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Abstract—Rapid development of Wireless Body Sensor 
Network (WBSN) applications can be enabled by suitable 
domain-specific frameworks which are usually organized in two 
parts: a base-station-side (or coordinator) and a sensor-node-side. 
While the former can be based on the Java language so being 
highly portable, the latter is usually highly dependent on the 
exploited sensor platform. Available state of the art frameworks 
follow such an organization and, in particular, the current 
version of SPINE is based on TinyOS and can be only used to 
effectively develop collaborative WBSN applications for TinyOS-
based sensor platforms. To develop SPINE-based applications for 
new sensor platforms, the SPINE framework should be re-
implemented for each new sensor platform to be exploited. This 
not only increases development efforts but also enforces SPINE-
oriented developers to become skilled on the low-level 
programming abstractions provided by a new employed sensor 
platform. In this paper we discuss issues related to platform-
independent development of collaborative WBSN applications 
and, specifically, describe the requirements, architecture and first 
implementation experiences of SPINE2 which aims at reaching a 
very high platform independency and raising the level of the used 
programming abstractions by providing a task-oriented 
programming model. The paper also discusses how such a task-
oriented model enables dynamic task assignment and holistic 
collaborative task execution also for resource-constrained 
environments such as tiny sensor nodes. 

Keywords—Wireless body sensor networks, software 
development methodology, task-oriented programming. 

I. INTRODUCTION

Wireless body sensor networks (WBSNs) have great 
potential to enable a broad variety of assisted living 
applications such as health and activity monitoring, and 
emergency detection. It is therefore important to provide design 
methodologies and programming frameworks which enables 
rapid prototyping of collaborative WBSN applications [1]. 
Although several effective application development 
frameworks already exist for WBSNs based on specific sensor 
platforms (e.g. CodeBlue [2], SPINE [3], Titan [4]), effective 
methods for platform-independent development of WBSN 
applications which would enable rapid development of multi-
platform applications and fast application porting from one 
platform to another, are still missing or in their infancy. In fact, 
the aforementioned frameworks can be only used to effectively 
develop WBSN applications for TinyOS-based sensor 
platforms. Thus, to develop applications for new sensor 

platforms, such frameworks should be implemented for each 
new sensor platform to be exploited. This not only increases 
development efforts but also enforces developers to become 
skilled on the low-level programming abstractions provided by 
a new employed sensor platform. 

In this paper we first categorize and discuss interesting 
approaches which can effectively support platform-independent 
development of WSN applications (see section 2); then (in 
section 3 and 4), we present the current efforts (design and 
current implementation status) towards the definition of 
SPINE2, an evolution of the SPINE (Signal Processing In-
Node Environment) framework [3] based on the C-language, 
which aims at supporting the development of platform-
independent assisted living applications. The goal is to reach a 
very high platform independency for C-like programmable 
sensor platforms (e.g. TinyOS [5], Ember [6], ZStack [7]) and 
raise the level of the provided programming abstractions from 
platform-specific to platform-independent.  

SPINE2 offers a task-oriented model for programming the 
sensor nodes of a collaborative WBSN. In particular tasks (e.g. 
sensing, feature extraction, aggregation, data transmission) can 
be dynamically discovered, created, activated, scheduled and 
controlled by the coordinator on each sensor node in order to 
fulfill a goal-directed overall task of the distributed system 
implemented by the network of sensor nodes. Dynamic 
distribution of tasks allows – among the others – preprocessing 
of sensed data directly on the node, a significant reduction of 
data transmission and battery consumption, and an overall 
increase of the network lifetime. Different tasks can be 
assigned to each node and tasks can be controlled at execution 
time via proper message exchange; in this way the network can 
overall adapt to changes in context, overall goals, state of each 
single node, and it can better balance load and task types 
between each element of the network. Such a task-oriented 
model enables a holistic approach where the WBSN capability 
becomes higher than the sum of the capabilities of each 
element.  

The novelty of this paper is the discussion of how such a 
model was implemented in resource-constrained environments, 
and what architecture and approach was selected in order to 
achieve platform independency and provide high level 
programming abstractions that reduce time-to-market for tiny 
environments. 

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3233



II. PLATFORM-INDEPENDENT DEVELOPMENT OF WSN
APPLICATIONS

To develop platform-independent WSN applications several 
approaches, defined for platform-independent software 
development in conventional distributed platforms, can be 
effectively adopted, as described in the followings. 

Model-driven Development (MDD). MDD is an approach 
which provides a set of guidelines for structuring specifications 
expressed as models and, then, translating such models into 
platform-dependent code [8]. In particular, MDD defines 
system functionality using a platform-independent model 
(PIM) through an appropriate domain-specific language (DSL); 
then, given a platform definition model (PDM) corresponding 
to CORBA, .NET, the Web, etc., the PIM is transformed into 
one or more platform-specific models (PSMs) that computers 
can run. The PSM may use different DSLs, or a general 
purpose language like Java, C#, PHP, Python, etc. Moreover, 
automated tools generally perform this transformation. In [9], 
an MDD framework to manage the complexity of application 
development for WSNs is proposed. This framework consists 
of a UML profile for WSN applications and a UML virtual 
machine, named Matilda. The proposed UML profile abstracts 
the low-level details of WSNs and provides higher abstractions 
for application developers to graphically design and maintain 
their applications. Matilda is a runtime engine used to design, 
validate, deploy and execute WSN applications consistently at 
the modeling layer. In [10], it is argued that current software 
development of wireless sensor networks not only imposes 
much work on low-level programmers but also prevents 
domain experts from directly contributing parts of the software. 
The proposed solution is based on the exploitation of domain-
specific languages which are inexpensive to define, have a 
syntax that domain experts understand, and creating 
simulations for them is easy. An application modeled through a 
domain-specific language could be translated into (low-level) 
platform-dependent code or into bytecode for a virtual machine 
(see VM approach below). Finally in [11], a framework based 
on Simulink, Stateflow and Embedded Coder which follows 
the MDD approach is presented. By using such framework, an 
engineer can create sensor network components (both at the 
application and at the protocol level) that can be used as 
building blocks to model, simulate and automatically generate 
code for different underlying platforms and operating systems 
(TinyOS and MantisOS). 

Virtual Machine (VM). A VM runs as a normal application 
inside an OS. Its purpose is to provide a platform-independent 
programming environment that abstracts away details of the 
underlying hardware or operating system, and allows a 
program to execute in the same way on any platform. Several 
efforts have been devoted to the definition of VMs for the 
programming of WSN application (Matè, Deluge, SOS, Agilla, 
etc). In particular, Maté [12] is a byte code interpreter (VM) 
running on TinyOS, that provides safe program execution 
environments, runtime re-programming, and an event-driven 
stack-based architecture. Applications running in Maté use 
instructions that are interpreted by virtual processors 
programmed onto network nodes. The performance penalty of 
the interpretation of the instructions can be alleviated by adding 
application-specific instructions to the virtual machine. Maté 

also supports dynamic reconfigurability of nodes through code 
diffusion. 

Software Layering (SL). Software layering has been largely 
used for the development of communication protocol suites to 
hide network heterogeneity; TCP/IP is the most notable 
example. Therefore to hide heterogeneity of different sensor 
platforms a basic software layer (or core framework), which 
provides basic functionality, is defined for a set of sensor 
platforms based on a similar programming language and 
adapted to each different sensor platform through platform 
specific modules. Code development is carried out through 
such common programming language according to the defined 
core framework. In the context of WSNs, this approach is still 
scarcely used; however, due to its specific characteristics, it is 
adopted for the definition of SPINE2 (see next section) 

III. SPINE2 
SPINE (Signal Processing in Node Environment) [3, 13] is 

a software framework for the design of collaborative Wireless 
Body Sensor Network (WBSN) applications. It provides 
programming abstractions, APIs and libraries of protocols, 
utilities and data processing functions which simplify 
development of distributed signal processing algorithms for the 
analysis and the classification of sensor data. SPINE 1.0 was 
developed in the TinyOS environment (node side) and in Java 
language (server side); it is distributed [14] in Open Source 
under the LGPL license to facilitate establishing a broad 
community of users and developers that contribute to the 
scientific evolution of the framework with new capabilities and 
applications. The latest release is SPINE 1.2 that, on the node 
side, supports different kinds of hardware platforms running 
the TinyOS operating system. 

The subject of this paper is the new on-going developments 
to release version 2 of SPINE which aims to become 
independent on the low level details and operating systems of 
the used sensor platform.  In order to fulfill this goal, each of 
the approaches introduced in section 2 might be used. 

According to the MDD approach (see Fig. 1) platform 
independent models developed through the SPINE language, 
defined as a DSL, are translated into platform specific code 
through platform specific translators. Although this approach is 
very flexible and effective for platform-independent software 
development, a major problem is that automatic translation 
may introduce overhead in terms of generated code size and 
execution speed.  

According to the VM approach (see Fig. 2) a SPINE VM 
programmable through a SPINE programming language should 
be defined and implemented for each sensor platform to be 
used. Although this approach is effective for providing 
platform independence, the deployment of a VM on node able 
to execute the SPINE language can be very expensive in terms 
of execution speed and used resources (e.g. memory). 

According to the SL approach (see Fig. 3) a SPINE core 
framework is defined through a language used by the majority 
of sensor platform and, then, adapted to such different 
platforms through platform specific software modules. With 
this approach the core framework can be accurately defined 
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and implemented and kept highly efficient. However it fits only 
sensor platforms programmed through compatible languages.

SPINE  
LANGUAGE 

SPINE  
MODELS 

TinyOS 
Translator 

EmberZNet 
Translator 

Z-Stack 
Translator 

TinyOS 
(TelosB, MicaZ) 

EmberZNet  
(ST MotionBee) 

Z-Stack 
(TI Z-Stack ) 

Figure 1. SPINE2 based on the MDD approach. 

SPINE VM LANGUAGE 

TinyOS 
Porting Interface 

SPINE PROGRAMS 

SPINE VM 

EmberZNet  
Porting Interface 

Z-Stack 
Porting Interface 

TinyOS 
(TelosB, MicaZ) 

EmberZNet  
(ST MotionBee) 

Z-Stack 
(TI Z-Stack ) 

Figure 2. SPINE2 based on the VM approach. 
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(ST MotionBee) 
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(TI Z-Stack ) 
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Adaptation 
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Figure 3. SPINE2 based on the SL approach. 

Considered that our requirements were the followings: 

• execution on commercial resource-constrained sensor 
platforms, such as TinyOS [5], Ember [6] or Texas [7], 
each one having a different operating system; 

• minimization of the amount of code that should be 
replicated for each specific implementation; 

• enabling C-developers (eventually C++) to extend the 
SPINE framework without having to learn low-level 
details of specific sensor platforms or without having to 
learn new programming languages, such as nesC [5]; 

• enabling compiling and simulating the code by using 
normal ANSI C tools; 

we selected the SL approach founded on the C language, which 
is the language used by the sensor platforms we selected and, 
as a matter of fact, by the majority of resource-constrained 
environments. In the next three subsections the programming 
model, the architecture and the communication protocol of 
SPINE2 are described. 

A. Programming Model 
In SPINE2 a task-oriented programming model was 

implemented on the nodes in order to best fit the requirements 
of collaborative distributed applications in a resource-
constrained environment: an agent is executed on each sensor 
node that – via proper message exchange – can discover, 
create, activate, schedule and control tasks. Distributed and 
collaborative applications can then be programmed as a 
dynamically schedulable and reconfigurable set of tasks. 
Different tasks can be assigned to each node of the network and 
tasks can be controlled at execution time via proper message 
exchange; in this way the network can overall adapt to changes 
in context, in overall goals, in the state of each single node, and 
it can better balance load and task types between each element 
of the network. Dynamic distribution of tasks allows – among 
the others – preprocessing of sensed data directly on the node, a 
significant reduction of data transmission and battery 
consumption, and an overall increase of the network lifetime. 

Application developers do not need to program in tiny 
environments. A SPINE agent is installed on each node that 
allows interacting with the base station for the task assignment 
and control. An application is simply a recipe listing the set of 
tasks to be assigned to each node; the recipe can be executed 
via the Java API of the base station and, via the same API, the 
recipe can also be changed at execution time in order to 
implement different states and intentions of the system.  

So far, the following types of tasks have been implemented:  

• SensingTask, which allows defining a sensing operation on a 
given sensor. The sensing operation can be one-shot or 
periodic. 

• TimingTask, which allows defining timers for timing other 
tasks. Timers can be one shot or periodic. 

• FunctionalTask, which refers to the functional tasks defined 
through programming: 

o ProcessingTask, which allows to elaborate data. A specific 
type of processing is the feature extraction (or simply 
feature), a data processing algorithm which is carried out 
on a set of values that can be taken from a data buffer of 
the BufferPool. 

o AggregationTask, which allows aggregating data 
calculated by different functions. 

o TransmissionTask, which allows transmitting data 
produced by sensing, processing and/or aggregation tasks. 

An example of task-oriented programming is shown in Fig. 
4 by means of a data-flow-based model. In this example, the 
sensed data generated by the Sensing task (by acquiring data 
from a 3-axis accelerometer) are fed to the Split task that, in 
turn, splits the data for the computation of three features. Each 
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feature is implemented as a Task and fed with different data: 
the Mean task uses data from all three axes (XYZ), the Min and 
Max tasks uses data from the X axis. Each triple of computed 
features (<Mean(AccXYZ), Min(AccX), Max(AccX)>) are 
aggregated by the Aggregation task (Aggr) and sent to the 
destination node by the data transmission task (Sender). The 
reader can easily guess the variety of complex tasks which can 
be created by using such a task composition formalism. 

Accelerometer
Sensing Split

Mean

Min

Max

Acc (XYZ)

Acc (XYZ)

Acc (XYZ)

Aggr Sender

<Max(AccX),
Min(AccX),

Mean(AccXYZ)>

Figure 4. Data-flow-based model. 

The SPINE task-oriented programming model is not data-
flow driven but event-driven. Thus, the data-flow model of Fig. 
4, which can be seen as a model at a higher-level of abstraction, 
can be defined according to the event-driven model of SPINE2 
as in Fig. 5. In particular, data, which are sensed by the Sensing 
task driven by a Timer1 set to a given sampling rate, are stored 
into decoupling buffers for the three axes channels (AccX, 
AccY, AccZ). Buffers are managed by the BufferPoolManager 
component which is based on the event-based publish subscribe 
paradigm. It accepts subscriptions coming from the 
FunctionTasks and as soon as events related to such 
subscriptions occur, it notifies, through the AcqNotify, the 
FunctionTask subscriber which, in turn, can fetch the data 
which it is interested in. In the proposed example, the 
ProcessingTasks are notified by the BufferPoolManager when 
S sensed data samples have been acquired; where S is the shift 
parameter of the ProcessingTasks which compute their function 
on a sample window (W) equals to n*S samples. The processed 
data are passed to the AggregrationTask (Aggr) which, after 
aggregation, passes them to the TransmissionTask (Sender). In 
Fig. 6 a timer-driven model of the same example is shown. It 
simplifies the architecture supporting SPINE2 models by 
avoiding the introduction of the BufferPoolManager active 
component. In particular, the FunctionTasks are not driven by 
events sent by the BufferManagerPool but by timers appositely 
set upon the timer driving the SensingTask. Timer2, Timer3, 
and Timer4 are therefore set to S*Timer1. Moreover, also the 
Aggr&SendTask (a task which jointly aggregates and 
transmits) is timer driven. Timer5=Timer2+0.1*Timer2. 

Mean

Min

Max

Timer1

getAcc(X)

Aggr Sender

AccX

AccY

AccZ
Acceleromet er
Sensing

BufferPool Manager
(notifier)

<Max(AccX),
Min(AccX),

Mean(AccXYZ)>

AcqN ot if y

AcqNot if y

AcqNot if y
getAcc(X)

getAcc(XYZ)

Figure 5. Event-driven SPINE2-based model. 

Mean
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Max

Timer1

getAcc(X)

Aggr&Send

AccX
AccY

AccZAccelerometer
Sensing

BufferPool

<Max(AccX) ,
Min(AccX),

Mean(AccXYZ )>

getAcc(X)

getAcc(XYZ)

Timer2

Timer4
Timer3Ti m er2=Tim er3=Tim er4=S*Tim e r1

Ti m er5=Tim er2+0.1*Tim er2

Timer5

AggrBuffer

getAggr()

Figure 6. Timer-driven SPINE2-based model.  

B. A Timer-driven Architecture 

The timer-driven architecture of SPINE2 (Fig. 7) consists 
of a SPINE core framework which is to be adapted to platform-
specific components (sensor drivers, application lifecycle, 
timers, communication). The SPINE core framework currently 
implements the task execution logics according to the timer-
driven programming model. 

SPINEApplication

+init()
+handleIncomingMessage(message)
+handleFiredTask(activeTask)

TimedTaskSheduler

TaskDescriptionPool

BufferPool

SPINEBoot

SensorManager

SensorList

SyncSensor

0..*
FunctionManager

Function

0..*

CommManager

MessageHandler

FunctionList

Platform Specific Platform Independent

AsyncSensor

0..*

RadioController

MessagePacketizer

AggBuffer

Figure 7. The SPINE2 component diagram. 

The platform-independent components of the SPINE2 
framework are: 

• The SPINEApplication is the core component of a SPINE2 
application. It reacts to external events, like messages, and 
to internal events. It provides three functions:  
o init for application initialization; 
o handleIncomingMessage for handling an incoming 

network message; 
o handleFiredTask for handling fired tasks. 

• The TaskDescriptionPool component is a dynamic list of 
the tasks created in the node. 
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• The BufferPool component consists of a set of data buffer 
needed to store data produced by sensing tasks and 
aggregate data computed by functions. 

• The FunctionManager component, which acts as a 
Dispatcher managing the available list of functions 
(FunctionList), is called by the SPINEApplication to 
execute ProcessingTasks, AggregationTasks and 
TransmissionTasks. 

• The AggrBuffer component, which allows to temporary 
store computed features for aggregating them. 

• The SensorManager component is connected to platform 
specific components, which are specific drivers for the 
Sensors components. The SensorManager manages a list 
of sensors (SensorList) which can be of synchronous and 
asynchronous type. While SynchronousSensors are read 
through a synchronous primitive, AsynchronousSensors 
are based on (i) an asynchronous primitive for requesting a 
sensor read and (ii) the related notification of the read 
value, which is done by the sensor driver, when data is 
available, so that the sensor manager can fetch it. 

• The MessageHandler component contains the handling 
code of the SPINE2 protocol packets. 

• The MessagePacketizer component allows building 
packets according to the SPINE2 protocol. 

The aforementioned platform-dependent components are to 
be appositely adapted to the following platform-dependent 
components which drive their execution: 
• The SPINEBoot component is the application entry-point 

which provides the application lifecycle. It contains 
platform specific initializations and wirings, and drives the 
SPINEApplication by calling its init() method. 

• The TimedTaskScheduler component manages timed tasks 
by using platform-specific timers. 

• The AsyncSensor/SyncSensor components are the sensor 
drivers, which can be synchronous or asynchronous, 
through which real sensors can be accessed. 

• The CommManager component contains the platform-
specific radio communication logic. CommManager can 
receive messages from the RadioController and pass them 
to the SPINEApplication through the 
handleIncomingMessage method which uses the 
MessageHandler component. In particular, the 
RadioController allows to handle the sensor radio for 
receiving and transmitting packets and for putting the radio 
in stand-by for energy saving. 

The SPINE 1.2 communication protocol which enables 
communication between the base station and the sensor node is 
function-oriented.  As the programming model of SPINE 2.0 is 
task oriented, the SPINE2 communication protocol was re-
designed. Nevertheless, to maintain backward compatibility, a 
SPINE1.2/SPINE2 software communication bridge was also 
implemented. The SPINE2 communication protocol is task-
oriented and, in particular, provides the following packet types: 

• createTask, which allows to create a task with the 
associated parameters; 

• startTask, which starts a created task or restart a 
paused task; 

• pauseTask, which pauses a started task; 
• updateTask, which reconfigures a paused task; 
• deleteTask, which stops and/or cancel a task; 
• getTasksDescription, which returns the list of the 

created tasks of the node and their status; 
• startNode, which starts all the tasks created on the 

node; 
• getNodeConfiguration, which returns the 

configuration of the node in terms of available 
sensors, functions and tasks; 

• data, which contains data sent from the node to the 
coordinator. 

IV. IMPLEMENTATION STATUS 
SPINE2.0 architecture as described in Figure 7 easily 

allows supporting different platforms since the platform 
specific components are well defined. The parts to be 
implemented include the application lifecycle, the 
communication part, the timer related stuff and the low level 
access, that are all the OS specific parts as previously 
described. SPINE2.0 currently supports two software sensor 
platforms, TinyOS2.1 and Texas Instruments Z-Stack1.2. 

Although these platforms are all based on a C-like 
programming language, they differ not only in terms of 
operating systems but also in terms of programming 
abstractions and communication protocols. 

While TinyOS was designed as a general purpose open 
source operating system for wireless sensor networks, Texas 
Instrument Z-Stack is a software platform certified to be 
ZigBee compliant. On the other hand, while being more 
flexible in terms of applications and modules to be inserted, 
TinyOS brings another complexity due to the programming 
paradigm and language. Therefore such two platforms are very 
good candidates for evaluating the flexibility of the SPINE2.0 
architecture. 

Z-Stack environment defines not only an operating system 
but also standard related logics that must be preserved to 
maintain the standard compliance. ZigBee standard [15] 
defines not only the low level communication layers (IEEE 
802.15.4 as MAC protocol, ZigBee network, management and 
security layers) and standard application profiles (such as the 
Home Automation one) but also basic rules to be followed 
when building a proprietary profile.  

As an application level framework, SPINE2.0 on TinyOS 
has been implemented as an application module whereas on the 
Z-Stack platform has been designed to be a proprietary ZigBee 
profile with respect to all the ZigBee related rules. 

In particular, the parts to be added into the different 
platforms are the followings: 

• SPINEBoot takes care of the system initialization: 
- in the Z-Stack it defines all the ZigBee standard 

descriptors as well as sets up the ZigBee communication part; 
- in TinyOS this is simply the application entry point 
from where the TinyOS application is compiled and 
started and does not include any logic rather than the 
SPINE related one. 
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• CommManager/RadioController takes care of all the 
communication related operations: 

- in the Z-Stack this part takes care of the 
communication through primitives defined by the standard 
for the application protocol data units transport between 
peer application entities (ZigBee APS Data Service). 

- in TinyOS it uses send/receive low level APIs for 
communicating with other devices in the network. 
• TimedTaskScheduler schedules the timed tasks 

created in the sensor node: 
- in the Z-Stack implementation this part takes care of all 
the timed event through an extensive usage of the utilities 
provided by the Z-Stack OS (OSAL, Operating System 
Abstraction Layer) such as task allocation, timer settings 
and so on. It is important to notice that SPINE2.0 task 
oriented architecture run without any modification even 
into a task oriented OS as the OSAL is; 
- the timer interface already defined in the OS is used in the 
TinyOS version to manage timer related events 
• Sensor drivers which are platform specific since they 

have to access to low level functionalities. 
Moreover each platform will need specific configuration 

files setting all the tunable parameters. 
The Timer-driven SPINE2.0 release has been successfully 

implemented and tested on both mentioned platforms. In the 
following we elucidate the structure and programming of the 
available tasks. 

A timed task is defined as a C-struct as follows: 
typedef struct timedTaskDescriptor{ 
  unsigned char taskID; 
  unsigned char taskType; 
  unsigned char status; 
  unsigned long timer; 
  unsigned char timerScale; 
  unsigned char isPeriodic; 
  unsigned char parameters[TASK_PARAMETER_LENGTH]; 
} timedTaskDescriptor;

where, taskID is the unique task identifier, taskType is the type 
of task, status holds information about the task status (created, 
active, paused), timer contains the task firing time, timerScale
contains the measurement unit of the timer, isPeriodic signals 
if the timed task is periodic or one-shot, and parameters
contains parameters specific to the taskType.

The currently available taskTypes are sensing, feature 
extraction, and aggregation & sending:
enum taskTypes{ 
 TASKTYPE_FEATURE_EXTRACTION = 0x01, 
 TASKTYPE_SENSING = 0x02, 
 TASKTYPE_AGGR_AND_SEND = 0x03 
};

In particular the parameters of task types are defined as 
follows: 
enum sensing_TaskType{  
 SENS_SENSOR_ID = 0,      //id of the sensor 
 SENS_CHANNEL_BITMASK = 1,//bitmask for Ch selection 
 SENS_BUFFER_ID_1 = 2,    //buffer associated to Ch1 
 SENS_BUFFER_ID_2 = 3,    //buffer associated to Ch2 
 SENS_BUFFER_ID_3 = 4,    //buffer associated to Ch3 
 SENS_BUFFER_ID_4 = 5     //buffer associated to Ch4 
};

enum feature_extraction_TaskType{  
 FEX_FEATURE = 0,        //id of the feature 
 FEX_CHANNEL_BITMASK = 1,//bitmask for Ch selection 
 FEX_WINDOW = 2,         //data window 
 FEX_BUFFER_ID_1 = 3,    //buffer associated to Ch1 
 FEX_BUFFER_ID_2 = 4,    //buffer associated to Ch2 
 FEX_BUFFER_ID_3 = 5,    //buffer associated to Ch3 
 FEX_BUFFER_ID_4 = 6,    //buffer associated to Ch4 
 FEX_SENSOR_ID = 7,      //id of the sensed sensor 
 FEX_AGGR_ID = 8         //id of the aggr&send task 
}; 

enum aggregation_and_sending_TaskType{  
 AGG_ID = 0,         //id of the aggr&send task 
 AGG_FEATURES_TO_WAIT_FOR = 1, // aggr feature number 
 AGG_TIMER = 2,      //reference aggr timer 
 AGG_DEF_COUNTER = 6 //number of aggr trials 
}

The example of Fig. 6 is implemented and successfully 
tested on TelosB motes [16] and TI ZStack sensor nodes both 
equipped with specific 3-axial accelerometer sensor boards. In 
particular the defined timed tasks (sensing from accelerometer, 
calculation of mean, and aggregation and sending) are the 
following: 

• TASKTYPE_SENSING
(sensTask)->taskID = 1 
(sensTask)->taskType = TASKTYPE_SENSING  
(sensTask)->timer = 25 
(sensTask)->timerScale = 1 //ms 
(sensTask)->isPeriodic = 1 //true 
(sensTask)->parameters[ACQ_SENSOR_ID]=1 //accelerometer 
(sensTask)->parameters[ACQ_CHANNEL_BITMASK]=e//Ch XYZ 
(sensTask)->parameters[ACQ_BUFFER_ID_1] = 0 
(sensTask)->parameters[ACQ_BUFFER_ID_2] = 1 
(sensTask)->parameters[ACQ_BUFFER_ID_3] = 2 

• TASKTYPE_FEATURE_EXTRACTION_1
(featExtTask)->taskID = 2 
(featExtTask)->taskType = TASKTYPE_FEATURE_EXTRACTION 
(featExtTask)->timer = 1000 //40 samples 
(featExtTask)->timerScale = 1 
(featExtTask)->isPeriodic = 1 
(featExtTask)->parameters[FEX_FEATURE] = 5 //MEAN 
(featExtTask)->parameters[FEX_CHANNEL_BITMASK] = e 
(featExtTask)->parameters[FEX_WINDOW] = 80 
(featExtTask)->parameters[FEX_BUFFER_ID_1] = 0 
(featExtTask)->parameters[FEX_BUFFER_ID_2] = 1 
(featExtTask)->parameters[FEX_BUFFER_ID_3] = 2 
(featExtTask)->parameters[FEX_SENSOR_ID] = 1 
(featExtTask)->parameters[FEX_AGGR_ID]=1 

• TASKTYPE_AGGR_AND_SEND
(aggrSendTask)->taskID = 5; 
(aggrSendTask)->taskType = TASKTYPE_AGGR_AND_SEND; 
(aggrSendTask)->timer = 1100; 
(aggrSendTask)->timerScale = TIMER_SCALE_MSEC; 
(aggrSendTask)->isPeriodic = FALSE;  
(aggrSendTask)->parameters[AGG_ID] = 1; 
(aggrSendTask)->parameters[AGG_FEATURES_TO_WAIT_FOR]=3; 
(aggrSendTask)->parameters[AGG_TIMER] = 1000; 
(aggrSendTask)->parameters[AGG_DEF_COUNTER] = 0; 

Tasks can be created and started either by explicit node 
programming or by the base station through the SPINE2 
protocol. 

To experiment with SPINE2, the sensor-node side 
application presented in [3], which allows the activity 
monitoring of individuals (standing, lying, walking and 
sitting), is now based on sensor nodes supported by SPINE2.0. 

Experimentation with SPINE2 was also carried out to 
demonstrate that the platform independency of SPINE2 does 
not introduce performance penalties with respect to SPINE1.2. 
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To this purpose, an evaluation of the data processing 
performances of the TinyOS versions of SPINE1.2 and 
SPINE2 on the TMote SKY TelosB sensor platform [16] has 
been carried out. The performance evaluation results are 
reported in Table I. In particular, selected features (max, mean, 
standard deviation, vector magnitude, pitch & roll, and 
entropy) were computed on different sample sizes (50, 100, 
200) acquired from a 3-axial accelerometer sensor board. As 
can be noted, SPINE2 feature processing performances are 
higher than those computed with SPINE1.2. This performance 
improvement is mainly due to the different methods of calling 
processing functions in SPINE1.2 and SPINE2: in SPINE1.2 a 
processing function is executed by means of a call to a nesC 
command whereas in SPINE2 a simple call to a C function of 
an included file is done. 

TABLE I. COMPARISON OF FEATURE PROCESSING TIMES (MS) THROUGH 
SPINE1.2 AND SPINE2 IN TINYOS ON TELOSB SENSOR NODES

SPINE1.2 SPINE2 SPINE1.2 SPINE2 SPINE1.2 SPINE2

MAX 0,488 0,488 0,883 0,886 1,696 1,679

MEAN 1,069 1,038 1,627 1,556 2,714 2,625

STANDARD 
DEVIATION

10,070 7,450 16,703 13,823 28,617 26,054

VECTOR 
MAGNITUDE

2,136 1,741 3,126 2,501 4,564 3,997

PITCH & ROLL 17,894 16,967 18,401 17,428 19,461 18,552

ENTROPY 239,291 235,848 488,185 481,167 1016,392 1001,735

50 samples 100 samples 200 samples

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented SPINE2 a domain-specific 
framework for the platform-independent development of 
collaborative WBSN applications. SPINE2 consists of two 
parts: (i) the core which is written in C and is independent from 
any C-like sensor platform on which it can be ported on; (ii) a 
set of platform-dependent components (sensors, 
communications, timers, application lifecycle) through which 
the core can be easily adapted. The task-oriented programming 
model of SPINE2 enables a flexible development of WBSN 
applications in terms of a star-based network of collaborative 
and dynamically reconfigurable tasks which concur to carry out 
an overall distributed task. SPINE2 (specifically the timer-
driven architecture) is currently implemented for TinyOS 
sensor platforms (in particular for TelosB motes) and ZStack 
Zigbee sensor nodes, and was successfully applied to the 
realization of a multi-platform WBSN application for activity 
monitoring of individuals. Moreover, SPINE2 does not only 
introduce performance penalties but also increases 
performances of feature calculation with respect to SPINE1.2. 
On-going work is geared at (i) completing the implementation 
of SPINE2 for the Ember sensor platform and designing a 
version for ContikiOS; (ii) designing and implementing a 
flexible event-based architecture for SPINE2, and (iii) 

extending SPINE2 for more general collaborative WSN 
applications (not only centered on star-based networks). 
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