture of SPINE2 (Fig. 7) consists
of a SPINE core framework which is to be adapted to platform-
specific components (sensor drivers, application lifecycle,
timers, communication). The SPINE core framework currently
implements the task execution logics according to the timer-
driven programming model.

SPINEApplication

+init()
+handleIncomingMessage(message)
+handleFiredTask(activeTask)

TimedTaskSheduler

TaskDescriptionPool

BufferPool

SPINEBoot

SensorManager

SensorList

SyncSensor

0..*
FunctionManager

Function

0..*

CommManager

MessageHandler

FunctionList

Platform Specific Platform Independent

AsyncSensor

0..*

RadioController

MessagePacketizer

AggBuffer

Figure 7. The SPINE2 component diagram.

The platform-independent components of the SPINE2
framework are:

• The SPINEApplication is the core component of a SPINE2
application. It reacts to external events, like messages, and
to internal events. It provides three functions:
o init for application initialization;
o handleIncomingMessage for handling an incoming

network message;
o handleFiredTask for handling fired tasks.

• The TaskDescriptionPool component is a dynamic list of
the tasks created in the node.

3236

• The BufferPool component consists of a set of data buffer
needed to store data produced by sensing tasks and
aggregate data computed by functions.

• The FunctionManager component, which acts as a
Dispatcher managing the available list of functions
(FunctionList), is called by the SPINEApplication to
execute ProcessingTasks, AggregationTasks and
TransmissionTasks.

• The AggrBuffer component, which allows to temporary
store computed features for aggregating them.

• The SensorManager component is connected to platform
specific components, which are specific drivers for the
Sensors components. The SensorManager manages a list
of sensors (SensorList) which can be of synchronous and
asynchronous type. While SynchronousSensors are read
through a synchronous primitive, AsynchronousSensors
are based on (i) an asynchronous primitive for requesting a
sensor read and (ii) the related notification of the read
value, which is done by the sensor driver, when data is
available, so that the sensor manager can fetch it.

• The MessageHandler component contains the handling
code of the SPINE2 protocol packets.

• The MessagePacketizer component allows building
packets according to the SPINE2 protocol.

The aforementioned platform-dependent components are to
be appositely adapted to the following platform-dependent
components which drive their execution:
• The SPINEBoot component is the application entry-point

which provides the application lifecycle. It contains
platform specific initializations and wirings, and drives the
SPINEApplication by calling its init() method.

• The TimedTaskScheduler component manages timed tasks
by using platform-specific timers.

• The AsyncSensor/SyncSensor components are the sensor
drivers, which can be synchronous or asynchronous,
through which real sensors can be accessed.

• The CommManager component contains the platform-
specific radio communication logic. CommManager can
receive messages from the RadioController and pass them
to the SPINEApplication through the
handleIncomingMessage method which uses the
MessageHandler component. In particular, the
RadioController allows to handle the sensor radio for
receiving and transmitting packets and for putting the radio
in stand-by for energy saving.

The SPINE 1.2 communication protocol which enables
communication between the base station and the sensor node is
function-oriented. As the programming model of SPINE 2.0 is
task oriented, the SPINE2 communication protocol was re-
designed. Nevertheless, to maintain backward compatibility, a
SPINE1.2/SPINE2 software communication bridge was also
implemented. The SPINE2 communication protocol is task-
oriented and, in particular, provides the following packet types:

• createTask, which allows to create a task with the
associated parameters;

• startTask, which starts a created task or restart a
paused task;

• pauseTask, which pauses a started task;
• updateTask, which reconfigures a paused task;
• deleteTask, which stops and/or cancel a task;
• getTasksDescription, which returns the list of the

created tasks of the node and their status;
• startNode, which starts all the tasks created on the

node;
• getNodeConfiguration, which returns the

configuration of the node in terms of available
sensors, functions and tasks;

• data, which contains data sent from the node to the
coordinator.

IV. IMPLEMENTATION STATUS
SPINE2.0 architecture as described in Figure 7 easily

allows supporting different platforms since the platform
specific components are well defined. The parts to be
implemented include the application lifecycle, the
communication part, the timer related stuff and the low level
access, that are all the OS specific parts as previously
described. SPINE2.0 currently supports two software sensor
platforms, TinyOS2.1 and Texas Instruments Z-Stack1.2.

Although these platforms are all based on a C-like
programming language, they differ not only in terms of
operating systems but also in terms of programming
abstractions and communication protocols.

While TinyOS was designed as a general purpose open
source operating system for wireless sensor networks, Texas
Instrument Z-Stack is a software platform certified to be
ZigBee compliant. On the other hand, while being more
flexible in terms of applications and modules to be inserted,
TinyOS brings another complexity due to the programming
paradigm and language. Therefore such two platforms are very
good candidates for evaluating the flexibility of the SPINE2.0
architecture.

Z-Stack environment defines not only an operating system
but also standard related logics that must be preserved to
maintain the standard compliance. ZigBee standard [15]
defines not only the low level communication layers (IEEE
802.15.4 as MAC protocol, ZigBee network, management and
security layers) and standard application profiles (such as the
Home Automation one) but also basic rules to be followed
when building a proprietary profile.

As an application level framework, SPINE2.0 on TinyOS
has been implemented as an application module whereas on the
Z-Stack platform has been designed to be a proprietary ZigBee
profile with respect to all the ZigBee related rules.

In particular, the parts to be added into the different
platforms are the followings:

• SPINEBoot takes care of the system initialization:
- in the Z-Stack it defines all the ZigBee standard

descriptors as well as sets up the ZigBee communication part;
- in TinyOS this is simply the application entry point
from where the TinyOS application is compiled and
started and does not include any logic rather than the
SPINE related one.

3237

• CommManager/RadioController takes care of all the
communication related operations:

- in the Z-Stack this part takes care of the
communication through primitives defined by the standard
for the application protocol data units transport between
peer application entities (ZigBee APS Data Service).

- in TinyOS it uses send/receive low level APIs for
communicating with other devices in the network.
• TimedTaskScheduler schedules the timed tasks

created in the sensor node:
- in the Z-Stack implementation this part takes care of all
the timed event through an extensive usage of the utilities
provided by the Z-Stack OS (OSAL, Operating System
Abstraction Layer) such as task allocation, timer settings
and so on. It is important to notice that SPINE2.0 task
oriented architecture run without any modification even
into a task oriented OS as the OSAL is;
- the timer interface already defined in the OS is used in the
TinyOS version to manage timer related events
• Sensor drivers which are platform specific since they

have to access to low level functionalities.
Moreover each platform will need specific configuration

files setting all the tunable parameters.
The Timer-driven SPINE2.0 release has been successfully

implemented and tested on both mentioned platforms. In the
following we elucidate the structure and programming of the
available tasks.

A timed task is defined as a C-struct as follows:
typedef struct timedTaskDescriptor{
 unsigned char taskID;
 unsigned char taskType;
 unsigned char status;
 unsigned long timer;
 unsigned char timerScale;
 unsigned char isPeriodic;
 unsigned char parameters[TASK_PARAMETER_LENGTH];
} timedTaskDescriptor;

where, taskID is the unique task identifier, taskType is the type
of task, status holds information about the task status (created,
active, paused), timer contains the task firing time, timerScale
contains the measurement unit of the timer, isPeriodic signals
if the timed task is periodic or one-shot, and parameters
contains parameters specific to the taskType.

The currently available taskTypes are sensing, feature
extraction, and aggregation & sending:
enum taskTypes{
 TASKTYPE_FEATURE_EXTRACTION = 0x01,
 TASKTYPE_SENSING = 0x02,
 TASKTYPE_AGGR_AND_SEND = 0x03
};

In particular the parameters of task types are defined as
follows:
enum sensing_TaskType{
 SENS_SENSOR_ID = 0, //id of the sensor
 SENS_CHANNEL_BITMASK = 1,//bitmask for Ch selection
 SENS_BUFFER_ID_1 = 2, //buffer associated to Ch1
 SENS_BUFFER_ID_2 = 3, //buffer associated to Ch2
 SENS_BUFFER_ID_3 = 4, //buffer associated to Ch3
 SENS_BUFFER_ID_4 = 5 //buffer associated to Ch4
};

enum feature_extraction_TaskType{
 FEX_FEATURE = 0, //id of the feature
 FEX_CHANNEL_BITMASK = 1,//bitmask for Ch selection
 FEX_WINDOW = 2, //data window
 FEX_BUFFER_ID_1 = 3, //buffer associated to Ch1
 FEX_BUFFER_ID_2 = 4, //buffer associated to Ch2
 FEX_BUFFER_ID_3 = 5, //buffer associated to Ch3
 FEX_BUFFER_ID_4 = 6, //buffer associated to Ch4
 FEX_SENSOR_ID = 7, //id of the sensed sensor
 FEX_AGGR_ID = 8 //id of the aggr&send task
};

enum aggregation_and_sending_TaskType{
 AGG_ID = 0, //id of the aggr&send task
 AGG_FEATURES_TO_WAIT_FOR = 1, // aggr feature number
 AGG_TIMER = 2, //reference aggr timer
 AGG_DEF_COUNTER = 6 //number of aggr trials
}

The example of Fig. 6 is implemented and successfully
tested on TelosB motes [16] and TI ZStack sensor nodes both
equipped with specific 3-axial accelerometer sensor boards. In
particular the defined timed tasks (sensing from accelerometer,
calculation of mean, and aggregation and sending) are the
following:

• TASKTYPE_SENSING
(sensTask)->taskID = 1
(sensTask)->taskType = TASKTYPE_SENSING
(sensTask)->timer = 25
(sensTask)->timerScale = 1 //ms
(sensTask)->isPeriodic = 1 //true
(sensTask)->parameters[ACQ_SENSOR_ID]=1 //accelerometer
(sensTask)->parameters[ACQ_CHANNEL_BITMASK]=e//Ch XYZ
(sensTask)->parameters[ACQ_BUFFER_ID_1] = 0
(sensTask)->parameters[ACQ_BUFFER_ID_2] = 1
(sensTask)->parameters[ACQ_BUFFER_ID_3] = 2

• TASKTYPE_FEATURE_EXTRACTION_1
(featExtTask)->taskID = 2
(featExtTask)->taskType = TASKTYPE_FEATURE_EXTRACTION
(featExtTask)->timer = 1000 //40 samples
(featExtTask)->timerScale = 1
(featExtTask)->isPeriodic = 1
(featExtTask)->parameters[FEX_FEATURE] = 5 //MEAN
(featExtTask)->parameters[FEX_CHANNEL_BITMASK] = e
(featExtTask)->parameters[FEX_WINDOW] = 80
(featExtTask)->parameters[FEX_BUFFER_ID_1] = 0
(featExtTask)->parameters[FEX_BUFFER_ID_2] = 1
(featExtTask)->parameters[FEX_BUFFER_ID_3] = 2
(featExtTask)->parameters[FEX_SENSOR_ID] = 1
(featExtTask)->parameters[FEX_AGGR_ID]=1

• TASKTYPE_AGGR_AND_SEND
(aggrSendTask)->taskID = 5;
(aggrSendTask)->taskType = TASKTYPE_AGGR_AND_SEND;
(aggrSendTask)->timer = 1100;
(aggrSendTask)->timerScale = TIMER_SCALE_MSEC;
(aggrSendTask)->isPeriodic = FALSE;
(aggrSendTask)->parameters[AGG_ID] = 1;
(aggrSendTask)->parameters[AGG_FEATURES_TO_WAIT_FOR]=3;
(aggrSendTask)->parameters[AGG_TIMER] = 1000;
(aggrSendTask)->parameters[AGG_DEF_COUNTER] = 0;

Tasks can be created and started either by explicit node
programming or by the base station through the SPINE2
protocol.

To experiment with SPINE2, the sensor-node side
application presented in [3], which allows the activity
monitoring of individuals (standing, lying, walking and
sitting), is now based on sensor nodes supported by SPINE2.0.

Experimentation with SPINE2 was also carried out to
demonstrate that the platform independency of SPINE2 does
not introduce performance penalties with respect to SPINE1.2.

3238

To this purpose, an evaluation of the data processing
performances of the TinyOS versions of SPINE1.2 and
SPINE2 on the TMote SKY TelosB sensor platform [16] has
been carried out. The performance evaluation results are
reported in Table I. In particular, selected features (max, mean,
standard deviation, vector magnitude, pitch & roll, and
entropy) were computed on different sample sizes (50, 100,
200) acquired from a 3-axial accelerometer sensor board. As
can be noted, SPINE2 feature processing performances are
higher than those computed with SPINE1.2. This performance
improvement is mainly due to the different methods of calling
processing functions in SPINE1.2 and SPINE2: in SPINE1.2 a
processing function is executed by means of a call to a nesC
command whereas in SPINE2 a simple call to a C function of
an included file is done.

TABLE I. COMPARISON OF FEATURE PROCESSING TIMES (MS) THROUGH
SPINE1.2 AND SPINE2 IN TINYOS ON TELOSB SENSOR NODES

SPINE1.2 SPINE2 SPINE1.2 SPINE2 SPINE1.2 SPINE2

MAX 0,488 0,488 0,883 0,886 1,696 1,679

MEAN 1,069 1,038 1,627 1,556 2,714 2,625

STANDARD
DEVIATION

10,070 7,450 16,703 13,823 28,617 26,054

VECTOR
MAGNITUDE

2,136 1,741 3,126 2,501 4,564 3,997

PITCH & ROLL 17,894 16,967 18,401 17,428 19,461 18,552

ENTROPY 239,291 235,848 488,185 481,167 1016,392 1001,735

50 samples 100 samples 200 samples

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented SPINE2 a domain-specific
framework for the platform-independent development of
collaborative WBSN applications. SPINE2 consists of two
parts: (i) the core which is written in C and is independent from
any C-like sensor platform on which it can be ported on; (ii) a
set of platform-dependent components (sensors,
communications, timers, application lifecycle) through which
the core can be easily adapted. The task-oriented programming
model of SPINE2 enables a flexible development of WBSN
applications in terms of a star-based network of collaborative
and dynamically reconfigurable tasks which concur to carry out
an overall distributed task. SPINE2 (specifically the timer-
driven architecture) is currently implemented for TinyOS
sensor platforms (in particular for TelosB motes) and ZStack
Zigbee sensor nodes, and was successfully applied to the
realization of a multi-platform WBSN application for activity
monitoring of individuals. Moreover, SPINE2 does not only
introduce performance penalties but also increases
performances of feature calculation with respect to SPINE1.2.
On-going work is geared at (i) completing the implementation
of SPINE2 for the Ember sensor platform and designing a
version for ContikiOS; (ii) designing and implementing a
flexible event-based architecture for SPINE2, and (iii)

extending SPINE2 for more general collaborative WSN
applications (not only centered on star-based networks).

ACKNOWLEDGMENTS

Authors wish to thank Luigi Buondonno and Antonio
Giordano for the implementation of SPINE2 on ZStack,
Mostafiz Rahman Mozumdar for the on-going implementation
of SPINE2 on Ember, and Raffaele Gravina and Marco Sgroi
for useful suggestions about the SPINE2 project. This work has
been partially supported by CONET, the Cooperating Objects
Network of Excellence, funded by the European Commission
under FP7 with contract number FP7-2007-2-224053.

REFERENCES

[1] O. Gama, C. Figueiredo, P. Carvalho, P. M. Mendes, “Towards a
Reconfigurable Wireless Sensor Network for Biomedical Applications,”
IEEE International Conference on Sensor Technologies and Applications
(SensorComm), Valencia (Spain), 2007.

[2] V. Shnayder, B. Chen, K. Lorincz, T.R.F. Fulford-Jones, and M. Welsh,
“Sensor networks for medical care”, Technical Report TR-08-05,
Division of Engineering and Applied Sciences, Harvard University,
2005.

[3] R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemine, R. Giannantonio,
M. Sgroi, “Development of body sensor network applications using
SPINE,” In Proc. of. IEEE International Conference on Systems, Man,
and Cybernetics (SMC 2008), Singapore, Oct. 12-15, 2008.

[4] C. Lombriser, N.B. Bharatula, D. Roggen, “On-body activity recognition
in a dynamic sensor network”, In Proc. of 2nd Int. Conference on Body
Area Networks (BodyNets 2007), Florence, Italy, June 11-13 2007.

[5] TinyOS Web Site. http://www.tinyos.net
[6] Ember Web Site. http://www.ember.com
[7] ZStack website.http://focus.ti.com/docs/toolsw/folders/print/z-stack.html
[8] B. Selic, "The Pragmatics of Model-Driven Development," IEEE

Software, vol. 20, no. 5, pp. 19-25, Sep./Oct. 2003.
[9] H. Wada, P. Boonma, J. Suzuki, and K. Oba, "Modeling and executing

adaptive sensor network applications with the Matilda UML Virtual
Machine," In Proc. of the 11th IASTED International Conference on
Software Engineering and Applications (SEA), Cambridge, MA,
November 2007.

[10] D. A. Sadilek, “Prototyping domain-specific languages for wireless
sensor networks,” In Proc. of the 4th International Workshop on
Software Language Engineering, 2007.

[11] M. M. Rahman Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, S.
Olivieri, “A framework for modeling, simulation and automatic code
generation of sensor network applications,” In Proc. of the 5th Annual
IEEE Communications Society Conference on Sensor, Mesh, and Ad
Hoc Communications and Networks, San Francisco (CA), USA, 2008.

[12] P. Levis and D. Culler, “Mate: a Virtual Machine for Tiny Networked
Sensors,” In Proc. of ASPLOS, Dec 2002.

[13] S. Iyengar, F. Tempia Bonda, R. Gravina, A. Guerrieri, G. Fortino, A.
Sangiovanni-Vincentelli, “A framework for creating healthcare
monitoring applications using wireless body sensor networks”, In the
Proc. of the 3rd International Conference on Body Area Networks
(BodyNets’08), Tempe (AZ), USA, Mar. 13-15, 2008.

[14] SPINE documents and software. http://spine.tilab.com
[15] ZigBee Alliance. http://www.zigbee.org/
[16] Tmote SKY TelosB. http://www.sentilla.com/moteiv-transition.html

3239

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

