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Abstract— FastSLAM is a framework which solves the 
problem of simultaneous localization and mapping using a Rao-
Blackwellized particle filter. Conventional FastSLAM is known 
to degenerate over time in terms of accuracy due to the particle 
depletion in resampling phase. In this work, a new FastSLAM 
framework is proposed to prevent the degeneracy by particle 
cooperation. First, after resampling phase, a target that 
represents an estimated robot position is computed using the 
positions of particles. Then, particle swarm optimization is 
performed to update the robot position by means of particle 
cooperation. Computer simulations revealed that the proposed 
framework shows lower RMS error in both robot and feature 
positions than conventional FastSLAM. 

Keywords— mobile robot, FastSLAM, particle filter, particle 
swarm optimization

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) is a 
fundamental problem of robots to perform autonomous tasks, 
such as navigation in unknown environments. FastSLAM is a 
successful algorithm for solving the SLAM problem. Rao-
Blackwellized particle filter (RBPF) used in FastSLAM has 
two advantages over any other algorithms in solving the SLAM 
problem: linear time complexity and multi-hypothesis data 
association [1]. However, in the literatures [2], FastSLAM has 
been noted to degenerate over time in terms of accuracy. This 
degeneracy happens when a particle set estimating the pose of 
the robot loses its diversity. There are two main reasons for 
losing particle diversity in FastSLAM. First, sample 
impoverishment, caused by mismatch between target 
distribution and proposal distribution, produces improbable 
particles which estimate robot pose inaccurately. Second, 
during the resampling process in FastSLAM, the improbable 
particles are thrown away and only particles with high weights 
survive. However, if particles which estimate robot pose 
accurately get low weight and dumped out, the robot 
information stored within the dumped particle cannot be 
recovered. In other words, the miscomputation of particle’s 
weight causes particle depletion problem. 

In recent years, many algorithms [2-6] have been proposed 
to overcome the particle depletion problem. Kwak et al. [3] 
analyzed several particle filters used in FastSLAM and 
proposed a compensation technique for dealing with the 
depletion problem. Kim et al. [4] proposed unscented 

FastSLAM which uses unscented transform for particle filter, 
feature initialization, and feature estimator. Similarly, Cugliari 
et al. [5] used the unscented transform to improve the accuracy 
of the particle filter and feature estimator, and they also 
proposed an adaptive selective resampling technique. In our 
previous work, a new resampling technique is proposed using 
geometric relation between particles to restrain the particle 
depletion [6]. So far, these techniques have shown better 
performance than conventional FastSLAM. However, these 
methods are not a cooperative way of handling particles in the 
depletion problem that they merely try to maintain diversity to 
improve FastSLAM algorithm.  

In this work, the concept of particle cooperation in swarm 
intelligence is introduced to improve the performance of 
FastSLAM. Because particles cooperate with one another to 
track a target such as robot position, they can estimate the 
target more accurately. Therefore, the number of highly 
probable particles that estimate actual robot pose becomes 
larger, and the particle depletion problem can be dealt by 
preventing the improper rejection of particles. There are a few 
attempts that use swarm intelligence to solve the localization 
and SLAM problems. Kwok et al. [7] used particle swarm 
optimization (PSO) to estimate a robot’s location. Tdor et al. 
[8] first introduced the PSO to the SLAM problem. It was a 
challenging attempt to apply swarm intelligence to the SLAM 
problem, but it allowed too many random variables and was not 
performed in a clear framework.  

We propose an improved FastSLAM framework, named 
PSO-FastSLAM, using PSO as the particle cooperation 
technique for estimating the robot position with FastSLAM. 
First, as a target for PSO, the most probable location of a robot 
is obtained using the positions of particles. Then as the particle 
cooperation method, PSO is used for particles to be gathered 
around the target. As a result, the number of particles 
estimating the robot position accurately becomes larger, which 
means the degeneracy of FastSLAM can be alleviated.  

This paper is organized as follows: Section II describes the 
framework of conventional FastSLAM and the particle 
depletion problem. In Section III, PSO-FastSLAM is stated 
with a brief explanation of PSO. Section IV shows the 
evaluation of the proposed framework using computer 
simulations. Finally, Section V gives conclusions. 
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II. PROBLEM FORMULATION

A. Conventional FastSLAM Framework 
The key mathematical insight of conventional FastSLAM is 

the fact that the full SLAM posterior can be factored as [1]: 
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where c1:t=c1,…,ct are the correspondences, and x1:t  is the robot 
path from the start up to time t, and M is a global map, and mn
is a local map of the n-th particle. z1:t and u1:t  are the 
measurements and controls up to time t, respectively. 
FastSLAM uses particle filter to compute the posterior over 
robot paths, denoted by . For each feature 
in the map, FastSLAM uses a separate estimator over its 
location , one for each n = 1, ..., Nf  where 
Nf  is the number of features. The feature estimators are 
conditioned on the robot path, which means there are separate 
copies of each feature estimator, one for each particle. More 
precisely, feature locations are estimated using EKFs. Due to 
the factorization, FastSLAM maintains a separate EKF for each 
feature, which makes the update more efficient than that in 
EKF-SLAM in terms of computational complexity. By keeping 
the feature estimates independently, FastSLAM avoids the 
quadratic cost of computing a joint map covariance matrix.  
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where the [k] indicates the index of the particle, and [ ]k
tx  is the 

pose estimate of the robot at time t. Only the most recent pose 
[ ]k
tx  is used in FastSLAM, so a particle keeps only the most 

recent pose.  are mean and covariance of the 
Gaussian, representing the n-th feature location relative to the 
k-th particle, respectively. Altogether, these elements form the 
k-th particle, Y , and there are total Np particles and Nf

feature estimates in a particle set. 
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A simple graphical procedure of conventional FastSLAM 
(FastSLAM 2.0) algorithm is depicted in Fig. 1. For 
convenience, only two particles among a particle set are shown. 
In Fig. 1(a), each particle samples a robot pose based on the 
proposal distribution which takes the measurement zt into 
account. All of the sampled poses constitute a temporary 
particle set. Then, each particle updates the posterior over the 
feature estimates based on the measurement zt and the sampled 
pose ]tm
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x  as shown in Fig. 1(b). The next step is to compute 
the importance weight of k-th particle using the following 
weighting function quotient as shown in Fig. 1(c): 

[ ] target distribution .
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k
tw �                        (3) 

The last process is resampling, which draws Np particles from 
the temporary particle set. As shown in Fig. 1(d), the temporary 
particle with high importance weight, Y  is replicated three 
times whereas the one with low importance weight, Y  is 
rejected or thrown away in the resampling process. This means 
that the information on robot path and feature estimates of the 
rejected particles is lost. 

[ ]n
t

[ ]m
t

B. Particle Depletion Problem 
The rejection of bad particles that estimate robot pose 

inaccurately is indispensable in resampling phase. However, 
the rejection of the bad particles requires carefulness of conduct 
because it may deteriorate the multi-hypothesis data association 
that is the strong point of FastSLAM over other SLAM 
solutions. As time passes, only particles with high weights 
survive and perform replication, and particles with low weights 
disappear together with their information on robot pose and the 
locations of features. Therefore, the number of distinct 
estimates of a robot and features decreases, which means the 
diversity of particles decreases.

This problem so called particle depletion problem is 
inevitable unless the sufficient number of good particles that 
estimate accurate robot pose is maintained. However, the 
maintenance is not easy because of the lack of knowledge 
about the location of a robot, and only when particles share and 
use the knowledge of the most probable location of a robot, the 
sufficient number of good particles can be maintained. 
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                      (a) Sampling                                   (b) Measurement update                            (c) Importance weight                                (d) Resampling 

Figure 1. A graphical procedure of conventional FastSLAM algorithm (FastSLAM 2.0) (a) Pose sampling of two particles using control input and current 
measurement where the superscript tmp means a particle is included in a temporary particle set, (b) Measurement update, which is performed per particle, (c)
Importance weight, and (d) Resampling; particles are replicated or rejected. 
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III. PSO-FASTSLAM

A. Particle Swarm Optimization (PSO) 
Recently, the idea that particles cooperate with one another 

to track a common target has been applied to various fields 
such as mathematics, sciences, and engineering. PSO is a 
population-based technique, similar in some respects to 
evolutionary algorithms, except that potential solutions 
(particles) move and cooperate with one another, rather than 
evolve through the search space. The particle dynamics which 
govern the movement are inspired by models of swarming and 
flocking [10]. The core principals of PSO with respect to 
particle cooperation are described in Fig. 2. 

In PSO, each particle has a position, a velocity, and 
memory toward two attractors. One is the best position attained 
by that particle so far (personal or particle attractor). The other 
is the best of the particle attractors in a certain neighborhood 
(global or swarm attractor). Therefore, the swarm attractor 
enables particles to share information, while the particle 
attractors serve as individual particle memories. A particle i is 
defined by its position ix� , the position of its personal best 
solution found so far, i , and its velocity iv . Furthermore, each 
particle knows the best solution found so far by any of its 
neighbors. Different particle topologies are explored in [12], 
but the standard neighborhood is global (gbest), i.e., all 
particles know the position of the globally best solution found 
so far 

p� �

gp� . In the literature [11], particle positions and 
velocities are generated randomly. The algorithm proceeds 
iteratively, updating first all velocities, and then all particle 
positions as follows: 

1 1 2 2( 1) [ ( ) ( ( )) ( ( ))]i i g i i iv s v s c p x s c p x s� � �	 � 	 
 � 	 
 �
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where s=1,2,…,Ne and Ne is the number of epochs. The 
constriction factor 1� �  acts like friction, slowing the 
movement of particles, so that finer exploration is achieved. c1
and c2 control the relative attraction to the global best and 
personal best found solutions, respectively. Finally, 1�

�  and 
2�
�

are vectors of random variables drawn with uniform probability 
from 0 to 1. 

B. PSO based Particle Filter (PSO-PF) 
Recently, Zhang et al. [9] proposed PSO-PF which 

combines generic particle filtering algorithm with standard 
PSO. In their work, after resampling in the generic particle 
filter, PSO is preformed using the weight of a particle as a 
fitness value. The most weighted particle, therefore, is used as a 
global attractor (target) in every iteration step. Applying PSO 
in the particle filter allows the particles to maintain diversity 
and makes them to move toward the most weighted particle. 

In our work, similar to PSO-PF, we used the idea of PSO in 
FastSLAM algorithm; however, instead of selecting the most 
weighted particle as the target, we select the mean of the 
particles’ positions for the target’s position. According to the 
recent works in particle filter-based SLAM, the mean of the 
particles’ positions is much closer to the actual robot position 

than the position of the most weighted particle [17, 18]. This is 
the most important aspect when PSO is applied in SLAM 
because if a poorly estimated particle is determined as the 
target then even though particles maintain diversity, they will 
be optimized around the incorrect target. Therefore more 
accurate SLAM results, i.e. robot’s location and map, will be 
obtained by using the mean of the particles’ positions as the 
target in PSO. For each particle i, the personal best of PSO is 
calculated by 

(a)                                                         (b)  

(c) (d) 
Figure 2. Core principals of PSO (a) Each particle is attracted towards the 
location of the target. (b) Each particle ‘remembers’ where it was closer to 
the target. (c) Each particle shares information with its neighbors 
(originally, all other particles) about its closest location to the target. (d) 
Each particle tracks the target iteratively using its own and shared 
information. 
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where s=1,2,…,Ne, and (1)ix� represents the original position of 
the i-th particle at time step t, [ ]i

tx . And the global best of PSO 
at the s-th epoch is calculated by 

( )
arg min ( )

i
g i

x s
p x s� �

� xm�� �                            (7) 

where i=1,2,…,Np. The use of PSO in FastSLAM has, other 
than maintaining diversity, two advantages over generic 
FastSLAM algorithm. First, it is possible to be recovered from 
miscomputation of new particles in the sampling phase. A 
particle’s personal best in PSO is chosen to be the particle’s 
position at the moment when the particle has highest weight; 
therefore, the particle will be recovered by (4) and (5). Also, by 
selecting the position of the closest particle to the mean of 
particles’ positions as the global best, the particles can be 
located near the actual robot position. The whole algorithm of 
the modified PSO-PF is shown in Fig. 3. Unlike in PSO-PF, the 
PSO-FastSLAM performs an additional step of computing the 
target.
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Figure 5. Simulation environment. The robot path is given, but the robot
cannot follow the path due to the motion noise. Feature errors were getting
larger at point A, and the inner loop-closure occurred at point B and the 
outer loop-closure at point C. 

C. PSO-FastSLAM Framework 
PSO-FastSLAM differs from conventional FastSLAM 

because of an additional process for compensating the particle 
depletion. The compensation process which is the key strategy 
of PSO-FastSLAM attracts the particles toward the actual robot 
position while maintaining particle diversity. The overall block 
diagram of PSO-FastSLAM is shown in Fig. 4. After 
resampling probable locations of a robot by rejection, a target is 
computed using mean of positions of particles. Then PSO is 
performed for particle cooperation in PSO-FastSLAM. 

IV. SIMULATIONSFigure 3. The modified PSO-PF consists of two parts. The first part is 
equal to the generic particle filter. The second part is the particle 
cooperation which uses PSO. Unlike PSO-PF, the modified PSO-PF 
performs an additional step of computing the target. 

A. Simulation Setups 
Ba ley developed the FastSLAM simulator [16] which is 

opened to the public. In the literature [2], the consistency of the 
FastSLAM2.0 was discussed using the simulator. In the same 
simulation environment, PSO-FastSLAM was implemented 
and results are compared with other FastSLAM frameworks.  

In order to perform realistic simulations, the simulations 
were performed in an environment with a sparse map with 50 
landmarks as shown in Fig. 5. The global map of the 
environment is 24 meter by 33 meter with several convex and 
concave boundaries to give robots rotations that may cause the 
errors in odometry sensor. Because the actual velocities differ 
from the commanded ones or measured ones, we modeled this 
difference by a zero-centered random variable with finite 
variance [15]. More precisely, we assumed the actual velocities 
are given by 

Sampling
probable locations 

of a robot 
using particles

Computing
importance
weights of
particles

Updating
observation

measurements

Computing
a target using

mean of positions 
of particles

Resampling 
probable locations 

of a robot 
by rejection

Performing
PSO for particle 

cooperation

Figure 4. Block diagram of the PSO-FastSLAM. Unlike conventional 
FastSLAM, PSO-FastSLAM performs an additional process which 
consists of target computation and particle cooperation. 
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where v  and  are translational and rotational velocities of the 
robot, respectively, and  and  are their estimates taking into 
account error �b, a zero-mean error variable with standard 
deviation b. The parameters from �1 to �4 are robot-specific 
parameters that represent the accuracy of the odometry sensor. 
The less accurate the odometry sensor is, the larger their 
parameters are. In this paper, the variance of the normal 
distribution of the translational and rotational velocities was set 
to (0.1m2/s2, 1°/s2) by adjusting the parameters. 

w
v̂ ŵ
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The landmark measurements are also dependent on the 
robot velocities and can be modeled by 
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where  is the distance between the robot and the observed 
landmark, and 

r
�  is the orientation of the observation 

measurements in local coordinates of the robot.  and r̂ �̂  are 
their estimates taking into account error �b , a zero-mean error 
variable with standard deviation b. The parameters from �5 to 
�8 are sensor-specific parameters. For instance, a laser range-
finger has small errors both in distance and orientation whereas 
a sonar sensor has a big error in orientation and a small error in 
distance. In this paper, the variance of the normal distribution 
of distance and orientation of the landmark measurement was 
set to (0.1m2, 1°2) by adjusting the parameters. 

B. Simulation Results 
To evaluate the performance of PSO-FastSLAM, the root 

mean square (RMS) errors of position and feature estimation 
were computed at every time step as shown in Fig. 6. The 
figure shows the average of the results of 50 simulations in 
same circumstances. In the simulations, the weights of all 
particles were initialized with 0.02 after resampling when 50 
particles were used. The figure shows that the errors increased 
rapidly at point A where a robot moves along abrupt curves, 
and they decreased at point B and C where a robot closed the 
inner and outer loop of the map. Among three cases, PSO-
FastSLAM showed the smallest errors in both of position and 
feature estimation. For the sake of more clear analysis, the 
RMS errors in the robot’s position and orientation, and features 
of the map are summarized in Fig. 7. The errors in orientation 
are similar, but the errors in position and feature estimates of 
PSO-FastSLAM are much smaller than other FastSLAM 
algorithms.  

For given a wide range of particle numbers from 1 to 100, 
the RMS errors in robot position and features were computed. 
Each simulation was run 50 times, and the averaged results 
were compared as shown in Fig. 8. The figure shows not only 
the averaged values but also minimum and maximum values. 
When more than ten particles are used, the performance of the 
PSO-FastSLAM is better than that of others apparently. The 
standard deviations of estimation errors are summarized in 
Table. I. Each value in the table averages the whole results with 
different numbers of particles which are shown in Fig. 8. The 
standard deviations of PSO-FastSLAM were smaller than those 
of other FastSLAM frameworks. 
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Figure 7. RMSE comparison. For the position and orientation of a robot, 
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features of the built map, the RMSE of PSO-FastSLAM is smaller than 
other cases. 
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V. CONCLUSIONS

FastSLAM has been shown to degenerate over time in 
terms of accuracy due to the particle depletion in resampling 
process. The problem occurs when particles cannot sufficiently 
utilize information on robot pose because of the limitation on 
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(a) Position errors per simulation run 
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Figure 6. RMS Estimation errors at every time step. The performance of
the FastSLAM with PSO-PF is similar to that of conventional FastSLAM 
(FastSLAM2.0). Clearly, the performance of the PSO-FastSLAM is 
better than the two cases. 
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data exchange. In this work, PSO-FastSLAM which adopts the 
PSO to the particle depletion problem was proposed to improve 
the performance of FastSLAM. Particles are cooperated 
through PSO after resampling phase in FastSLAM for better 
estimation. The performance of PSO-FastSLAM was verified 
by reduced RMS errors in robot pose and features of map in 
computer simulation. As future work, the robustness of PSO-
FastSLAM will be analyzed and verified in various 
environments. 
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(b) Feature errors with different numbers of particles 

Figure 8. RMS Estimation errors with different numbers of particles.
Below ten particles, the comparison of position and feature errors is not
clear. However, above ten particles, the performance of the PSO-
FastSLAM is better than that of others. 

TABLE I
STANDARD DEVIATION OF ESTIMATION ERRORS

Type Position (m) Feature (m) 

FastSLAM 2.0 0.0756 0.0871 

FastSLAM with PSO-PF 0.0768 0.0768 

PSO-FastSLAM 0.0741 0.0752 
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